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Abstract

This thesis has two main contributions. The first contribution is the use of cooperative
localization for decoupling the positional error of a moving robot from its environment.
The second contribution is the development of efficient multi-robot exploration strategies
for an unknown environment.

The proposed method is designed to be robust in the face of arbitrarily large odometry
errors or objects with poor reflectance characteristics. Central to the exploration strategy
is a sensor (robot tracker) mounted on a robot that could track a second mobile robot
and accurately report its relative position. Our exploration strategies use the robot tracker
sensor to sweep areas of free space between stationary and moving robots and to generate
a graph-based description of the environment. This graph is used to guide the exploration
process. Depending on the size of the environment relative to the range of the robot tracker,
different spatial decompositions are used: a triangulation or a trapezoidal decomposition of
the free space. Complete exploration without any overlaps is guaranteed as a result of the
guidance provided by the dual graph of the spatial decomposition of the environment.

The uncertainty in absolute robot positions and the resulting uncertainty in the map
is reduced through the use of a probabilistic framework based on particle filtering (a Monte
Carlo simulation technique). Particle filtering is a probabilistic sampling technique used
to efficiently model complex probability distributions that cannot be effectively described
using classical methods (such as Kalman filters).

We present experimental results from two different implementations of the robot tracker
sensor, in simulated and in real environments. The accuracy of the resulting map increases
with the use of cooperative localization. Furthermore, the deterioration of the floor con-
ditions did not affect the quality of the map verifying the decoupling of positioning error

from the environment.



Résumé

Cette these apporte essentiellement deux contribuitions. La premiére consiste en 1’emploi
de la méthode de localization coopérative, pour obtenir le découplage entre I'erreur de
la position du robot en mouvement et ce de I’environnement. La deuxiéme comporte le
développemnt de stratégies efficaces d’exploration multi-robot d’un environnement inconnu.

La méthode proposée est congue de maniere & étre robuste face a des erreurs odométriques
arbitrairement grandes ou & des objets ayant de mauvaises caractéristiques de réflectance.
L’élément central de la stratégie d’exploration est un senseur (suiveur de robot) monté sur
un robot qui puisse repérer un deuxiéme robot mobile et mesurer sa position avec précision.
Notre stratégie d’exploration utilise le senseur pour balayer les régions d’espace vide en-
tre le robot stationnaire et le robot mobile, avec quoi on obtient un graphe qui décrit
Penvironnement. Ce graphe est utilisé pour guider la procédure d’exploration. En fonc-
tion de la taille de I’environnement par rapport au champ du suiveur de robot, différentes
décompositions spatiales sont utilisées: soit une triangulation, soit une décomposition
trapézoidale de 1'espace vide. Une exploration compléte et sans recouvrements est garantie
par le guidage fourni par le graphe dual de la décomposition spatiale de I’environnement.

L’incertitude dans la position absolue des robots et I'incertitude résultante dans la
cartographie sont réduites par 'utilisation d’une méthode probabilistique basée sur le fil-
trage de particules (une technique de simulation Monte Carlo). Le filtrage de particules
est une technique d’échantillonnage probabilistique utilisée pour modéliser efficacement des
distributions de probabilités complexes qui ne peuvent pas étre décrites efficacement par les
méthodes classiques (tel que les filtres de Kalman).

Nous présentons des résultats expérimentaux provenant de deux suiveurs de robot
différents, dans des environnements réels et simulés. La précision de la cartographie obtenue

augmente avec 'utilisation et la localisation coopérative. De plus, la détérioration de I'état



RESUME

du sol n’a pas affecté la qualité de la cartographie, confirmant le découplage entre 1’erreur

de position et I'’environnement.
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CHAPTER 1

Introduction

I am told there are people who do not care for maps, and find it hard
to believe. The names, the shapes... the courses of the roads and
rivers. .. are an inexhaustible fund of interest for any man with eyes
to see or two pence worth of imagination to understand with. ..

— Attributed to Robert Louis Stevenson in Treasure Island, 1883.

1. Motivation

In mobile robotics there are three fundamental problems. The first problem can be
described by the simple question “Where am I?’ and refers to establishing the pose! of
the robot in a global frame of reference; commonly called the localization problem. The
second problem is expressed by the question “How do I go from point A to point B?” and
is called the path planning problem [92]. Finally the third problem can be encapsulated
by the question “What does the world look like?’ commonly referred to as mapping. The
localization problem is critical because an error in the estimated position would surely result
into erroneous or even hazardous behavior, such as moving to the wrong place, collisions,
performing a task at the wrong location. Clearly the first and third problems are interrelated
because when an accurate description (map) of the environment exists then the robot can
localize itself by matching its observations to the world model; also, if the robot knows its
pose with high accuracy, then the observed features of the world can be combined seamlessly

into a map. The process of trying to solve both problems at the same time is known as

!The pose of the robot is defined in 2D as the triplet < ,y,8 > where z and y are the coordinates of the
robot on the plane and 6 its orientation.
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Simultaneous Localization And Mapping (SLAM) or Concurrent Localization and Mapping
(CLM).

FIGURE 1.1. Two robots exploring the environment employing cooperative localization.

This thesis deals with the construction of accurate metric maps of an unknown environ-
ment by a team of mobile robots. By using multiple mobile robots (like the ones in Figure
1.1) we can achieve a high level of accuracy and robustness. The robots are equipped with
different sensors that allow them to collect measurements describing both the environment
and the robot pose; these measurements are invariably corrupted by noise. The main con-
tribution of this thesis is a methodology for reducing the uncertainty introduced by noise
and for recording the pose of the moving robots and the position of obstacles as accurately
as possible. In order to achieve this goal the mobile robots must cooperate closely with
each other (Figure 1.1).

Uncertainty is a central issue in perception for mobile robots. During exploration
there are two different sources of uncertainty. First, there is uncertainty in the pose of the
robot. Second, the sensors used to model the free and occupied space of the environment
return measurements that are corrupted by noise. In particular, the pose of the robot can
be estimated either by dead reckoning? or by using external reference points, but either
estimation approach is corrupted by noise.

2To paraphrase Dunlap and Shufeldt, dead reckoning is a simple mathematical procedure for determining
the present location of a vehicle by advancing some previous position through known course and velocity
information over a given length of time [54, 16, 47].
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This thesis provides algorithms that would guide a group of mobile robots (equipped
with noisy sensors) to construct an accurate (up to a certain bound) representation of
the environment. Central to this thesis is the use of a new sensor (which we refer to
as the Robot Tracker) with the dual purpose of localization and mapping. At any time,
one of the robots remains stationary while the other robot is moving. The stationary
robot acts as an artificial landmark in order for the moving robot to measure its pose
with respect to it. Therefore, a detectable landmark in the form of the other robot is
provided without any modification of the environment. We call this approach, based on
the use of the robot tracker, Cooperative Localization. We first developed this concept in
1997 [132] and coined this term in 1998 [139], which has more recently been taken up by
other authors [144, 172, 9, 59, 64, 161, 108, 58, 182]. A related system was developed by
Kurazume et al. in 1994 [89, 88, 87]. Moreover, when one robot is moving and maintaining
an uninterrupted line of visual contact with the stationary robot, it effectively maps the area
swept by the line of visual contact. As the two robots move through the environment, they
map areas of free space using the fact that they are constantly able to see each other. Our
sensing strategy is sufficiently robust to cope with environments that may have uneven or
slippery terrains, or whose surface reflectance properties are not well suited to conventional

Sensors.

2. The relevance of maps

Across human history, the exploration of new areas is accompanied by the construction
of representations (maps) that describe them. The act of mapping goes back to 2000-
3000 B.C. in Mesopotamia. The earliest known map, found near Kirkuk (modern Iraq),
dates to 2400-2200 B.C. [22]. Around the same time, in China nine copper or bronze
vases were made bearing representations of the nine provinces under the Hsia dynasty [6].
Strabo’s works “Geography” (around 25 B.C.) and Claudius Ptolemy’s “Syntaxis” (around
90-168 A.D.) [129, 128], both from Alexandria, remained the most important cartographic
guides in the western world for the next 1500 years. The creation of maps flourished with
the exploration of the world, especially in the last 500 years. Maps have been used for
exploration of new areas, navigation in unknown waters, searching for shipwrecks, even

for fun [126]. From crude signs on a piece of stone to detailed topographical maps and
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three dimensional models of areas, it was a long journey. Among different civilizations
different models/representations were used: interweaved branches representing sea routes
in Marshall Islands, Micronesia; carved wooden charts mapping the coast line of Greenland
(by the Inuit); clay tables in Mesopotamia; bronze or copper vases showing mountains,
rivers and local products in China; up to the more common paper or cloth maps and the
globes representing geographical, political, economical and cultural data [6)].

The ability to build an internal representation of the environment is critical to most
intelligent organisms. Experiments suggest multiple systems for internal representations
both in humans and in animals. In mammals, experiments have shown that areas in the
hippocampus are directly related to spatial relationships, and certain locations trigger con-
sistent responses of particular brain cells [119, 118, 120]. The existence of a cognitive map
in the brain that spatially corresponds to the environment has been shown in experiments in
rodents, in which dilation of the environment results in stretching the pattern of the neural
responses in the hippocampus [115]. Even though there is some criticism [11] of the im-
portance and uniqueness of the cognitive maps in the brain, it is generally accepted that an
internal model exists that corresponds to landmarks and to dead reckoning estimates [62].
Studies in human perception of places suggest that at an early stage a rough model is built
with a 23D sketch [109] as input and then this model is used to construct higher abstract
models necessary for tasks that need spatial orientation [180]. Experiments with artificial
neural networks confirm the role of an internal representation (cognitive map) in the tasks
of navigation and perception [146].

In robotics, building and/or using an internal model of the environment (a map), is as
we saw earlier, one of the main problems in the field. It is nearly impossible for a robot to
operate in an environment if it does not have a model to guide its actions. One approach for
robot operation is to construct a minimal architecture that would react to the environment
and operate under a small set of assumptions [21, 70]. Such an approach does not require
an explicit internal representation of the environment, but is unfortunately rather limited in
the tasks it could perform (e.g., learn that a specific route is blocked, compute optimal path,
etc.). Another approach in mobile robotics is to provide the robot with a complete map of
the environment at the beginning of operation. Unfortunately, in most applications accurate

maps do not exist and, in the few places that such maps (such as blueprints) exist and are
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error free 3, they are usually in a format that is not easily transferable to the mobile robot.
Furthermore, over time, even accurate maps became obsolete. Thus, it is not surprising
that the need for a mobile robot to construct a accurate map of an unknown world as it
moves through it became apparent in the early stages of mobile robotics. The first attempts
were purely theoretical and performed well in an idealized environment with no uncertainty;
however, when these methods were transferred to the real world, they displayed the same

shortcomings as the early mapping attempts of the human explorers.
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FIGURE 1.2. The map of North America by Jansson ¢. 1625 A.D. Note that Cali-
fornia is an island and the north-western part is void of details.

When someone observes a map constructed by medieval cartographers (see for example
Figure 1.2) two things are apparent: first, certain areas are mapped accurately and in great
detail while others stay blank (sometimes filled with drawings of various interesting figures).
Second, although the map may be topologically (i.e. qualitatively) correct, the distances
between places are wrong. Both observations are easily explained by the methods that
were used to construct the maps. Each map was usually compiled by one cartographer who
had access to a limited number of locations, and had an approximate knowledge for the
distances and the angles between these locations. The task of constructing a general map
was only assisted by the ability to observe in the sky a set of common landmarks that could

3 Architectural blueprints are rarely error free.
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provide (with a small error) a common frame of reference [129, 128]. When surveying was
developed, teams of people were able to map the world accurately, establishing complete
models for vast areas.

In mobile robotics, when the area to be mapped is small the performance of simple
algorithms is satisfactory, but when the robots have to traverse larger areas, the estimates
of their position invariably become corrupted by the odometry error they accumulate. Thus,
a single mobile agent can construct relatively accurate models of its immediate vicinity, but
when it tries to place them in a general frame of reference the relationship among different
locations and the distances among them are badly miscalculated. When multiple agents are
sent out to explore independently, the task for combining the partial maps into a common
reference becomes nearly impossible. The proposed methodology in this thesis addresses
the above problems and provides a solution using intelligent cooperation among multiple

mobile agents.

FIGURE 1.3. The system consists of two stations mounted on tripods. One tripod
is positioned on a fixed location and acts as a reference point. The second tripod is
on wheels and carries two sensors, one localization sensor that is able to infer the
position of the moving tripod relative to the reference point and a laser range finder
that is used in order to map the distance to various objects (walls, corners, etc.).
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To exemplify the relevance of our approach, a surveying company called LaserCad*
that constructs CAD models of buildings using aspects of Cooperative Localization in their
approach (see Figure 1.3 for the system in action in McGill University). In particular they
deploy two stations (manually), one stays fixed providing a landmark (equivalent to our
stationary robot) and the second station is moved around and used to collect measurements
with a laser range finder. After an area is surveyed they keep the station with the laser
range finder fixed and they move the previously stationary station to a new position in order
to provide a new landmark. In contrast to our approach they do not use both stations to
collect measurements in the environment and they do not use the line of visual contact to

sweep/map the space.

3. Contributions of the Work

The primary contribution of this thesis is the cooperative localization which enables the
robots to map the free space and to decouple the positional error from the environment. It
is the first time when the ability of two (or more) robots to observe each other is exploited
in order to infer about the occupancy of the space between them. Another important
contribution is the adaptation of a general probabilistic framework (in the form of a Monte-
Carlo simulation) for the reduction of uncertainty both in the pose estimation and the
resulting map in the multi-robot paradigm.

A non-comprehensive list of the contributions reported in this thesis follows:

1. The concept of Cooperative Localization [132, 136, 135, 137].

2. The concept of mapping free space by “sweeping” the line of visual contact [132,
136, 135, 137].

3. The development of an exploration algorithm (based on the triangulation of free
space) for mapping areas of bounded size [132, 135, 137].

4. The development of an exploration algorithm (based on the trapezoidal decom-
position of free space) for mapping unbounded areas. [132, 136, 137].

5. The proof of the optimal motion strategy for covering free unbounded space (in

the asymptotic case) [137].

“Please refer to http://www.lasercad.qc.ca/ for more information.
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11.

1.4 EXPLORATION WITH THE ROBOT TRACKER

The adaptation, development and analysis of a general probabilistic framework
(in the form of a Monte-Carlo simulation) for the reduction of uncertainty both
in the pose estimation and the resulting map for a multi-robot case.

The development and construction of an accurate robot tracker sensor [140, 138].
The introduction of a new methodology in the multi-robot field for estimating
the bounds of the accumulated uncertainty based on the statistical properties of
the robot tracker sensor and the number of robots [140, 138].

Experimental results indicating feasibility and performance of our approach in
simulation and in the laboratory.

The development of a new strategy for accurately mapping a spatially varying
property of interest over an unknown (possibly hazardous) environment [134,
133].

Development of software (more than 20K lines of code in C++) to execute the

proposed algorithms.

4. Exploration with the Robot Tracker

M otion

FIGURE 1.4. Area covered when one robot (light grey-green) moves and the other
one is stationary.

As mentioned earlier, the use of a novel sensing modality (the robot tracker) allows the

robots to map large areas of open space with limited uncertainty. Our mapping strategy

exploits standard sensing technology in a novel way. Different sensors have been used in
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order to realize the robot tracker; an early implementation employed a camera on the ob-
serving robot and a spiral pattern target on the observed robot and provided an inexpensive
solution; higher accuracy is achieved with the current implementation of a laser range finder
and a three plane target (see Chapter 6 Sections 2 and 3 for details). The main idea in the
exploration strategy is as follows. The two robots maintain an uninterrupted line of visual
contact between them. When the moving robot proceeds along a trajectory, the line of
visual contact sweeps a wedge defined by the lines connecting the stationary robot position
to the initial and final positions of the moving robot (see Figure 1.4) and the trajectory of
the moving robot. If an obstacle obstructs the line of visual contact, the moving robot back-
tracks and then proceeds to map around the interfering obstacle. This permits the robots
to measure objects with reflectance properties that would be unmanageable with traditional
sensors (like laser range finders). The order in which the robots move and exchange roles

is determined by the environment (see the two algorithms in Chapter 3 and Chapter 4).

5. Cooperative Localization

Since sensing is being used to correct pose estimation errors, the determining source of
error in the localization of the robots is the inaccuracy of the “robot tracker” sensor that
is used to update/correct the position of the moving robot relative to the position of the
stationary one. Therefore, if the two robots start with one stationary robot in an initial
position X stat(0) then the moving robot could localize itself with respect to that position,
(see Figure 1.1). Note that, in practice, information from both sensing and odometry is
combined using a probabilistic methodology.

There are three potential sources of information for the localization of the moving robot.
First, the odometry measurements Xodom(t) provide a base estimate of the moving robot’s
position (with high uncertainty o,). Second, the different objects in the environment, when
sensed from different positions, could provide updates to the robot position [107, 167].
Finally, the robot tracker provides pose measurements Xtmck (t) relative to the position of
the stationary robot X stat(t). Our approach utilizes the information from all three sources.
In practice, over large scale environments, the position of (movable) objects changes over
time and they cannot provide safe position updates. On the other hand, the estimate of the

robot tracker is influenced only by the uncertainty in the position of the stationary robot
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o plus the error of the tracker measurement Xtmck(t). The accumulation of uncertainty in
the position of the stationary robot depends only on the number of role exchanges the two
robots had. Consequently, over large open spaces, where the odometry error grows without
bound, the moving robot could always make reference to a stationary landmark (a role that
is played by the second robot). Under certain assumptions regarding the noise functions
we can optimally combine two information sources by weighting them as a function of their
standard deviations. This is, in fact, the essence of the Kalman filter (an optimal estimator

under appropriate conditions) [63, 19].

6. Thesis Outline

Chapter 2, which follows immediately, presents the relevant work and sets the frame-
work in which our work is situated. The next two chapters contain two deterministic explo-
ration algorithms for large areas; Chapter 3 presents the triangulation exploration algorithm
for bounded areas and Chapter 4 introduces the exploration algorithm (trapezoidation) for
unbounded areas based on the trapezoidal decomposition. Probabilistic reasoning and our
approach to uncertainty reduction is presented in Chapter 5. Practical aspects of our work
such as technical specification of the robot tracker sensor, calibration procedures, and pro-
gramming methodology are described in Chapter 6. Chapter 7 presents experimental results
both from laboratory experiments and from simulations. The results collected in the real
world validate our approach, while simulated environments are used in order to examine in
depth different aspects of our methodology. A different application of our methodology of
cooperative localization is presented in Chapter 8. The visual map construction algorithm
is used to examine the effectiveness of cooperative localization with very promising results.
Finally, Chapter 9 presents conclusions and areas for future research. Appendix A con-
tains the optimality proof of the trapezoidation algorithm with respect to distance traveled.
Appendix B presents a study of the odometry error properties of the robots in our labora-
tory together with a comprehensive noise model and Appendix C contains a discussion on

different resampling algorithms for the particle filter employed for uncertainty reduction.
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CHAPTER 2

Background

In this chapter we examine relevant background for our work. It is worth noting that
the subjects of localization and mapping cover a large fraction of the research in mobile
robotics thus making a comprehensive survey of all the available work outside the scope
of this thesis. Furthermore, a non comprehensive reference list [171, 47, 16] of work on
multi-robot systems contains more than four hundred references. We present relevant work
on exploration and mapping in Section 1, then a brief overview on estimation theory is
presented in Section 2. Section 3 discusses the work on odometric error estimation and
dead reckoning, and Section 4 presents an overview on localization. Section 5 examines
relevant work on multi-robot systems. Finally, Section 6 contains basic definitions from

computational geometry relevant to this thesis.

1. Mapping

Mapping via exploration is a fundamental problem in mobile robotics. The different ap-
proaches to mapping can be broadly divided into two categories: theoretical approaches that
assume idealized robots and environments without uncertainty, and practical approaches
that contend with issues of a real environment, often at the expense of theoretical rigor.
The theoretical approaches provide lower bounds for the exploration problem while the
practical approaches produce algorithms that operate in environments under uncertainty.
Many algorithms have been proposed that explore the interior of a polygon or a collection
of polygons under the assumption of perfect sensing and dead reckoning: the resulting map

consists of a collection of linked lines. Representative of the above approach is the family
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of bug algorithms [105, 104]. Each obstacle in the environment is explored in turn by the
mobile agent that circumnavigates it and then the agent moves to the next closest unex-
plored obstacle, the algorithm guarantees convergence. Other techniques [131, 121], also
assume a polygonal world, which the robot maps by traversing the visibility graph ensuring
every part of the polygon is visited. At the same geometric level of abstraction (a polyg-
onal world) Choset proposed the use of Voronoi diagrams as a guide for an exploration
strategy that navigated through the environment keeping a maximum distance from the
obstacles [33, 31].

At a higher level of abstraction graph models for the world have been used for studying
the task of exploration given minimal information for the environment. An abstract robot
can travel across a graph by traversing edges and inquiring only about local information
of the current vertex, such as the degree of the vertex or the existence of a marker on
the current vertex. The robot can also carry the marker from one vertex to another.
Algorithms exist for the exploration of a graph like world with a single abstract robot
equipped with one marker [49, 48]. Extensions to the previous algorithms have been
proposed where the robot has no marking ability and it relies only on the structure of the
graph for the map construction [44, 45, 141]. In geometric worlds idealized models are
used that deal with the world at a purely topological level [40, 85]. The resulting map is a
graph where the vertices denote locations deemed to be more significant than average (such
as corners, corridor intersections, etc). Using an automaton Pierce and Kuipers developed
a learning algorithm that could learn not only the environment but an abstract model of
its sensorimotor system [125]. Topological maps can be learned even with little available
information [148].

Taking into account sensor uncertainty leads to a different approach to mapping. Sev-
eral approaches centered on the exploration of an unknown world using a single sensor such
as vision, sonar or a laser range finder [20, 55, 10, 177, 90]. Subsequently, data from dif-
ferent sensors were fused into a map in order to improve the efficiency and the accuracy of
the map [46, 3, 175, 23]. Thrun et al. proposed an approach combining an occupancy grid
with a topological map in order to construct a reliable map for a mobile robot exploring an
office like environment. This approach is based computationally on a Partially Observable

Markov Model [167, 166]. Thrun et al. extended their work to creating three dimensional
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maps [99] and to multi-robot mapping [165]. Durant-Whyte et al. pioneered the application
of Kalman filters and target-tracking methods to the problem of robot localization [95] and
introduced the methodology of simultaneous localization and mapping [179, 41]. Leonard
et al. also have worked on mapping especially with out-door mobile robots and amphibian
robots [94, 93, 96]. Mapping unstructured environments presents new challenges [176],
especially for fast-moving, car-like vehicles [82]. One of the problems during mapping is
the constant drift during the exploration that distorts the map [69].

Different forms of mapping have been proposed by Choset et al., such as covering
the environment optimally using the Boustrophedon Cellular Decomposition [32, 2, 1],
with multiple robots [91], and also using the extended Voronoi diagram in mapping [30].
Furthermore research in mapping [7, 84, 147] includes the construction of visual maps [76],
mapping in domestic environments [183], coverage in rectilinear environments [25] and in

extreme conditions [164].

2. Estimation Theory

During the exploration of the unknown environment, the robots maintain a set of
hypotheses with regard to their position and the position of the different objects around
them. The input for updating these beliefs comes from the various sensors the robots poses.
An “ optimal estimator” [63] can be employed in order for the mobile robots to update their
beliefs as accurately as possible. More precisely, the position of an obstacle observed in the
past can be updated every time more data become available (a process called smoothing).
Moreover, after an action, the estimate of the pose of the robot can be updated based on
the data collected up to that point in time (a process called filtering).

Kalman filtering [63, 19, 114] is a standard approach for reducing the error, in a least
squares sense, in measurements from different sources. In particular, in mobile robotics,
Smith, Self and Cheeseman provided a framework for estimating the statistical properties
of the error in robot positioning given different sets of sensor data [159, 160]. A variation
is based on Extended Kalman filtering (EKF), where a nonlinear model of the motion and
measurement equations is used [95, 35]. Roumeliotis et al. successfully employed Extended
Kalman Filter in a variety of tasks such as localization and multi-robot mapping [143, 142,

144]. Kurazume et al. proposed the use of multiple robots, equipped with a sophisticated
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2.3 DEAD RECKONING

laser range finder, in order to localize, using some of them as movable landmarks [89, 88,
87]. The team of mobile robots uses a swarm behavior, using each other for localization.
The fact that two robots could see each other was not used to infer that the space between
them was empty.

One approach that has gained popularity lately falls under the category of Monte
Carlo Simulation (see Doucet et al. [43] for an overview) and is known under different
names in different fields. The technique we use was introduced as particle filtering by
Gordon et al. [66] for tracking a moving target. In mobile robotics particle filtering has
been applied successfully by different groups for single robots [37, 38, 80, 173, or for
multiple robots [39], during navigation for online localization and for localization with a
uniform prior (solving the kidnaped robot problem) [168], but also during exploration and
mapping [79]. In vision this technique was introduced under the name of condensation [77]
and particle filtering [14] for the estimation of optical flow in image sequences [78] and for

tracking multiple moving objects in video sequences [106, 163].

3. Dead Reckoning

Dead reckoning is the procedure of modeling the pose (position and heading) of a
robot by updating an ongoing pose estimate through some internal measures of velocity,
acceleration and time [17, 47]. In most mobile robots this is achieved with the use of
optical encoders on the wheels and is called odometric estimation. The estimate of the pose
of the robot is usually corrupted with errors resulting from conditions such as: unequal
wheel diameters, misalignment of wheels, finite encoder resolution (both space and time),
wheel-slippage, travel over uneven surfaces [17]. The process of correcting the pose estimate
is referred to as localization.

Borenstein and Fend in numerous studies present an analysis of the mechanical /kinematic
causes of odometry error. Furthermore, they proposes a standard test (UMBtest) for the
estimation of systematic error [18]. Chong and Kleeman [29] use the UMBtest for the
elimination of systematic error and then calculate analytically the Covariance matrix for
an extended Kalman Filter. Moon et al. [116] studied the effect of speed and accelera-
tion in the kinematics of differential-drive robot, and proposed a method for maintaining

a straight line trajectory. Roy et al [145] proposed an online calibration using external
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2.5 MULTIPLE ROBOTS

sensing in order to estimate the systematic error as a separate component for rotation and

for translation.

4. Localization

There are two major approaches to localization of a mobile robot based on whether the
full structure of the environment is used. For both approaches a variety of sensing method-
ologies can be used including computational vision, sonar or laser range finding [47].The
first approach is to use landmarks in the environment in order to localize frequently and
thus reduce the odometry error [17]. A common technique is to select a collection of land-
marks in known positions and inform the robot beforehand [61, 97, 65]. Another technique
is to let the robot select its own landmarks according to a set of criteria that optimize its
ability to localize, and then use those landmarks to correct its position [12]. The second
approach to localization is to perform a matching of the sensor data collected at the current
location to an existing model of the environment. Sonar and laser range finder data have
been matched to geometrical models [95, 100, 101, 178, 107, 117], and images have been
matched to higher order configuration space models [5, 53] in order to extract the position
of the robot. Borenstein suggested a two-part robot that would more accurately measure
its position by moving one part at a time [15]. Also, Markov models have been used in
order to describe the state of the robots during navigation [83].

The existence of clearly identifiable landmarks is an optimistic assumption for an un-
known environment. Even in man-made environments, the cost of maintaining labels in
prearranged positions may be prohibitive. Moreover, in large-scale explorations the robot
may have to travel a large distance (larger than its sensor range) before being able to locate

a distinct landmark.

5. Multiple robots

The advantages of collaborative behavior have been examined extensively in the context
of biological systems [170, 124]. In the field of robotics, research on multi-robot systems
is gaining popularity because the multi-robot approach provides distinct advantages over
a single robot such as scalability, robustness and speed. On the other hand it increases

the complexity of the system by adding more parameters into the problem space. Basic
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2.5 MULTIPLE ROBOTS

geometric formations of the robots such as lines and/or circles of robots have been studied
for ideal robots [162, 4] and for real robots under physical constraints [181], as well as
simple tasks such as box pushing [112, 42], forming a transportation line [174, 60] or
moving in a convoy [50]. The behavior of a group of autonomous robots and the dynamics
developed differ according to the communication model among them and what is usually
called the sociology of the group. There are different levels of communication that reflect
the level of cooperation between the agents [51], while sometimes the robots are even tied
together [72, 73]. The behavior of the robots could range from a master-slaves relation, to
full cooperation to complete indifference [28, 86, 71, 110, 111].

In the context of terrain coverage in particular, Balch and Arkin were among the
first to quantitatively evaluate the utility of inter-robot communication [8]. Mataric was
another pioneer in considering the utility of inter-robot communication and teamwork in
space coverage [113]. Dudek, Jenkin, Milios and Wilkes proposed a multi-robot mapping
strategy akin to that proposed here, but they only considered certain theoretical aspects of
the approach as it applied to very large groups of robots. Several authors have also surveyed
a range of possible approaches for collaborative robot interactions [26, 51, 47].

Exploration using multiple robots is characterized by techniques that avoid tightly co-
ordinated behavior [8, 130, 34]. In earlier work multiple robots used each other to localize
when the lack of landmarks made it otherwise impossible [51]. Until recently (and subse-
quent to publications [132, 139]) the use of localization among the group members using
each robot’s neighbors to correct the pose estimate during mapping in order to remove
uncertainty from the resulting map has not been considered. The term cooperative local-
ization has been used by a number of authors lately [143, 172, 9, 59, 64, 161, 108, 58,
182, 74, 13]. In particular, Fox et al. [59] presented some work on multi-robot mapping in
which two robots exchange information opportunistically, when and if they met. Grabowski
et al. used a team of cooperating miniature robots for exploration [67]. More organized
approaches to multi-robot mapping have been proposed by Dellaert [36], Parker [123] and
Simmons [158].
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2.6  GEOMETRY OVERVIEW

........ Internal Diagonal

——  Polygon Boundary

P Obstacle

Polygon P.

FIGURE 2.1. A polygonal environment with reflex vertices/corners and one obsta-
cle. With dashed lines are marked internal diagonals that form a triangulation.

6. Geometry Overview

The environment is modeled as a simple polygon with holes [127, 122], the surround-
ing walls are represented as the polygon edges and any obstacles inside are represented as
holes. In practice, a non-polygonal environment can always be described using a polygonal
approximation. Such an approximation can be readily computed so that it is either con-
servative in the sense that the interior of the approximated free space is assured to be free,
or it can be designed to be accurate in a least-squared sense, so that for a given number of
vertices in the approximation the discrepancy between the polygonal model and the actual
environment is minimized [75, 56].

The main terms used in the next two chapters are :

Interior of the Polygon: The free space of the environment where the robots
explore. In Figure 2.1 the light blue shaded area.
Polygon Vertex: The corner where two walls meet.

Reflex Vertex: A Polygon Vertex with its internal angle (the angle in the interior
of the polygon) strictly greater than 180 degrees. See Figure 2.1 for examples.
Internal Diagonal: A line segment connecting two non-consecutive polygon ver-

tices completely contained in the interior of the polygon. Dark blue dashed line

in Figure 2.1.
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2.6  GEOMETRY OVERVIEW
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FIGURE 2.2. A polygonal environment with reflex vertices/corners and one obsta-

cle. With dashed lines are marked internal rays that form a trapezoidal decompo-

sition of the interior of the polygon.

Triangulation: The decomposition of the inside of the polygon into triangles. A
triangulation of a simple polygon consists of n-2 triangles or n-3 non-intersecting
diagonals where n is the number of vertices in the simple polygon.

Trapezoidal decomposition: The decomposition of the inside of the polygon into
trapezoids and triangles by rays; each ray starts at a corner and all rays are

parallel to each other. See Figure 2.2 for an example.
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CHAPTER 3

Exploration within Sensor Range (Triangulation)

In the previous chapters we introduced the idea of mapping free space by sweeping the line
of visual contact that connects two robots (Chapter 1) and presented relevant background
(Chapter 2). In this chapter we are going to discuss a new algorithm for mapping the
interior of an environment systematically (i.e. for performing complete exploration of a
bounded environment without exploring any areas more than once). This algorithm works
under the assumption that the two robots can maintain visual contact and effectively track
each other across any open space in the environment. Qur algorithm is based on a polygonal
approximation of the environment and the two robots map the interior of the polygon (see
Chapter 2 section 6) that represents the free space. Both robots use a traditional range
finder in order to detect and circumnavigate obstacles during exploration. In addition, each
robot has a robot tracker sensor that is used to detect interfering obstacles when the line
of visual contact is interrupted. The exploration strategy is based on a triangulation of the

free space.

1. Outline of the triangulation algorithm

The exploration algorithm is based on the following idea. At any single time one robot
is positioned at a vertex (corner) of the environment operating as a landmark, while the
other robot moves along the perimeter of the environment maintaining visual contact with
the stationary robot (see Figure 3.1). More precisely, as the moving robot follows one wall
of the environment, it “sweeps” the line of visual contact across the triangle defined by the

corner where the stationary robot is positioned and the two ends of the wall. Thus, the



3.1 OUTLINE OF THE TRIANGULATION ALGORITHM

robot establishes the position of the wall and the occupancy status of the swept free space
inside the triangle. The two robots progressively map the environment by dividing it into
triangles of free space, thus constructing a triangulation of the environment. Both robots
run the same exploration algorithm, taking turns between (a) moving, thus mapping the
free space, and (b) being stationary, thus providing a fixed localization reference for the
moving robot !. First, a few definitions are presented (in addition to the ones in Chapter 2
section 6), then the major operations of the algorithm are discussed; finally, an outline of
the exploration algorithm is presented.
Map: A set of triangles residing entirely within the polygon, which cover completely
the interior of the environment (polygon) without overlaps ( Triangulation).
Unfinished Triangle: A triangle that is not completely mapped; in other words,
one of the wall sides is not fully explored (one end-point not mapped yet).
Dual Graph: A graph (V,€) such that every vertex v; € V corresponds to a tri-
angle T;, and an edge e;; € £ between two vertices v;, v; exists iff their triangles
T;,T; share an internal diagonal.
Internal Triangle: A triangle constructed by three internal diagonals of the poly-
gon. The corresponding Dual Graph Vertex has degree three.
Open Edge: An edge in the dual graph that connects a mapped triangle with an
Unfinished Triangle.
Degree of a triangle: The degree of the corresponding vertex in the dual graph,
equal to the number of triangle sides that are internal diagonals of the polygon.
Steiner Point: A point that is not part of the input set of points. In our case a
pseudo vertex that introduces an extra internal triangle in the triangulation.

As mentioned earlier the basic operation is the mapping of a triangle of free space as the
moving robot travels along one (or two) sides of each triangle. After the triangle is mapped
it is included in the map and the corresponding node is added to the dual graph. Internal
diagonals that separate fully mapped triangles from unexplored (or partially explored) areas
(unfinished triangles) correspond to open edges in the dual graph; these open edges guide
the next step of the exploration (which triangle to map next). The exploration continues
as long as there are areas of free space to be mapped and the line of visual contact between

'In the following we assume no three vertices are collinear. If this was the case, it would involve a minor
but tedious change to the algorithm.
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3.1 OUTLINE OF THE TRIANGULATION ALGORITHM

the robots is uninterrupted. Adjacent mapped triangles form a chain of nodes in the dual
graph which ends either in an internal triangle (where there is a bifurcation and the graph
splits into two paths), or in a triangle with degree one (where two of its sides are walls, as
in the top left triangle in Figure 3.2d). The above two cases represent the end of a depth
first search branch of the dual graph.

There are two instances in which the moving robot stops exploring and a decision is
made. One instance when the exploration halts is when a triangle with only one internal
diagonal (where the corresponding node in the dual graph has degree one) is fully mapped.
In that case, the two robots search the dual graph, select the closest open edge, travel to the
two ends of the corresponding diagonal, and resume the exploration.

The second instance when the exploration stops is when the line of visual contact is
interrupted. There are four distinct cases where the line of visual contact is interrupted (see
Figures 3.1a,b,3.2a,c). In these cases the moving robot cannot continue its previous course
and it has to make a decision where to move next in order to maintain visual contact with

the stationary robot.

\

\

(a) (b)

Ficure 3.1. Thick line represent walls, dashed lines represent unexplored walls,
grey area is explored free space, dashed lines inside the grey are internal diagonals.
The stationary robot is red, the moving robot is green, and the red circles connected
by arrows at the center of the triangles represent the dual graph. Line of Visual
Contact interrupted: (a) Case 1: The stationary robot is at a non-reflex vertex and
the moving robot encounters a reflex vertex that would interrupt the line of visual
contact (b) Case 2: Occluding Vertex between the two robots.

Case 1: The stationary robot is located at a non-reflex vertex while the moving
robot reaches a reflex vertex. If the moving robot continues to follow the next wall

then the line of visual contact is interrupted (see Figure 3.1a). In this case the
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FIGURE 3.2. Same notation as in Figure 3.1. Line of Visual Contact interrupted:
(a) Case 3: Both robots are placed at reflex vertex such that any further exploration
would break the line of visual contact (b) The moving robot explores perpendicular
to the diagonal that connects the two reflects vertices. At the first wall found
a Steiner point is introduced and an internal triangle is created. (c) Case 4:
Occluding Edge next to the stationary robot.(d) One branch of the dual graph is
completely mapped, the robots would proceed to the nearest open edge of the dual

graph.

two robots simply switch roles, the moving robot sends a signal to the stationary
robot to start exploring and then becomes stationary and the stationary robot
(which was waiting, see Algorithm 3) continues the exploration.

Case 2: During the mapping of a triangle a reflex vertex located between the two
robots interrupts the line of visual contact (see Figure 3.1b). First, the partially
mapped triangle is stored as an unfinished triangle. Then, the moving robot
travels towards the stationary robot until the reflex vertex is encountered and

mapped. Consequently, an internal triangle is constructed defined by the reflex
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3.1 OUTLINE OF THE TRIANGULATION ALGORITHM

vertex and the first internal diagonal of the unfinished triangle (see Figure 3.1b,
Algorithm 2). The internal triangle is connected with three triangles the previous
fully mapped triangle, and two unfinished triangles located at the two sides of
the reflex vertex (see Figure 3.1b).

Case 3: Both robots are located next to reflex corners and any motion along the
unexplored walls would result in a break of the line of visual contact (see Figure
3.2a). In this case, the moving robot explores in a direction perpendicular to the
internal diagonal between the two reflex vertices until a wall is encountered (see
Figure 3.2b). A Steiner point is introduced and an internal triangle is created
from the Steiner point and the two reflex vertices. Two unfinished triangles are
attached to it on the two sides of the Steiner point (see Algorithm 2). Then the
exploration continues in the unfinished triangle that is closer to the robots 2.

Case 4: During the exploration an occluding edge interrupts the line of visual
contact (see Figure 3.2c). This is a sub-case of the occluding reflex vertex case
where the stationary robot is placed next to the edge adjacent to the occluding
vertex. It is treated differently in order to eliminate redundant traveling. The two
robots exchange roles and the previously stationary robot receives a command to
explore only up to the occluding reflex vertex and add the triangle to the map.
Then the two robots exchange roles again and continue the exploration.

These four cases cover all possible configurations of interruptions in the line of visual
contact. A formal description of the algorithm is presented in Algorithm 1 and an outline

of the wall following strategy is presented next.

2The introduction of the Steiner point increases the number of triangles by one. In practice it is only necessary
in the case where a reflex vertex interrupts the line of sight before the moving robot has encountered a vertex
on the top wall (see Figure 3.2b). If a corner is encountered by the moving robot on the wall where the
Steiner point was placed then the corner of the internal triangle that was at the Steiner point is moved to
that corner and the Steiner point is erased.
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3.1 OUTLINE OF THE TRIANGULATION ALGORITHM

while Dual Graph contains Open Edges do
while (No Occlusion) AND (Dual Graph has Open Edges) do
Assign closest Open Edge to Unfinished Triangle
Explore Unfinished triangle
end while{Occlusion has occurred Or branch of Dual Graph is completed}
if Occlusion is of Case 1 then { One Robot at reflex vertex, Fig. 3.la}
SIGNAL(OtherRobot,Continue){Exchange role with the other Robot.}
WAIT { see Algorithm 3}
else if Occlusion is of Case 2 then
{ Occluding Vertex between Robots, Fig. 3.1b}
Mark current position as a temporary Polygon Vertex
repeat
Go Towards the Stationary Robot
until Occluding Polygon Vertex Encountered
Map the Occluding Polygon Vertex
CreatelnternalTriangle() { see Algorithm 2}

else if Occlusion is of Case 3 then
{Both Robots at Reflex Vertices, Fig. 3.2a,b}
while New Polygon Vertex Not Found do
Explore perpendicular to the line of visual contact
end while
Map Steiner point as a Polygon Vertex
CreateInternalTriangle() {see Algorithm 2}

else if Occlusion is of Case 4 then {Occluding Edge, Fig. 3.2c}
SIGNAL(OtherRobot,ExploreOccludingEdge)
WAIT {see Algorithm 3}

end if

if Current branch of Dual Graph ends then {see Fig. 3.2d}
Traverse the Dual Graph towards the closest Open Edge

end if

end while{The Map is complete}

Algorithm 1: Triangulation Algorithm; procedures are noted as underlined text, com-

ments are inside curly brackets “{comment}”. 24
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procedure Createlnternal Triangle()

Create an Internal Triangle with two Open Edges

Add node to the Dual Graph

Connect the Unfinished Triangle to the Internal Triangle
via the first Open Edge

Continue the exploration following the second Open Edge

Algorithm 2: Create Internal Triangle

procedure Wait ()

repeat
Check Condition from Signal

until Condition is set

if Condition=ExploreOccludingEdge then
Map the Occluding Edge up to the next corner
Create Triangle containing the occluding edge
Add Triangle to the Map.
SIGNAL(OtherRobot,Continue)
WAIT()

end if

Algorithm 3: Wait

2. Wall Following

When the line of sight between the two robots is uninterrupted the moving robot
explores the environment one triangle at a time by following the closest wall from one corner
(end point) to the other. In our implementation of the algorithm the robots follow the walls
at a distance of sixty centimeters using a sonar range finder sensor in order to sense the
wall. Lines are fitted to the sonar points, using the MacKenzie-Dudek algorithm [52, 107],
and then the newly sensed lines are merged with the existing map.

An outline of the mapping procedure follows. If the closest wall is the same (see Figure
2a, robots drawn with dashed lines represent past positions) and the robot has not moved
past its end (the robots position projects inside the line segment of the wall) then continue
exploring the same wall. If a new wall is detected at distance d closer than sixty centimeters
(see Figure 2b) then a non-reflex corner is reached and the old wall is fully mapped. The
intersection point of the old closest wall with the new closest wall is calculated and then it
is used to mark the second end point of the old wall and the first end point of the new wall.

Finally, the robot continues the exploration of the new wall by moving away from the first
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FIGURE 3.3. Tllustration of the wall following. (a) The closest wall is the same
and the robot has not reached the wall’s end: continue forward at 60cm from the
wall. (b) A new wall is discovered which is closer than the previous one: reached
non-reflex vertex; map the corner and continue the exploration of the new wall. (c)
The closest wall ended and the robot has moved past the end of the closest wall: it
is a reflex corner; proceed as in sub-figure (d). (d) Map the reflex corner by moving
around the end-point of the old closest wall. Move by intervals of § at a distance
less than 60cm and more than 30cm from the end-point. Robots drawn with dashed
lines represent past positions.
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end point, again at a distance of sixty centimeters. If the closest wall is the same but the
robot has moved past the end of it (see Figure 2c) then this indicates that the robot has
reached a reflex vertex. In order to map the reflex corner the following procedure is used
(see Figure 2d). The robot moves in a circular path at a distance ¢ from the end point
of the closest wall until it finds a new closest wall. The circular motion is done in steps
defined by an angle 0, see Figure 2d (in the current implementation § = 15° and § = 45¢cm).
Then the intersection point between the old and the new closest walls is calculated. The
old closest wall becomes fully mapped and then, if the reflex vertex does not interrupt the
line of visual contact between the two robots, the moving robot continues the exploration
by mapping the new closest wall. Otherwise the line of visual contact is interrupted and

the robots follow Algorithm 1.

3. Complexity Analysis

In order to analyze the complexity of the exploration we need to distinguish between two
qualitatively different stages of exploration, the local and the global exploration phases. The
strategy used during the local exploration phase governs the coverage of individual triangles,
while the strategy used during the global exploration phase determines the sequence in
which these triangles are visited by using the dual graph. As noted earlier, the exploration
strategy is guided by the dual graph of the triangulation and the two robots visit every
triangle in a depth first traversal, thus passing through each triangle at most twice (the
first time exploring, the second time moving through towards the unmapped parts of the
environment). Therefore, the complexity of the global exploration is the complexity of a
depth first traversal of the dual graph (of size O(N) where N is the number of vertices in
the polygonal environment). The complexity of local exploration, i.e. the mapping of a
single triangle, is proportional to the distance traveled by the moving robot which is the
length of the wall mapped. Therefore, the total length traveled during the mapping phase
is equal to the perimeter of the environment. In the next section we are going to illustrate

the previously described algorithms using a simple environment.
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FIGURE 3.4. Two robots (Rj,Rs) are exploring a simple environment. Only one

branch of the dual graph is explored, the remaining areas marked as U. Robot Ry
explores first.
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4. Illustrative Example

In this section we present the triangulation exploration algorithm on the simple envi-
ronment that appears in Figure 3.4. The two robots start at the upper left wall, Figure
3.4a, and they are noted R in green and Ry in red. First the robot Ry explores two walls
(see Figure 3.4b) reaching a reflex corner: the mapped area is shaded blue. The two robots
exchange roles and robot R; starts the exploration (see Figure 3.4c). After a single triangle
robot R reaches a reflex corner and the two robots again exchange roles. During the explo-
ration of the next triangle by robot Ry a reflex vertex interrupts the line of visual contact
and robot Re proceeds to map the reflex vertex, create an internal triangle and continue the
exploration on the left branch of the dual graph. The area that was not mapped is marked
by U. After mapping three more triangles robot Ro is forced to stop and exchange roles
with robot Ry. Figure 3.4d illustrates the mapping by robot R;. The line of visual contact
is interrupted and an internal triangle is created. The robot Ry continues the exploration of
the right branch of the dual graph up to the point that the two robots meet and the branch
of the dual graph is fully explored. Finally, Figure 3.4e presents the triangulation up to
this point; the two internal triangle have created two bifurcations on the dual graph and
in each case only one branch is mapped. The two robots move next through the explored
areas to the closest opening that leads to an unexplored space (marked as U) on the map,

and from there they resume the exploration.

5. More than two robots

An immediate extension of the triangulation algorithm can be obtained by the addition
of more robots. The robots form a chain, where the first and the last robot play the roles
of the two robots of the previously described algorithm and the other robots (in between)
act as relays. If the range of the robot tracker sensor is R then the use of N robots extends
the sensor range to (N — 1)R. Figure 3.5 illustrates the above idea. Robot R; is stationary
and robot Ry is following the wall (Figure 3.5a presents an initial configuration). Next
the exploring robot (R4) is moving along the wall (Figure 3.5b). Note that robots drawn
with dashed lines represent past positions. In Figures 3.5c,d the robots R3 and Rs move
respectively to form a line again. With the addition of more robots the range of the robot

tracker sensor could be extended in order to map larger environments.
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3.5 MORE THAN TWO ROBOTS

In this chapter we discussed an algorithm for exploring an unknown environment that is

bounded by the range of the sensor. If the environment is larger than the range of the robot

tracker sensor then this algorithm can not be used. Thus a different exploration algorithm

is proposed based on the trapezoidal decomposition of the environment, as described in the

next chapter.

(c) (d)

FIGURE 3.5. Triangulation with four robots (a) All robots are aligned, Ry is sta-
tionary and robot Ry is following the wall. (b) Robot R4 moves along the wall. (c)
Robot Rj aligns itself with Ry and R4. (d) Ra moves into line. Robots drawn with
dashed lines represent past positions.
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CHAPTER 4

Exploration Beyond Sensor Range

1. Introduction

(Trapezoidation)

...In that Empire, the craft of Cartography attained such Perfection
that the Map of a Single province covered the space of an entire City,
and the Map of the Empire itself an entire Province. In the course
of Time, these Extensive maps were found somehow wanting, and so
the College of Cartographers evolved a Map of the Empire that was
of the same Scale as the Empire and that coincided with it point for
point.

—From Travels of Praiseworthy Men (1658) by J.A. Suarez Miranda

in Jorge Luis Borges's

of Infamy (1972).

Of Exactitude in Science” A Universal History

In the previous chapter we presented an algorithm for exploring an unknown environ-

ment in which the range of the robot tracker sensor is long enough to reach across it. In

this chapter we are going to examine an exploration strategy for mapping beyond the range

of the sensor. In environments consisting of large areas of open space (eg. warehouses,

docking areas, open fields) it is quite common for the robots to be unable to follow a wall

or to detect any landmarks because the environment is larger than the range of the sensors.

In such environments the moving robot uses the stationary robot as a portable marker for

relocalizing and mapping. We present different motion strategies for the complete mapping



4.2 TOP-DOWN DESCRIPTION OF THE ALGORITHM

of the environment. The core idea of the algorithm is the mapping of an area of free space
by one moving robot while the other robot is stationary. The purpose of the algorithm
described below is to determine the sequence in which the free areas are explored, without
duplication and ensuring full coverage of the free space. In a bottom up description of the
algorithm there are the following steps. Omne robot moves and sweeps the line of visual
contact across the free space, thus mapping a single region of free space. Then the two
robots exchange roles in order to explore a chain of free-space areas which forms a stripe; a
series of stripes are connected together to form a trapezoid. After several iterations of these
two steps the entire collection of the trapezoids provides the trapezoidal decomposition of

the entire free space — a complete spatial decomposition of the interior of the environment.

2. Top-Down description of the Algorithm

The proposed algorithm is based on the trapezoidal spatial decomposition of a poly-
gon [122, 127]. A top down description of this algorithm is illustrated in Figure 4.1a-d.
More specifically, the two robots explore the world using a trapezoid decomposition of
the free space as their guide, as can be seen in Figure 4.1a. Each trapezoid is mapped
completely before the two robots proceed to map the next one. The order in which the
trapezoids are mapped is given by a depth-first traversal of the embedded dual graph (see
Figure 4.1b). Every trapezoid corresponds to a vertex in the graph; vertices correspond-
ing to adjacent trapezoids are connected with an edge in the graph. Therefore, after one
trapezoid is mapped the two robots proceed to map the trapezoid that corresponds to the
adjacent node in the dual graph. The sensing range of the robot tracker provides a limit
on the space that can be explored at any single time, before the two robots have to switch
roles. Thus, if a trapezoid is larger than the range of the robot tracker, then it is broken
down into stripes with a width that depends on the sensing range R (see Figure 4.1c).

The exploration of a single stripe can be accomplished using various motion strategies.
At the top of Figure 4.1d, two different motion strategies are displayed. The first motion
strategy (Strategy A) is quite intuitive. In each exchange, one of the robots moves on a
straight line (dotted line in figure 4.1d) sweeping (and hence mapping) a triangular region.
When the distance between the two robots reaches the robot tracker sensor range the two

robots exchange roles. The second motion strategy (Strategy B) is proven optimal (see
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Appendix A) with respect to the area covered over distance traveled. In each exchange,
one of the robots traverses the two chords shown as dashed lines in figure 4.1d, sweeping a
diamond shaped area. The moving robot travels across the first chord and at an angle 6/2
changes heading and follows the second chord (see Figure 4.1d).

As we discussed above Strategy A is simpler and requires a smaller number of direction
changes, but unfortunately, the width of the stripe (d) produced is suboptimal (d < R),
and thus a larger number of stripes is needed in order to cover the same area. Strategy B is
optimal in terms of path traveled over area covered (see Appendix A) because at any single
time the width of the stripe covered (d) is the maximum possible (d = R). At the bottom
of Figure 4.1d, the mapping of free space is presented over a single exchange. Angle 0 is
an input parameter that can be chosen to minimize a cost function as a function of 6. In
the case of reflex corners of the polygonal boundary of the large open space being mapped,
one trapezoid splits into two new trapezoids, and the two agents decide which branch of
the embedded graph to follow.

When a sequence of explored regions are linked to each other as the exploration pro-
gresses, different types of stripes are created. In the case of the coverage of a triangular
area, the two robots travel in parallel lines separated by d, and the stripe mapped has the
same width d (see Figure 4.1d, Motion Strategy A). In the case where each robot covers a
diamond area, the trajectory of each robot would be a zig-zag line creating a stripe with
width R, equal to the sensing range of the robot tracker (see Figure 4.1d, Motion Strategy
B). A sequence of stripes connected together (lengthwise) map a single trapezoid (see Figure
4.1c). At the end of each stripe the two robots follow the walls and reposition themselves

to explore the next stripe.

3. Complexity Analysis

Similar to the triangulation algorithm (see Chapter 3), in order to analyze the com-
plexity of the exploration we need to distinguish between two qualitatively different stages
of exploration, the local and the global exploration phases. The local exploration strategy

guides the path traveled for the mapping of a convex segment of free space defined by
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Exploration of astripe: two different motion strategies.

Motion Strategy A

Exploration of asingle trapezoid
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Mapping of Free Space at a single exchange
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FIGURE 4.1. A top down description of the Trapezoidation algorithm. (a) The
environment is divided into trapezoids. (b) The order in which the trapezoids are
mapped is given by a traversal of the Dual Graph. (c) Each trapezoid is further
divided into stripes with a width proportional to the sensing range R. (d) Each
stripe is covered by areas of free space one next to the other. Fach area of free

space is explored by the motion of a single robot. Different motion strategies can
be used, and the size of the area is controlled by the angle 6.

the exploration algorithm (a triangle, or a trapezoid !). The global exploration strategy

determines the order in which these areas are explored.

!The trapezoidal decomposition divides the interior of a polygon into trapezoids and triangles.
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3.1. Complexity of Global Exploration. As noted earlier, the exploration strat-
egy is guided by the dual graph of the trapezoidal decomposition used. More specifically,
the two robots explore one trapezoid at a time and then proceed to map the next trapezoid
by following the dual graph in a depth first traversal. Every trapezoid is visited at most
twice, the first time when it is being mapped and the second time when the two robots pass
through in a shortest path traversal to move to the next unexplored area. In general the
complexity is proportional to the number of edges of the polygon, the size of the environ-
ment, and the range of the tracking sensor (which determines how many stripes are created

in each trapezoid).

3.2. Complexity of the exploration over a single exchange. In contrast to
the triangulation algorithm where the robots move along the walls, when the trapezoidation
algorithm is used, the moving robot could follow different trajectories as long as it stays
inside the sensing range of the stationary robots. Alternative motion strategies present
certain advantages and disadvantages. More precisely, there are different factors that affect
the cost of the exploration depending on the configuration of the different robots. In terms
of cost we consider the distance traveled, the number of rotations and the number of role
exchanges between the two robots. Moreover all of the above can be translated into time
cost on how long it would take for the exploration. More precisely, every time the two robots
exchange roles, the moving robot uses the stationary one to correct its position and then the
stationary one starts exploring. Each of these operations introduces a time delay, therefore
the number of exchanges increases the cost. In addition, every time one of the robots has
to change directions the rotation adds to the total cost. Finally, the total path traveled
has to be taken into consideration. For the two different motion strategies (diamond area
covered, and triangular area covered) examined earlier, the total mechanical effort can be
computed as shown in Table 4.1. The cost is calculated for the exploration of a rectangle
X by Y, when the robot tracker sensor range is R.

3.2.1. Cost Analysis. The factors that affect the cost of the exploration are: the
number of exchanges, the total path traveled and the number of rotations. For a specific
set of robots the cost of the above factors can be determined beforehand. Specifically,
the total cost of the exploration can be computed as the weighted sum of: the total path

traveled (Pp) multiplied by the cost of path traveled (C, in sec/m), the total number of
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Covering Triangle Area | Diamond Area
XY 2 Xy 2
Path length P@ 2Y + R Cos% 2Y + R cos %
# of exchanges Fy % si121 g % ﬁ
Y Y XY
# of turns Ry 2RCOS% 25+ 2R2 sin @

TABLE 4.1. Analytical complexity of two dlfferent path curves.

exchanges (Ejp) multiplied by the cost for an exchange (C, in sec/exchange), and the total
number of rotations (Rg) multiplied by the cost of rotation (C, in sec/rotation). The
factors (Cp, Ce, Cy) can be estimated before the exploration, while the sensing range (R)
of the robot tracker is known. Equations 4.1 and 4.2 provide the total cost Ciyqi(0) as a
function of angle @ for the exploration, using diamond area and triangular area covering
respectively (as shown in Figure 4.1d), of a rectangle X x Y as a function of 6, using the
cost estimates and the analytical results from table 4.1. The optimal 8 for the exploration

is the one that minimizes Cyytq;(0)-

Ctotal,diamond (0) =C P9 +C, EG + C’I‘R9 =
=C (2Y+ 2XY )_|_( Ce XY ) +C 0( 2XY6) (4.1)
4

R2 s1n R2 sin §

Ctotal,triangle (0) =C, P0 +C Eg + CTRQ =

4.2
= Cp(2Y + 2XY)+C(R%)§I§0)+09( 42)

)

Rcos 5

For one of our robots, a Nomad 200, the cost factors, for a typical experimental ar-
rangement are: C, = 4.1 sec/m, C, = 7 sec/exchange, C, = 4.65 sec/rad. The optimal
angle @ is 180°, for the diamond area motion strategy. For the same costs the optimal angle
0 is 90° for the triangular area motion strategy. As expected the total cost is lower for the
motion strategy that covers the diamond area than that which covers a single triangular

area.

36



44 MORE THAN TWO ROBOTS

4. More than two robots

The above strategies could be extended by the addition of more robots. By forming a
chain of robots that “sweeps” through the free space the range of the tracker is multiplied
by the number of robots, thus covering a much larger area in a single sweep. In addition,
every robot could estimate its pose with respect to more than one stationary robot, therefore
gaining higher precision in its measurements. Two motion strategies are proposed for groups
of more than two robots with respective advantages. Using the first motion strategy, only
one robot moves during the exploration while the stationary ones that are still visible are
used as landmarks. This method ensures minimum uncertainty accumulation as, at any
given time, the moving robot would correct its odometry error with respect to more than
one landmark. Using the second motion strategy, the robots divide into two teams and
they interchange roles: while the first team is moving the second team works as a set of
landmarks. This method explores an environment in less time but fewer robots are available

as landmarks.

4.1. Motion Strategies. As mentioned earlier an immediate extension of the
trapezoidation algorithm can be obtained by the addition of more robots. When the two
robots sweep one stripe of width d, then by adding an extra robot we could double the
area swept per step of the algorithm. In the original algorithm, every robot has only one
device to track the other robots; in this case a scheduling algorithm should be applied to
determine the order in which the robots are moving. If we add a second tracking device,
one robot could track robots on both sides, allowing a parallel cover of double the area at
the same time.

In the example of Figure 4.2a we use five robots (Ry...R4) that are positioned in
two lines at time Ty. First the robots Ry, Ry, R4 move forward, tracked by R; and Rj
accordingly, mapping the four triangles as free space (time 77), then both Ry, Ry track Ry,
which moves forward (time T3); while Ry, Ry track Rz, which moves forward (time T%).
Then it is time for the other column of robots (R, Rz, R4) to advance marking more area
as free space (time T3). The tracking is marked with the dotted lines of sight. The same
pattern is followed as the two columns alternatively advance, marking a stripe of free space

much wider than that possible with only two robots.
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o Robot
e Lineof sight

—»  Robot movement

[ ] Robot
——> Robot movement

(b)

FIcURE 4.2. (a) Exploration of a stripe with 5 robots. The robots move at time
Ty,T9,T3, and T4. (b) Exploration of a stripe with 3 robots, covering space in
diamond areas. The robot move at time T1-T1g.

The second part of the algorithm concerning the exploration strategy for the whole
space and the order in which the trapezoids should be explored is identical to the previous
algorithm where only two robots were used.?

2There is a possible speedup by splitting up the group in order to explore different parts in critical points,
but that would in the end spread the robots too thin.
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Moving only one robot at a time can also be easily extended to multiple robots. The
robots start exploration aligned with each other in a straight line, at distance R from each
other, where R is the tracker sensor range. The first robot and the last robot in the line act
out the algorithm for two robots, while the role of the other robots is simply to provide a
communication path between them. As such, the first robot in the line remains stationary,
and the rest of the robots are moving such that the distance between two robots is never
more than R. The width of the explored stripe is (n — 1) R, where n is the number of robots.
A pictorial representation of this strategy can be seen in Figure 4.2b, the robots Ry and Ro
sweep a stripe using the diamond pattern and the Robot R; stays between them.

In this chapter an algorithm for mapping areas beyond the range of the robot tracker
sensor was discussed. Together with the previous chapter they provide an approach to
mapping the free space by sweeping the line of visual contact. In practice, the robot
tracker sensor, as well as any other sensor used, suffers from noise. In the next chapter we
propose a probabilistic framework for dealing with the uncertainty/noise that corrupts the

measurements.
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CHAPTER 5

Uncertainty Reduction

In theory, there is no difference between theory and practice.
In practice, there is.

—Attributed to Yogi Berra and Jan L.A. van de Snepscheut.

In the two previous chapters we described two deterministic algorithms for the methodi-
cal exploration of an unknown environment by a team of autonomous mobile robots. During
exploration the robots collect information from various sources (sonar sensors, odometers,
robot-tracker sensors, etc), information that is always corrupted by noise. In order to cope
with the effects of the noise we adopt a Bayesian probabilistic framework that integrates
information over time and takes into account multiple, competing hypotheses in order to
produce a map with higher accuracy.

The following subjects are presented in this chapter. Section 1 provides an outline
of the Bayesian framework used in the rest of the chapter. Section 2 contains a detailed
description of the Monte-Carlo Simulation method (particle filtering) we used in order to

implement the Bayesian framework.

1. Bayesian Reasoning

The Bayesian approach provides a general framework for the estimation of the state of
our system (the current pose of all robots) in the form of a probability distribution function

(pdf), based on all the available information.



5.1 BAYESIAN REASONING

For the linear-Gaussian estimation problem! the required pdf remains Gaussian and
the Kalman filter provides a provably optimal solution [81, 19, 142]. In the non-linear
Gaussian case the Extended Kalman Filter (EKF) has been successfully used by linearizing
the control equations [159, 160]. For non-linear, non-Gaussian models two difficulties
must be resolved: how to represent a general pdf using finite computer storage and how to
perform the integrations involved in updating the pdf when new data are acquired. During
the exploration the uncertainty build-up in the pose estimate of each robot translates into
uncertainty in the resulting map. In order to improve the accuracy of the map the pose
of the robot has to be estimated at discrete time steps. This is an instance of the discrete
time estimation problem and can be formulated in state-space notation (see also Gordon et
al. [66]).

The i** robot pose at time ¢ = k is represented by the state vector XZ = [a:}'c,y}'c, OAZ]T,
xfC € R? x S'. Each robot takes action (a}'c) and its pose evolves according to Equation

5.1. 2

Xp = fa(Xk—1,Vk) (5.1)

where, f, is the system transition function that models how action a probabilistically
modifies the pose of the robot and how it is affected by the noise vg. The actual transfer
function f, is not analytically available; instead, a simulation (as described in Appendix B
Section 4) that models the effect of noise and provides an approximation fo &= fo is used.
After each action is performed the robot acquires one (or more) sensor readings. Every
sensor measurement available at time ¢ = k is included in a sensor data vector noted as ZZ-

These measurements are related to the state vector via the observation equation 5.2.

2y, = gr(Xk, ug) (5.2)

where g is the measurement function and wu; is the noise model.
It is assumed that the initial pdf P(x¢) is known and that the available information at

time ¢t = k is the set of measurements and the set of actions up to that time. In order for

Where the noise probability distribution functions are Gaussian and the model of the system is linear.
2The superscript “i” that indicates the robot to which we refer is dropped for clarity of presentation for the
rest of the discussion.
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5.2 PARTICLE FILTER

the robot to decide the next action it needs to know its current pose or, since knowledge of
the true pose is not feasible due to noisy measurements, at least the pdf of its pose given
the previous actions and observations (P(xy|xo,;,2;:j = 1...k)). This can be achieved
recursively, by first predicting the prior probability of x; from the previous pose xi_1
(presuming it is available) and the action taken oy (see Equation 5.3) and then updating
using the latest sensor data z; in order to obtain the posterior distribution of the pose xy

of the moving robot given all available information.

P(xi|x0, o, 0,2 ):/P(xk|ak,xk_1)P(xk_1|x0, aj,z; )dXp_1 (5.3)
S—~— S—~—
j=1..k—1 j=1..k—1

Note that the P(xy|ag,x;—1) can be derived by the system model (Equation 5.1), the
known characteristics of the noise vy_; and the P(x_1|x0,;,2; : j =1...k — 1), which is
the posterior of x at time t = k — 1.

When new sensory information becomes available we can use Bayes rule in order to
update the pdf of the moving robot with the latest observations (Equation 5.4). The con-
ditional probability of the sensor measurement z; given the pose x; from which it was
obtained can be estimated by the sensing function g; and the noise model vg. Finally the

normalizing denominator can be obtained through Equation 5.5.

P(Zk|Xk)P(Xk|X0,0Aj,Zj ] =1...k— ].)

P(xp|xp, 0,2z :j=1...k) = (5.4)

P(Zk|X0,0zj,Zj ]: 1...k— 1)
P(zg|x0,05,2j: j=1...k—1) = /P(zk|xk)P(xk|x0,aj,zj :j=1...k—1)dx; (5.5)

Many different methods can be used in order to estimate the pdf of the moving robot,
an overview of which is given in Chapter 2 Sections 4 & 2. In our work we applied a Monte

Carlo simulation technique called particle filtering which is described next.

2. Particle Filter

The main objective of particle filtering is to “track” a variable of interest as it evolves
over time, typically with a non-Gaussian and potentially multi-modal pdf. The basis of the

method is to construct a sample-based representation of the entire pdf. A series of actions
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are taken, each one modifying the state of the variable of interest according to some model.
Moreover at certain times an observation arrives that constrains the state of the variable of
interest at that time.

Multiple copies (particles) of the variable of interest are used, each one associated with
a weight that signifies the quality of that specific particle. An estimate of the variable of
interest is obtained by the weighted sum of all the particles. The particle filter algorithm is
recursive in nature and operates in two phases: prediction and update. After each action,
each particle is modified according to the existing model (prediction stage), including the
addition of random noise in order to simulate the effect of noise on the variable of interest.
Then, each particle’s weight is re-evaluated based on the latest sensory information available
(update stage). At times the particles with (infinitesimally) small weights are eliminated, a
process called resampling.

More formally, the variable of interest (in our case the pose of the moving robot x* =
[zk,yk,ék]T) at time ¢ = k is represented as a set of M samples (the “particles”) (SF =
[x?,wf] : j = 1...M), where the index j denotes the particle and not the robot, each
particle consisting of a copy of the variable of interest and a weight ('w_’;) that defines the
contribution of this particle to the overall estimate of the variable.

If at time ¢ = k we know the pdf of the system at the previous instant (time ¢t = k — 1)
then we model the effect of the action to obtain a prior of the pdf at time ¢t = k (prediction).
In other words, the prediction phase uses a model in order to simulate the effect an action
has on the set of particles with the appropriate noise added. The update phase uses the
information obtained from sensing to update the particle weights in order to accurately
describe the moving robot’s pdf. Algorithm 4 presents a formal description of the particle
filter algorithm and the next two subsections discuss the details of prediction and update.

Given a particle distribution, we often need to take actions based on the robot pose.
Three different methods of evaluation have been used in order to obtain an estimate of the
pose. First, the weighted mean (Peg = Z]]Vi L w;X;) can be used; second, the best particle
(the P; such that w; = maz(wg) : kK = 1... M) and, third, the weighted mean in a small
window around the best particle (also called robust mean) can be used. Each method has

its advantages and disadvantages: the weighted mean fails when faced with multi-modal
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Require: A set of Particles for Robot i at time 0: SY = [xj,w;:j =1...M].
W:’UJj :j:1...M
while (Exploring) do
k=k+1;
if (ESS(W) < 8+ M) then {Particle Population Depleted (Equation 5.10)}
Index=Resample(W);
Sk = Sk(Index);
end if
for (j =1 to M) do {Prediction after action a}
X?—i_l = f(X‘I;,Oé)
end for
s=Sense()
for (j =1 to M) do {Update the weights}

o
w;-“"'l = w;-“ * W(s,xf“)

end for
for (j =1 to M) do {Normalize the weights}
wk+1 _ wkz'H
] - M k+1
J i=1 W
end for
end while

{ESS is the Effective Sample Size, see Equation 5.10}

Algorithm 4: Particle Filter Algorithm; procedures are noted as underlined text, Com-
ments are inside curly brackets “{comment}”.

distributions, while the best particle introduces a discretization error. The best method is

the robust mean but it is also the most computationally expensive.

2.1. Prediction. In order to predict the probability distribution of the pose of
the moving robot after a motion we need to have a model of the effect of noise on the
resulting pose. Many different approaches have been used (see Borenstein et al. [16, 18]
for an overview), most of which use an additive Gaussian noise model for the motion. Any
arbitrary motion [Az, Ay]? can be performed as a rotation followed by a translation (a
piecewise linearisation, see Figure 5.1). The robot’s initial pose is [z,y,]”. First the robot
rotates by 6 = 0, —0, where 0, = arctan(Ay/Axz) to face the destination position, and then
it translates forward by distance p = \/m 3. If the starting pose is [z, , é]T, the
I

resulting pose [z/,1/, 60,7 is given in Equation 5.6. Consequently, the noise model is applied

separately to each of the two types of motion because they are assumed independent.

3In our experimental setup the Nomadic Technologies Superscout II robots used are controlled by the same
rules.
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z' z + pcos (0
y'| = |y + psin (6y) (5.6)
0 Oy,
=k
, Y

Py

FIGURE 5.1. Arbitrary motion [Az, Ay]T of robot R;. At time ¢ = k — 1 the pose
is [z,y,0]7, after the motion at time ¢ = k the pose is [z',y’, 01]*. The robot first
rotates to orientation 6 and then translates by p.

2.1.1. Rotation. — When the robot performs a relative rotation by 86 the noise from
the odometry error is modeled as a Gaussian with mean (M,,;) experimentally established
(see appendix B) and sigma proportional to 86. More formally, if at time ¢ = k the robot
has an orientation 6, then after the rotation (time ¢ = k + 1) the orientation of the robot
is given by Equation 5.7. Therefore, to model the rotation of 46, the orientation éj of each
particle j is updated by adding 56 plus a random number drawn from a normal distribution
with mean M,,; and standard deviation o060 (N (Mmt,amtéé), where 0,4 is in degrees

per 360°).

élc-l—l = élc + (59 + N(Mrota Urotéé) (57)

2.1.2. Translation. — Modeling the forward translation is more complicated *. There
are two different sources of error, the first related to the actual distance traveled and the
second related to changes in orientation during the forward translation. During the transla-

tion the orientation of the robot changes constantly resulting in a deviation from the desired

“For a detailed description of the model please refer to appendix B sections 3,4.2.
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direction of the translation; such effect is called drift and we model it by adding a small
amount of noise to the orientation of the robot before and after each step. As well, if the
intended distance is p, the actual distance traveled is given by p plus some noise following
a Gaussian distribution. Experimental results provide the expected value and the standard
deviation for the drift and pure translation. Because it is very difficult to analytically model
the continuous process, a simulation is used that discretizes the motion to K steps, where K
is chosen to be low enough for computational efficiency but high enough in order to describe
the effect of noise in forward translation. If [04,ansiations Tarift] are experimentally obtained
values per distance traveled then at each step of the simulation the standard deviation used
is given in Equation 5.8. Algorithm 5 provides a formal description of the prediction phase

of a set of particles S for a forward translation by distance p.

Otrs = OtranslationV K

. (5.8)
Odrft = Odrift\/ o

Input: Set of M Particles::S; Translation distance::p
5p = f;
for (j =1 to M) do { For each particle}
for (k =1 to K) do { At each of K steps}
Eys :M(Mtrs * 0p, Otrs * 59);
Egrpt =rand N(May g1 * 6p, 0ar i * 0p);
0171 = Ol5] + Eart; )
3:[.7] = :L‘[j] + (59 + Etrs * COS (?[.7])7
y[]] = y[]] + (6p + Eyrs * sin (0[.7])5
Egrpr =rand N(May gt * 0p, 0ar 1 * 0p);
end for X
S'l5) = i), wlil, 011"
end for
Return(S’)

Algorithm 5: Forward Translation with Noise; rand N(M, o) is a pseudo-random num-
ber generator drawing samples from a Normal distribution with mean M and standard
deviation o; procedures are noted as underlined text, Comments are inside curly brackets
“{comment}”. The variables M;,s and Mgy s, represent the mean error and are experimen-
tally derived.

Figure 5.2 presents a graphical illustration of the effect of the two noise parameters

(Otrs, 0drft) in the predictive model. In both cases the robot makes a single forward motion
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Single step translation (o, =5, o, =1) Single step translation (o, =1, o, =5)
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FIGURE 5.2. The effect of oyrs,04rp¢ for the forward translation: (a) oys =
5em/m,ogrpe = 1°/m (b) o4rs = lem/m, ogrpe = 5°/m.

of 100cm (upper left sub-plot), 200cm (upper right sub-plot), 300cm (lower left sub-plot),
and 400cm (lower right sub-plot). In Figure 5.2a the uncertainty in the distance traveled is
the dominant uncertainty and thus the particles spread a lot more in the direction of the
motion. In contrast, in Figure 5.2b, where the drift noise dominates, the particles spread in
a circular pattern. Appendix B contains a detailed experimental study of these parameters

using the Nomadic Technologies Superscout II mobile platform.

2.2. Resampling. One of the problems that appear with the use of particle filters
is the depletion of the population after a few iterations. Most of the particles have drifted
far enough for their weight to become too small to contribute to the pdf of the moving
robot ®. If we consider the current set of particles Sy = {x¥,wF} : k =1... M as a discrete
representation of the pdf of the moving robot-pose, a new representation S; = {x’ f, w' f :
k =1...M is needed such that x¥ = x'* for k, in [1, M] and weights (w'¥ = 1/M) that
represent the same pdf.

Liu et al. [98] refer to two different measures that estimate the number of near-zero-
weight particles: one is the coefficient of variation cv? (see Equation 5.9) and the second is

the effective sample size ESS; (see Equation 5.10).

®For most practical implementations the weights become zero due to rounding off.
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_var(@) _ L§s oy
vy = E2(w(3)) M vt (Muw(i) — 1) (5.9)
M
ESSi =1 o7 (5.10)

When the effective sample size drops below a certain threshold, usually a percentage
of the number of particles M, then the particle population is resampled, eliminating (prob-
abilistically) the ones with small weights and duplicating the ones with higher weights.

Different methods have been proposed for resampling; three of the most common ones
are discussed in Appendix C. In every case the input is an array of the weights of the
particles and the output is an array of indices of which particles are going to propagate
forward. The requirement is that the pdf reconstructed by the resampled population is
very close to the one before the resampling. Experimental tests showed no noticeable
improvements over the simple select with replacement scheme. In Select with Replacement
each particle is selected to continue with a probability equal to its weight. We used the
approach of Carpenter et al. [27] that runs in linear time in the number of particles (see

Appendix C for a description of the algorithm).

Reproducing Thruns results Sample Trajectory of an exploring Robot (*: Tracker, o: Odometer, .: Monte Carlo Samples)
T T T T T T
T T

T T
6 Trs :3 cm/m

 Rot :2 Deg/360Deg
o Drft :2 Deg/m

I I I I I I
-100 L L L L L L L L L 100 200 300 400 500 600 700
—-400 -300 -200 -100 0 100 200 300 400 500 600 X-axis

FIGURE 5.3. (a) Large trajectory, the uncertainty build up is represented by the
spread of the particle cloud. (b) Series of forward translations and 360° rotations
performed in our laboratory. The connected curved line represent the uncorrected
odometer values (captured accurately by the cloud of particles), and the bottom
line represents the actual trajectory.
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5.2 PARTICLE FILTER

Figure 5.3 presents two examples of complex motions and illustrates the performance of
the prediction stage of the particle filter. In figure 5.3a, the robot moves forward three times,
rotates ninety degrees, then translates forward three more times, after which it rotates again
by ninety degrees and translates forward five times. As can be seen the uncertainty grows
unbounded. Sub-figure 5.3b presents experimental validation of our predictive model. In
this case the predictive model was guided by a set of motion commands that were used in
an experiment in our laboratory (for the full description of this experiment please refer to
chapter 8). In short, the experiment consisted of forward translations, each one followed
by four rotations by ninety degrees (in order to sense the environment in four different
directions). The connected circles in sub-figure 5.3b represent the uncorrected odometer
values. In fact, the actual trajectory of the robot was kept in a straight line but the
odometry estimates did deviate due to noise. The predictive model was constructed using
the noise statistical parameters collected in our laboratory (see Appendix B). The predicted
cloud of particles can be seen around the recorded values following the trajectory with high

accuracy.

2.3. Update. After an action (the motion of one of the robots) the robot tracker
sensor is employed in order to estimate the pose of the moving robot 6. The calculations
are dependent on the configuration of the robot tracker employed. The next two sections
present the update of the weights of the particles of the moving robot for the laser/target
robot tracker combination for two different cases. First we derive the update equations
when the laser range finder is mounted on the stationary robot (subsection 2.3.1); second
for when the laser range finder is mounted on the moving robot and the target is mounted
on the stationary robot (subsection 2.3.2).

2.3.1. Pose Estimation, stationary robot observing moving robot.  If the pose of the

~

stationary robot xs = [z, ys, 0s]7 (with laser range finder) and the pose of the moving robot

Xm = [Tm, Ym,O0m]T (with target) are known, then the robot tracker sensor measurement

z = [p, 6, qg]T can be calculated by Equation 5.11:

5 Additional sources of information (e.g. consistency of sensed parts of the environment with the map up to
this point) can also be used during the update stage.
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Observed Robot—Target,/’/

Observing Robot-Laser
(Stationary)

dX=Xpi Xs
dy=Ym~Ys
P =\dx?+dy?
Ay AN
0,y =atan2(dy,dx)= 0+ Bs
N N N
Qw=atan2(—dy,—dx)= @+ Om

Ay
Tracker Returns: < p, 6, Aq?

FIGURE 5.4. The stationary robot with the robot tracker sensor observes the mov-
ing robot that carries the target.

Vdz? + dy?

p
z= |6 = atan2(dy/dz) — 0, (5.11)
b atan2(—dy/ — dz) — by,

where dz = xp, — x5 and dy = Y, — Ys.
If the known information is the pose of the stationary robot (xs) (with the laser range
finder) and the robot tracker measurement is (z = [p, 8, $|7) then the estimate of the pose

of the moving (target) robot (xm,,,(k + 1)) is given in Equation 5.12:

Trnges zs + pcos (0, + 0)
xmest (k + 1) = ymest = ys + pSiIl (és + é) (512)
O T+0+6,—¢

The Equations 5.11 and 5.12 are equivalent. Consequently, the above equations can
be used in order to calculate the weight of each particle of the moving robot, assuming
a Gaussian error model for each component of the sensor data (p,é, ngS), in two different
ways. First, let the i** particle at time k be xfm = [xmi,ymi,émi]T. Then if the pose of
the stationary robot is known x; = [ms,ys,és]T the estimated tracker measurement z; for

particle 7 is given in Equation 5.13:
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5.2 PARTICLE FILTER

Pi A /davZ2 + dyi2
z; = |0;| = atan2(dy;, dx;) — 0, (5.13)
oi atan2(—dy;, —dz;) — éml
where dz; = 2, — s and dy; = Ym; — Ys-
The weight for particle ¢ then is proportional to the probability of xfntl given xg and
z; (see Equation 5.14). As can be seen in Equation 5.13 the value of qASZ is affected by the
complete pose of particle ¢ (both position and orientation). Therefore the error in position

(T Ym;) is used twice. In Equation 5.14 the constants o, 04, 0 4 are the presumed standard

deviation of the robot trackers measurement noise and they signify the confidence with which

we weight each measurement.

(o—ps —(6-6,)2 —($-9)>
X, X, 2) = e p e e .
mi 10 V2no, YV 27Taé vV 27”7({5

The pdf of the M-Raobot using p The pdf of the M-Robot using 0

=
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o
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o
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The pdf of the M-Robot using ¢ The pdf of the M-Robot using T
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= .
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FIGURE 5.5. The contribution of each measurement of the robot tracker in the
weighting pdf of the moving robot.
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Figure 5.5 illustrates the spatial variation of Equation 5.14. In particular the spatial
variation of the contribution of each component (p,8, @) to the weighting function is pre-
sented in the first three sub-plots, and the spatial variation of the weighting function is
presented on the lower right sub-plot. For clarity of presentation, the pose of the observing
robot is set at x, = [0,0,0]”7 and the pose of the moving robot at x,, = [100, 100, 45]7,
and using Equation 5.11 the tracker measurement z = [p,é, ngS]T is calculated. Then the
spatial variation of the different terms of the product in Equation 5.14 is plotted keeping
the moving robots orientation at the correct value (45°).

Experimental results have shown that the accuracy of the position of the robot is
(almost) fixed (independent of the distance at which the observed robot is seen). Unfortu-
nately, the tracker measurements are in polar coordinates and thus for a fixed error in the

angle (0) the longer the distance (p) the higher the error. In practice, it is necessary to

calculate o4 as a function of p:

o5 = h(p,05) = asin(ay/p) (5.15)

If the oy is kept at a fixed value then the weighting function is spread out, as can be

seen in the upper right sub-plot in Figure 5.6, and the prediction is less accurate. Figure 5.6

presents the spatial variation of the weighting function for the same condition as in Figure
5.6, except o is not scaled.

An alternative weighting function is to use the difference in Cartesian coordinates and

the orientation estimate in order to weight the particle xfm given x; and z; (see Equation

5.16).

—(dz—dz;)> —(dy—dy;)? —mTomy) (Om —Om; )
_ # e 203 # e 203 1 e 2‘72/ (5 16)
V2mo, Vimo, vV 27r0¢;

The second approach is to use Equation 5.12 and weight every particle depending on

P(xlﬁztl‘xw z)

how far it is from the estimated pose of the moving robot (see Equation 5.17). Where

~

if xm(k+1) = [a:mest,ymest,émest] is the estimate pose and xfm = [Tmys Y Om;] T is

the “'m” particle then d; = \/(Tm.,, — Tm;)? + Wmeo; — Ym;)2- The disadvantage of this

approach is that o4, 045 do not represent the sensor’s noise model.
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FiGURE 5.6. The contribution of each measurement of the robot tracker in the
weighting pdf of the moving robot. In contrast to Figure 5.5 the o is not calculated
to be proportional to distance between the two robots.
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During the estimation of the weight the pose of the stationary robot x;, is used. As the

P(xx,,2) (5.17)

actual pose is not known, different estimates X; can be employed. The following options

have been considered:

e The best particle (the one with maximum weight):

o Weighted Mean:
M
X, = Z x;'wj
j=1
e Use every particle of the stationary robot (O(n?)):

P(xfntl\xs,z) = E?ZIP(xfnt”xg,z)
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e Robust Mean: Select only the particles that are less than e from the particle
with maximum weight. The advantage of this method is that it selects the mode
of the distribution and reduces the discretization error (which occurs when only

a single particle is used).

K
Xs = E xlwj @ |x) —x7%) < e
j=1

AN
Observing Robot-Laser "
(Moving) ﬁ\ 9} "'.“

dXx=Xs— Xm
dy=Ys=Ym

P =\(dx2+dy?
.7 A A
ﬁ N‘ oy By =atan2(dy,dx)= 8+ 6m
Al / @, =atan2(-dy,~dx)= @+ s
k A Tracker Returns: < p, 8 @>
> 0 : ®

FI1GURE 5.7. Observation.

Observed Robot—Target
(Stationary) p.--

2.3.2. Pose Estimation, moving robot observing stationary robot. This time the

stationary robot has the target. If the poses of the two robots (xs = [zs,vs,0s]7 and
Xm = [Zms Yms Om]T) are known then the robot tracker sensor measurement (z = [p, 6, ¢|T)
can be calculated by Equation 5.18 (exactly as in the previous case Equation 5.11).

Vdz? + dy?

= | atan2(dy,dx) — O (5.18)

A~

atan2(—dy, —dz) — 6,

s

<S5 D

where dz = 3 — z, and dy = ys — ym T

"Note that dz, dy are different from Equation 5.11.

o4



5.2 PARTICLE FILTER

If the pose of the stationary robot (xs) (carrying the target) and the robot tracker
measurement (z = [p, 0, #]7) are known then the estimate of the pose of the moving (carrying

the laser) robot (x,,) is given in Equation 5.19.

Trnges Ts+ p * COS (</3 + 95)
Ximest (B +1) = | Ymews | = | ys + p #sin (¢ + 6;) (5.19)
Orm,., T+¢+0,—0

Applying the same methodology as in the previous section the weight update functions
are identical with the ones in Equations 5.14, 5.16, 5.17.

Figure 5.8 presents an illustration of the above described process over two iterations.
The first column present the prediction phase and the second column the wupdate phase.
The moving robot starts at position [0,0], and the stationary robot is located at [0,100].
At figure 5.8a the moving robot moves by [100cm,100cm] and the particles form a cloud of
approximately 20cm in radius. Figure 5.8b presents the update phase based on the tracker
sensor measurement (darker color represents higher weights). At the second step the robot
moves by [100cm,-100cm] and figure 5.8c presents the cloud of particles. It is worth noting
that the particles with higher weights (darker grey) have spread out. Finally, figure 5.8d
presents the second update phase where again the particles closer to the sensed pose have

higher weights.
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PARTICLE FILTER
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FIGURE 5.8. (a)Prediction of the first step. (b) Update using the robot tracker. (c)
Prediction of the second step. (d) Update using the robot tracker.

56



CHAPTER 6

Robot Tracker Implementation

1. Introduction

As we saw in the previous chapters, central to our approach is the role of the robot
tracker sensor, which serves the dual role of estimating the pose of the moving robot and
of detecting obstacles between the two robots. This chapter is independent of the rest of
the thesis and discusses the implementation details for the construction of two different
robot tracker sensors. Section 2 presents the implementation details for the construction
of a vision-based robot tracker sensor together with an analysis of its accuracy. Section 3
discusses an improved robot tracker sensor based on a laser range finder and a geometric
target. The laser sensor calibration and the target calibration are discussed in this section

together with an error analysis.

2. Visual Tracker

A variety of sensing technologies could be used for the robot tracker. Our first imple-
mentation of the robot tracker sensor was based on visual observation of a helical target
pattern on the other robot [50]. One robot is equipped with a camera that allows it to
observe its partner. The other robot is marked with a special pattern for pose estimation.

Several possible designs for the pattern are possible, but they should satisfy two key
requirements: the pattern should be robustly detectable and it should allow the distance
and orientation of the robot carrying it to be estimated. In this particular implementation,
the first part of the pattern is a series of horizontal circles that project into an almost linear

pattern in the image. This allows the robot to be easily discriminated from background



6.2 VISUAL TRACKER

objects: the particular ratio of distances between the circles (b/a in Figure 6.1c) is extremely
unlikely to occur in the background by chance. Thus, the presence of the robot is established
by a set of lines (curves) with the appropriate length-to-width ratio, and the appropriate
inter-line ratios. The second component of the pattern is a helix that wraps once around
the robot. The elevation of the center of the helix, relative to the surrounding bands (¢/b in
Figure 6.1c), allows the relative orientation of the robot to be inferred (see Figure 6.2a, 6.1).
In practice, this allows the robot’s pose to be inferred with an accuracy of a few centimeters

in position and 3 to 5 degrees in heading.

FIGURE 6.1. Robot Tracker: (a) The raw image of the moving robot as observed
by the robot tracker. (b) The helical and cylindrical pattern detected in the image.
(c) The distances estimated from the helix.

By mounting the observing camera above (or below) the striped pattern of the other
robot, the distance from one robot to the other can be inferred from the height of the stripe
pattern in the image, due to perspective projection (scaling of the pattern could also be
used). The difference in height between the observing camera and the target can be selected
to provide the desired tradeoff between range of operation and accuracy. One advantage of
the helical target for orientation estimation is that it functions correctly even at very large

distances, although with reduced accuracy, of course .

2.1. Tracker Evaluation. The accuracy of the visual tracker is shown in Table 6.1.
While the relationship between the appearance of the target and the actual distance can be
computed analytically, this would presuppose an accurate knowledge of the camera param-
eters. In order to relax this requirement, as well as to accommodate potential deviations
INote that constraints due to specific task (such as mine sweeping) can sometime introduce additional

constraints on the maximum inter-robot separation or optimal sensor geometry.
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Calibration Data
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FIGURE 6.2. (a) The visual robot tracker system with the camera mounted on one

robot and the helical target pattern mounted on the second robot. (b) Calibration

data for the distance estimation relating observed image position to actual distances.
from our ideal camera model, we use experimental calibration data to relate observed tar-
get positions with actual ranges. Calibration data relating the projected image and the
distance estimates is shown in Figure 6.2b. It is possible to estimate distances between
roughly 180 and 450 cm with the camera configuration used in this experiment, although

accuracy degrades with increasing distance (due to decreased image resolution) [137].

Distance Accuracy 1.5cm/pixel
Orientation Accuracy 1.3°
TABLE 6.1. Accuracy of simple visual tracker

3. Laser Tracker

The current implementation uses a laser range finder on the observing robot and a
target with a distinct three dimensional pattern mounted on the observed robot. @ We
implemented a robot tracker using a time of flight laser range finder (AccuRange 4000 from
Acuity Research Inc.) mounted on the observing robot and a three plane target mounted

on the observable robot (see Figure 6.4). The target was developed for this work in order

59



6.3 LASER TRACKER

View 5
View 1
View 3
—
= Observed Robot
View 6
View 2 «View4

(a) (b)

FIGURE 6.3. (a)The two robots: the observed robot with white target on the left
and the observing robot with the laser range finder on the right. (b) Top view of
the observed robot 6 canonical views that are qualitative different depending on the
position of the observing robot.

to permit accurate and robust estimation of position and orientation using the AccuRange
line scanner. The target can be seen in Figure 6.4a (the robot on the left) while the robot
on the right carries the laser sensor.

The target used consists of three vertical planes that fan out of the center at 100°, 120°
and 140° angles. Figure 6.4b shows a top view of the target: as can be seen, from any
point around the robot at least two planes are always visible. The different combinations
(in Figure 6.4b) are numbered as View 1 to View 6. The intersection of the laser stripe
with the target gives rise to at least two line segments in 3D. The laser range finder takes
a dense laser scan (4096 points), and the laser points are filtered and only those near the
last known location of the observed robot are kept. During the next step lines are fitted
using the MacKenzie-Dudek algorithm [52, 107] and lines segments that do not match the
length and/or the appropriate angles of the planes are discarded. From the remaining lines,
at most three, the two longest are selected and their intersection point and their orientation

is calculated 2.

2The probability of two straight lines of length 25cm meeting at an angle of 140° plus or minus two degrees
is extremely low.
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Line across the end—points Line across the end-points
. : View 3
Intersection View 3 - _
Observing Robot View 6
Intersection\P / Observed Robot
Observed Robot *,
| Observing Robot

(a) (b)
FIGURE 6.4. Top view of the observing/observed robots. For illustration purposes
we examine the case where the two planes meet at a 140°, view 3 and view 6. (a)
View 8140 degrees angle between the two target lines; the observing robot and the
intersection point are on opposite sides of the line that passes between the two end
points of the target. (b) View 6 Same angle (140 degrees) but the observing robot

and the intersection point are in the same side.

The view numbering is done to efficiently estimate the view observed, first the angle
between the two lines is calculated (one of 100°,120° or 140°) and the view is given a number
1-3 accordingly. Then the side of robot from where the two lines are seen is determined (if
they form a convex or concave corner relative to the observing robot). This is achieved by
calculating whether the intersection point of the two lines falls on the same side (see Figure
6.4b) or the opposite sides (see Figure 6.4a) of the line that passes through the end-points of
the two target lines. If a convex corner is detected (observing robot and intersection point
at the same side) then the view number is increased by three (see the numbering at Figure
6.3b). The detected target data consist of a quadruple T = [z, yy, 04, , 64,] containing the
center of the target ([z:,y:]) and the orientations of the two planes ([6y,,6:,]). In case of
failure (i.e. large odometry error) then all the laser points are considered, lines are fitted

again and the above described process is repeated.

3.1. Laser Sensor Accuracy. As noted earlier the laser sensor returns a dense
scan of 4096 points over 360 degrees (one point per 0.0879 degree) up to 15m distance. Table
6.2 shows the uncertainty in cm and degrees for different size landmarks observed 100 times
at a distance of 300cm. The standard deviation of the measurements is reported together

with the maximum difference in the measurements. Two walls were used as the landmark
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providing similar measurements with the target; the intersection point of the two walls and
the average orientation of the two walls was measured. The distance of the landmark from
the observing robot is reported together with the angle at which the landmark is seen (the
polar coordinates of the landmark to the robot) and also the orientation of the two walls.
It can be seen that the larger the landmark the more consistent are the observations, but

even for a landmark as small as the target the accuracy is high.

Length of Landmark 25cm 30cm 50cm | 100cm | 150cm | 200cm
Distance (cm) Max Diff. | 0.4175 | 0.3416 | 0.3765 | 0.1946 | 0.2057 | 0.1602
Distance (cm) STD 0.1042 | 0.0751 | 0.0784 | 0.0521 | 0.0432 | 0.0333
Angle Max Diff. | 0.0529° | 0.0399° | 0.0245° | 0.0213° | 0.0289° | 0.0290°
Angle STD 0.0084° | 0.0075° | 0.0046° | 0.0037° | 0.0066° | 0.0055°

Orientation Max Diff. | 1.0420° | 1.0240° | 0.3530° | 0.1450° | 0.1140° | 0.0940°
Orientation STD 0.2124° | 0.1582° | 0.0768° | 0.0316° | 0.0269° | 0.0205°

TABLE 6.2. Maximum Difference and standard deviation of observing different
sized landmarks. Distance is measured in centimeters and the angles in degrees.

3.2. Laser Sensor Calibration. The laser sensor returns data points (P) in coor-
dinates in the sensor’s frame of reference (L C). Naturally, the robot-mounted sensor returns
readings with respect to the robot base. We proceed by transforming these measurements
into a common global reference frame (WC). The transformation from the laser frame of
reference to the global frame of reference consists of two stages: first from the laser sensor
coordinate system to a coordinate system located at the robot and then from the robot’s
coordinate system to the world coordinate system. More formally, P, = M, M,;P;, where
P, is a point in WC, P, is a point in LC, both points are expressed in 2D homogeneous
coordinates, M, is the transformation matrix from the robot coordinate frame to the world
coordinate frame, and M, is the transformation matrix from the laser coordinate frame to
the robot-centered coordinate frame (see Equation 6.1). Matrix M, expresses the trans-
formation based on the pose of the robot (Propet = [T7,Yr,0-]7) in world coordinates and

varies with the motion of the robot. The matrix M,; expresses the transformation based on
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the distance and the orientation of the laser sensor coordinate system relative to the coor-
dinate system of the robot (z,y,6). As the laser sensor is securely mounted on the robot
the values z, 4, 0 are constant. In order to calibrate the laser sensor to return values in the
world coordinate frame, the values of z,y, 8 should be estimated. We use an environment
with known geometry (see Figure 6.5) and we estimate these values in two stages: first we
estimate the difference in the orientation 6, and then the displacement z,y. The numerical

results are obtained for a Superscout robot from Nomadic Technologies, Inc (see Figure

6.5).

FIGURE 6.5. An environment with four walls.

Ty cos(f,) —sin(0,) x| |cos(f) —sin(0) z| [z
yw | = |sin(6,) cos(0,) y,| [sin(d) cos(0) y| |w (6.1)
1 0 0 1 0 0 1 1
S—— ~ ~~ —~ ~- N
Py My M, ]
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Orientation (0) calibration: The robot detects the same landmarks from two
different positions. For ease of calculation we set the pose of the robot to be the same as
the origin of the world coordinate system (P1 = [z,,y,0,]7 = [0,0,0]7). The intersection
of two walls (in laser coordinates A; = [Ay,, Ay,]7) is calculated, then the robot translates
by a distance D along the x-axis moving to the pose P2 (P2 = [D,0,0]7) 3, and the
same landmark (intersection of the same two walls) is detected (B; = [By,, By,]7). * The
world coordinates of the observed landmark should be the same before and after the motion

(A, = B,) and from Equation 6.1 we could estimate the orientation (see Equation 6.2) °

Az, B,
Aw = Ayw = Byw = Bw <~
1 1

cos(0) —sin(0) Of |cos(f) —sin(f) z| | Az
sin(0) cos(0) 0 sin(B) cos(H) y| |4y, =
1

0 0 1
cos(0) —sin(0) D| |cos(d) —sin(f) z| | By,
sin(0) cos(0) 0| [sin(d) cos( ) y| | By —
0 0 1 1 1
cos(§) —sin(f) z| |Ag 1 0 D| [cos(f) —sin(0) z| |By,
sin(f) cos(d) y| [Ay| =10 1 Of |sin(d) cos(d) y| |By| <
0 0 1 1 0 0 1 0 0 1 1

(Ag, — By)) (—Ay, + By,)| |cos(6) D
B

= (6.2)
(Ay, w) (Az, — Bg) sin(6) 0

After repeating the above described experiment n times we collect a set of landmarks

and distances traveled [A% | A B! D': i=1...n. From the data and Equation 6.2

Ty Y 581’ Y’

we use a least squares fit for Equation 6.3. A different approach is to analytically calculate

3The poses P1, P2 of the robot are expressed as a triplet (z,y,6) while the detected landmarks are in 2d
homogeneous coordinates.

4During the translation the robot speed is kept low in order to achieve reliable odometry measures.

®As can be seen the unknowns z,y are canceled out and we have two equation with two unknowns (although
they are not independent) [cos(6), sin(6)].
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[cos(8),sin(6)]T for each data point (see Equation 6.4) and then take the mean values. Both

methods were used for robustness.

1 1 1 1 1
(Aacl - Bwl) (_Ayl +Byl) D
1 1 1 1
(Ayl o Byl) (ASUI o BCEz) 0
2 1 2 2 2
(Awl _Bzcl) (_Ayl +Byl) D
2 1 2 2 cos (0) —
(Ayl o Byl) (A$1 o le) . =10 (6.3)
) sin(0)
. ———
n n n n X n
(Azl - BSCI) (_Ayl + Byl) ‘D
n n n n
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FIGURE 6.6. Error estimation after translation (a) Using all the data. (b) Without
any outliers.

Two different ways to measure the quality of the data are used. First, from the solution
of the inverse problem (X = A~'b) we can estimate the residual (r = A - X — b see

Equation 6.3) which provides a measure of the quality of the data (the residual can be
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seen in Figure 6.6 as a solid line). Second, the difference between the distance traveled and
the displacement of the observed landmark (in LC) provides a measure of consistency in
the data (as can be seen in Figure 6.6 as a dashed line). It is worth noting that the two
measures eliminate the same outliers from the data. Both methods were used in order to
estimate the orientation () of the Laser Coordinate system relative to the Robot Coordinate
system: analytical calculations and a least square estimation. Table 6.3 presents the values
of [cos(0),sin(f)] calculated with the two methods using all data (no outliers removed).

Table 6.4 presents the results after the removal of outliers.

cf =cos(f) | sf =sin(f) | F = arctan(sf/cf) | cos(F) | sin(F)
Analytical Calculations (With outliers)
Mean -0.7428 -0.6710 -137.9019 -0.7419 | -0.6704
STD 0.0149 0.0044 0.7208 0.0084 | 0.0093
Least Square Calculation (With outliers)
-0.7471 | -0.6712 | -138.0637 | -0.7439 | -0.6683

TABLE 6.3. Orientation estimation with two different methods (analytical and least
squares estimation). For the analytical calculation the mean value and the standard
deviation is reported. The estimates contain all data collected (no outliers removed).

cf =cos(0) | sf =sin(0) | F = arctan(sf/cf) | cos(F) | sin(F)
Analytical Calculations (No outliers)
Mean -0.7478 -0.6692 -138.1733 -0.7451 | -0.6668
STD 0.0116 0.0056 0.6656 0.0077 | 0.0087
Least Square Calculation (No outliers)
-0.7473 ‘ -0.6699 ‘ -138.1240 ‘ -0.7446 ‘ -0.6675

TABLE 6.4. The same as Table 6.3 but with the outliers removed.

With an error margin of two tenths of a degree the orientation of the Laser Coordinate
system with respect to the robot is § = —138.1240.

Displacement (z,y): Following the same methodology as in the orientation estima-
tion we use the rotation of the robot in order to estimate the other two unknowns z,¥ in
Equation 6.1. The pose of the robot again is set at the origin. The robot detects three
landmarks (in laser coordinates A;, C, E;, see Figure 6.7a and Figure 6.5), then the ro-
bot is rotated by an angle 6,, and the same landmarks are detected again (By, D;, Fj, see

Figure 6.7b). Given a pair of landmarks A = A; — B; and C = C; — D; (each landmark
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observed from two different angles) we can calculate the robot orientation 6, (see Equation
6.6). Consequently, given an estimate for [cos(6),sin(0)] = [cf,sf] = [—0.7446, —0.6675]
and Equation 6.1, we get Equation 6.5 for the first landmark A = A; — B; (same Equation
for the other two landmarks C = C; — D; and E = E; — F}).

o XPlot_v6.9{G.D.) | XPlol_v6.9(G.D.)

(a) (b)

FIGURE 6.7. The four walls providing three landmarks. (a) Before the rotation.
(b) After the rotation.

cf —sf z| |Ag cos(y) —sin(0,) z,| |cf —sf x| |By,
sfcf y| |Ay | = [sin(0;) cos(6,) yr| |sf cf y| [By (6.5)
0 0 1 1 0 0 1 0 0 1 1

From the cosine law © we can calculate the rotation of the robot 6, using a pair of

landmarks. For example, using the landmarks A and C we get Equation 6.6.

cosf. — (Az — Cz)(Bz — Dx) + (Ay — Cy)(By — Dy)
" (Bx — Dz)? + (By — Dy)?
. _ (Ay - Cy)(Bx — Dx) + (Az — Cz)(By — Dy)
sinf, = (Bz —Da)2 1 (By — Dy)? (6.6)

SMathematica was used for solving and simplifying the equations.
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Using the two of the three landmarks at a time ([A, C|, [AE]|, [C,E]), we get a
robust estimate of the rotation of the robot. Figure 6.8 presents the distribution of the
estimates (top sub-plot), as well as the difference between the estimates of the rotation
(using landmarks) and the odometry estimate (bottom sub-plot). More precisely, the top
sub-plot presents the standard deviation of the orientation estimates from the landmarks (in
“+7”) and the difference between the maximum and the minimum values (in “*”). The lower
sub-plot presents the difference of the odometry estimate of the orientation from the mean
of the orientation estimates from the landmarks (in “x”). The odometry-based orientation

differs from the landmark-based estimates as expected due to odometry error.
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FIGURE 6.8. Error in the odometry based orientation estimate versus landmark
based orientation estimates. Top sub-plot presents the standard deviation of the
three estimates of the orientation using three pairs of landmarks(“+”) and the
maximum difference (“*”). Bottom sub-plot presents the difference between the
mean estimate of orientation based on the landmarks and the orientation reported
from odometry.

Using the mean orientation estimate of the three landmarks we proceed to estimate the
displacement [z,y] of the origin of the Laser Coordinate system with respect to the center
of the robot. An analytical solution and a least squares estimation of the empirical data
provide the same results up to millimeter accuracy. For the least squares formulation, let

cos(6,) = cfr and sin(#,) = sfr, using Equation 6.5 we get Equation 6.7:
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Least Square Solution for X
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FIGURE 6.9. Iterative least squares calculation of the X (top sub-plot) and Y (bot-
tom sub-plot) by removing one outlier at the time. The accuracy in both cases is
better than one millimeter.

cf Ay, —sf-Ay +x cfr —sfr x| |cf By, —sf-By, +x
sf-Ag +ef Ay +y| = |sfr cfr yr| |8f -Be,+cf By +y
1 0 0 1 1

CfT'(Cf'le—Sf'Byl +w)—sfr-(sf-Bw,+cf-By,+y)+a:T
Sfr'(cf'sz_Sf'Byt+m)+ch'(3f'Bmz+cf'Byl+y)+yr Aand
1

—cf-Awl—sf-Ayl+zc—cfr-cf-le+ch-sf-Byl—cfr-z—l—sfr-sf-Bw,+sfr-cf-Byl+sfr-y—zcr:| _ |:0:|
_sf-Aml+cf-Ayl+y—sf1'-cf-le+sfr-sf-Byl—sfr-z—cfr-sf-Bml—cfr-cf-Byl—cfr-y—yT ; 0
<~

-lfcfr sfr :| |:w:| _ |:cf(Aml—|—cfr-Bm, — sfr-By)+ sf(Ay, —cfr - By, sfr-Bm,)+xT:|
| —sfr  1—cfr B cf(—Ay, + sfr- Bg, +cfr-By,) +sf(—Az, — sfr- By, + cfr-Bgz,) + yr

(6.7)
Y

An analytical solution is given in Equation 6.8.
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1
T = E(Xr -Y, cot(%) + csc(%)(Ayl cos(8 — %) — By, cos(8 + %T) + Ag, sin(f — %) — Bg, sin(0 + %T)))

1 0 0 0 0 % 0
y= E(Yr + X, cot(é) + csc(?r)(—Axl cos(f — Er) + By, cos(8 + ?T) + Ay, sin(6 — ET) — By, sin(6 + %))) (6.8)

| X (cm) | Y (cm)
Analytical Calculations (All data)
Mean | -6.1631 -5.7632
Std | 0.6304 0.8801
Least Square Calculation (All data)
| -6.1586 | -5.7934

TABLE 6.5. Estimated values for x and y (the position of the laser in robot coor-
dinates) using an analytical solution and a least squares solution.

Table 6.5 shows both the analytical results and the least squares solution using all
the data. Figure 6.9 shows how the least squares solution changes after the removal of the
worst fit each time. The top sub-plot presents the solution for x versus the number of points
removed and the bottom sub-plot presents the solution for x. As can be seen from Table
6.5 and Figure 6.9, the results are stable with an accuracy of a millimeter.

For the current position of the laser mounted on top of the observing robot the final

estimates are: £ = —6.15cm, y = —5.65cm, 6 = —138.1240°.

3.3. Target Calibration. The next step in the calibration of the robot tracker
sensor is the estimation of the relation between the target location and the observed robot
reference. As we saw in the beginning of Section 3 the laser detects (at least) two planes
from any generic direction around the robot. The intersection of the two planes provides
a fixed point (the center of the target [z¢,%;]); the angle between the two planes identifies
which view (see Figure 6.3b); and the orientation of each plane is fixed relative to the
orientation of the robot. For example, Figure 6.12a presents a top view of the target as can
be seen from a position such that the two planes that are visible present a non-reflex corner,
and the angle is 140° (View 3). The raw robot tracker sensor measurement is a quadruple
T = [z¢,Yt, 04 ,0:,] containing the center of the target ([z:,y:]) and the orientation of the

two planes ([0, ,6:,]). The pose of the robot (P, = [zr,yr,6;]) is given by Equation 6.9,
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where d is the distance between the center of the target and the center of the robot. The
angles ¢; and ¢, are the angles between the planes of the target and the line (d) that
connects the center of the target to the center of the robot. Finally, the angles 66; and
00y are the angles between the planes of the target and the orientation of the robot. In
conclusion, the calibration of the target requires that we estimate the above mentioned five
parameters [d, ¢1, P2, 001, d02] for every view of the target. We divide the estimation into
two independent steps, the estimation of the orientation parameters ([d61,062]), and the

estimation of the robot-center parameters ([d, ¢1, ¢2]).

z, xt_l_dcos(ﬂtl—}—d)l)—gcos Bty +¢2)
= |y | = | g+ asCutorisinCete) (6.9)
(8¢, +001)+(0:,+062)
0, 5

It is worth noting the following about the pose of the robot: by moving the robot
forward it is possible to establish the orientation of the robot 6, unambiguously because
the forward motion is performed along the orientation of the robot. The center of the
robot though ([z,,y,]) can be defined in many different ways. The geometrical center of
the robot is one option, the center of rotation is another, and the point where the sonar
sensors intersect could also be an option. Unfortunately, in order to properly correct the
odometry error, the pose of the robot should use the center of rotation, which in turn is not
a fixed point as the robot is unable to perform pure rotations. The problem we encountered
was that we had to define a center for the robot that was changing for different amounts
of rotations. In other words, during any rotation the center of the robot is displaced by
a small amount. We tried to reduce the lateral motion of the robot by maintaining small
speed/acceleration and by keeping the rotation small during the calibration. Nonetheless,
this method was used only for calibrating one view of the target.

3.3.1. Estimation of relative orientation ([0601,603]): As can be seen in Figure
6.11 an ideal forward translation of the robot has the following properties: the orientation
of the robot remains constant 7 6, = 6. (see Figure 6.11), the orientation of the line

defined by the centers of the target ([zs, ], [}, v;]) before and after the translation and the

"For translations of small distances and for small speed the drift is negligible.
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Observed Robot

Observing Robot

View 3
'7

FIGURE 6.10. The robot is observed from View & relation between the detected
target (T' = [z, yt, 04, , 0t,]) and the pose of the robot (P, = [z, yr,0r])-

FIGURE 6.11. The observed robot translates along its heading (specified by 6,) by
a distance d, the center of the target translates also along the same heading (8,.) by

the same distance d.

orientation of the line defined by the centers of the robot (([z,yr], [,,y,]) before and after

the translation are equal with the orientation of the robot 6, (in WC), and the orientations of

the two planes of the target are unchanged (6;, = 0;1 , 01, = 0;2). Therefore, even though the

center of the robot ([z;, y;]) is still unknown, the orientation 6, can be estimated directly by

the two centers of the target ([z, ], [£},7;]) (see Equation 6.10). The parameters [36;, 365]

are given by Equation 6.11.

061

002

arctan(y; - yt/x; — ) (6.10)
0, — 6y,
0, — Oy, (6.11)
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(a) (b)

FIGURE 6.12. (a) The robot rotates around its center (R) by an angle O, the fixed
target rotates accordingly (from A to B). The solid lines starting from A represent
the target before the rotation and the dashed lines starting from B represent the
target after the rotation. (b) Two possible centers (R,R’) on the opposite sides of
AB line.

3.3.2. Estimation of displacement ([d,$1,¢$2]): As mentioned above the center
of the robot is not uniquely defined. In some cases the estimated parameters are of the
same order of magnitude as the error in the measurements. The following procedure was
followed: the parameters for the calculation of the center of the robot were estimated for
one view, then the observed robot was stationary and the observing robot was moved in
two consecutive positions in order to sense two different views of the target (one view for
which the robot center is estimated and a new view). Then the parameters for the second
view are estimated.

Figure 6.12a shows the robot and the target before a rotation (A = [A,, Ay]: center of
target, the two planes drawn in solid lines) and after a rotation by © (B = [By, B,|: center
of target, the two planes drawn in dashed lines); a second rotation would introduce a third
point (C = [Cy, Cy]: center of target). The robot rotates around a point R = [X,,Y;] and
the target is detected after two rotations of the robot that carries the target, therefore the
target is sensed three times. The three points A,B,C define one circle (see Equation 6.12 for
the center of the circle); moreover, every two points and the rotation angle (as estimated

by the change in orientation of the two target planes) give two symmetrical solutions for a

73



6.3 LASER TRACKER

different circle (see Figure 6.12b and Equations 6.13,6.14 for the center of the circle). The
two points and one angle define two centers (R,R’ in Figure 6.12b), one on each side of line
that connects the two points (A,B in Figure 6.12b). From the two solutions (Equations

6.13,6.14) we select the one that is consistent with the three point circle.

_ ByC; — (B2 + By)Cy + ByCy + (A2 + A7) (=By + Cy) + Ay(B; + By — C; — Cy)

v 2(AyBy — AyBy — AyCy + ByCy + A;Cy — B,Cy)
p _ (A2 A)(Bo — Co) + Cu(B] + B} — ByCy) — BuCy + Au(~B} ~ B} + O + 05,)6 12)
v ﬂ%&—@&—%@+&@+@%—&%)
(Ay — By)(1 — cos (© A, — By)2 csc (©)?
- ](AﬁB4 ))(1 — cos (©))y/ (A — By)? esc (©)
2 A, — B,
_ 1 2 2
R, = 2 Ay + By — (1 +cos(©))\/ (Az — Bg)? csc (O) (6.13)
T B e (Ui O/ (As — By)? esc (0)°
Sl S A, - B,
’ B 1 2 2
R, = 3 Ay + By + (1 + cos(©))\/ (Az — Bg)? csc (O) (6.14)

We repeat the double rotation experiment several times and keep only the measure-
ments where the radius of the four circles (one from the three points and three circle by
combining every two points) are consistent. From each experiment the center of the robot

is estimated as [X,,Y;] and the parameters [d, 1, ¢2| are calculated using Equation 6.15.

d = % =2 + % — )
o1 = arctan(Yy — yi/ Xy — x) — Oy,
d2 = arctan(Yy —yi/ Xy — x) — Oy, (6.15)
The orientation estimation of the target is always done using the mean value of the

two planes for better accuracy. Table 6.6 presents the estimates of the [d, ¢1, ¢, 361, 005]

parameters by moving the observed robot.
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View d ¢1 ¢2 501 592
I [ N/M | N/M | N/M | 176.9034 | 77.9354
2 | N/M | N/M | N/M | 296.6401 | 176.3852
3 1.8252 | 81.6194 | 301.8621 | 77.3893 | 297.6944
I | N/M | N/M | N/M | N/M | N/M
5 | N/M | N/M | N/M | N/M | N/M
6 | N/M | N/M | N/M | 77.3648 | 298.5080

TABLE 6.6. The estimated five parameters for the target calibration. Moving the
observed robot (N/M: Not Measured).

In order to calibrate all faces of the target the two robots were placed in an enclosure
formed by a set of nine walls larger than one meter each. The robot with the target was
kept stationary while the robot equipped with the laser range finder was moved in a circular
trajectory around the target robot and at a distance of one meter. After each motion the
walls were used in order to localize (see Section 4). The moving robot took 36 steps around
the stationary one, each step approximately 17.3cm. After each step the pose of the moving
robot was corrected and then the target was detected ten times (in order to measure the
repeatability of the experiment). Table 6.7 presents the values for the five parameters for
every view of the target. The laser data and the trajectory of the moving observing robot
can be seen in Figure 6.13. Figure 6.14 presents the mean estimate of the intersection point
from each position. Figure 6.15 presents a closer view of the mean value together with an

uncertainty ellipse drawn at one standard deviation of the data.

View d ¢1 ¢2 (501 502
1 5.9520 | 187.2810 | 89.2976 | 175.7135 | 77.7302
2 | 5.5150 | 277.0460 | 157.3268 | 296.5156 | 176.7964
3 1.8224 | 80.7237 | 301.5761 | 76.7238 | 297.5762
4 | 3.2858 | 130.7391 | 32.5019 | 176.2607 | 78.0235
o |3.9434 | 333.8887 | 213.9336 | 296.7751 | 176.8200
6 |6.7692 | 81.5267 | 300.4969 | 77.0238 | 295.9940

TABLE 6.7. The estimated five parameters for the target calibration. The calcula-

tions are all relative to face 3 and present average values.

The previous experiment was repeated one more time with the observing robot moving

on a circle of radius 120cm from the stationary robot, in intervals of ten degrees (around

the circle), and 10 measurements were collected from each position. The intersection points
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FIGURE 6.13. The trajectory of the observing robot with the laser range finder and
the detected laser points. In the center stands the observed robot which is visible
only in the form of the three lines of the target. Enough walls existed around the
two robots in order to provide adequate landmarks during the calibration process.

of the targets are shown in Figure 6.16 together with the mean estimated position of the

robot. Figure 6.17 presents a closer view.

View d o1 o2 004 005
1 | 3.1218 | 187.9969 | 88.8799 | 177.0988 | 77.9818
2 13.3148 | 270.5552 | 150.9222 | 297.4960 | 177.8630
3 | 1.8634 | 77.0882 |295.7289 | 78.4453 | 297.0860
4 | 2.4131 | 146.8717 | 49.4735 | 177.1362 | 79.7380
5 12.2933 | 311.8284 | 192.5956 | 296.6677 | 177.4349
6 |2.5814 | 75.4404 | 293.8753 | 79.7157 | 298.1506

TABLE 6.8. The estimated five parameters for the target calibration. Measuring

the geometry of the body of the observed robot.
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The intersection points of the Target and the estimated Robot Pose
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X

FIGURE 6.14. The Robot Pose is estimated based on data from the face 3 (the
ellipse indicates the uncertainty of the robot pose estimation. The intersection

points for the different faces are displayed as follows: face 1 as “+”, face 2 as “>”,

face 3 as “*”, face 4 as “x”, face 5 as “A”, face 6 as “0”.

Finally, one more calibration experiment is described, where the five parameters were
estimated based on the frame of the robot. Table 6.8 contains the values of the five pa-
rameters estimated using the chassis of the robot. In this case the geometric center of the

frame of the robot and the orientation of the front plate of the robot were used.

4. Laser Sensor based Localization

Every time the laser robot tracker is used a large number of laser points are collected
(between 3000-4000). Since the same features are often observed repeatedly, the robot’s
motion as well as the environment layout can be estimated. The problem of localizing
from laser data has been investigated by several researchers (see [68, 101, 100, 103, 102)).
In order to assist us in the calibration of the target the following method was used for
localizing the observing moving robot using the laser data. First the lines are fitted using

the MacKenzie-Dudek algorithm [52, 107]; the first time laser data are collected every line

7



6.4 LASER SENSOR BASED LOCALIZATION

The intersection points of the Target
T T T T

of F =
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X

FIGURE 6.15. Zoom at the intersection points of the Target (from Figure 6.14); the
ellipse around each point represents the uncertainty over ten measurements.

The intersection points of the target and the estimated Robot Pose (from 120cm)
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FIGURE 6.16. The Robot Pose is estimated based on the calibration table of Table
6.7 (the ellipse indicates the uncertainty of the robot pose estimation. The inter-
section points for the different faces are displayed as follows: face 1 as “+”, face 2

as “p”, face 3 as “*”, face 4 as “x”, face 5 as “A”, face 6 as “0”.
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The intersection points of the target and the estimated Robot Pose (from 120cm)
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FIGURE 6.17. Zoom at the intersection points of the Target (from Figure 6.16).
Ten measurements were collected from each position. .

that is more than one meter is saved as a landmark. After every motion a new set of laser
data is collected and new lines are fitted then the new lines are matched with the saved
landmarks; in particular only lines that differ less than 10 degrees and intersect or their end
points are closer than 20cm from each other are selected see Figure 6.18a. When we finish
selecting the matching lines the error is calculated. First the angular error is calculated and
a weighted mean estimate is used (#) (the length of the lines is used as a weight where longer
lines contribute more). The new lines are rotated around the position of the observing robot
by the calculated mean angle as in Figure 6.18b. Finally the displacement for each pair of
lines (dz;, dy;) is computed and the weighted mean [dz, dy] is used to correct the robot pose.
The mean is given by dz = > dz;w;, dy = >, dy;w;, where w; is the weight proportional to
the length of the i** line pair. The pose of the moving robot is corrected as in Equation

6.16.
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Ty + dx

Ym +dy
0,,+0

—— Referencewalls
- -- Sensedwalls

3 05

(6.16)

—— Referencewals
Correct Orientation walls

Correct by V,\V, V,

(a)

FIGURE 6.18. Localizing from the observed lines.

Two alternative robot tracker sensors based on different sensing modalities were de-

scribed in this chapter.

The first robot tracker is vision-based and is more robust over

uneven terrain. The accuracy of the pose estimation deteriorates over distance. The second

robot tracker is based on a laser range finder, it has higher accuracy than the vision-based

one and the accuracy of pose estimation is constant over a longer range. The laser based

tracker requires flat floors in order to function. In the next chapter we present experimental

results from the application of these robot tracker sensors in exploration and mapping.
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CHAPTER 7

Experimental Results

Don’t believe the results of experiments until they’re confirmed by
theory.
—Attributed to Arthur Eddington.

In the Chapters 3 and 4 we discussed two exploration strategies for mapping the free
space of an unknown environment with the use of a novel sensor: the robot tracker. Fur-
thermore, in Chapter 5 we presented a probabilistic framework for reducing the uncertainty
that accumulates due to sensor noise during the exploration. Finally in the previous chap-
ter (Chapter 6) we presented the construction of two different robot tracker sensors and
discussed their operational parameters (range of sensing, accuracy, etc.). In this chapter
we present the results from a series of experiments using the two different robot tracker
sensors and also using different robots. Experiments with the real robots allow us to vali-
date our exploration strategies but also to examine the strength and weaknesses of different
sensor/robot combinations. Simulated experiments provide results from more complicated
environments and also for the effect of different noise parameters and different robot con-

figurations that were not available in our laboratory.

1. Trapezoidation Algorithm

As we saw in Chapter 4 the trapezoidation algorithm is used to map areas that extend
beyond the range of the robot tracker sensor. In the available space for experiments it
was not possible to find an area that extended to a few times the sensor range (5-6m for

the visual robot tracker and 10-14m for the laser robot tracker sensor). Therefore the
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FIGURE 7.1. Exploration of one stripe (120 exchanges). The results are from a
single run.

majority of the experiments were done in simulation. In addition the motion strategies of
trapezoidation algorithm were used in simulated multi-robot experiments for determining

the trade-offs between the number of robots and the type of robot tracker sensor used.

1.1. Simulation Results. In order to estimate the improvement in position estima-
tion when the two robots collaborate, a series of experiments were performed in simulation.
The two robots explored a single stripe of the environment, exchanging roles 120 times.
Odometry error estimates gathered during experiments with an RWI robot were used to
parameterize the error model in dead reckoning. The accuracy of the helix vision tracker
was used to model the accuracy and the range of the robot tracker. The same path was
traveled twice, and the error in positioning was measured. The first time no cooperation
took place between the two robots, while the second time every time the two robots ex-
changed roles they corrected their position estimates. In the case of no cooperation the
two robots are following the same trajectory as before but without correcting their position
estimate.

From the results shown in figures 7.1(a,b), it is clear that the cooperative exploration
strategy improves performance substantially over the non-cooperative strategy. It is worth
pointing out that in this experiment no systematic error was included in the model, such as

would occur on an inclined floor where with every translation a small amount of slippage
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FIGURE 7.2. (a) Path of the moving robot as estimated by the visual tracker.
Measurements taken in different positions validate the accuracy with precision of
roughly 2cm. (b) The desired path of the moving robot. Although the robot can
be driven along this path using open-loop control, dead reckoning error leads to a
substantial discrepancy. (c¢) The error in positioning from the odometry estimations.

would occur. It is clear that the cooperation of the two robots helps to maintain reduced

localization error and improves mapping robustness.

1.2. Laboratory. Due to space constrains we performed an experiment in our
laboratory using a motion pattern similar to the one traveled by the two robots using only
one robot while the other one was stationary.

In order to measure the accuracy of the map, a few locations along the path were
selected and the position of the robot was estimated relative to the stationary camera. The
accuracy of the positions estimated by the camera-based tracker was between 1.0 and 2.3
cm. As can be seen in Figure 7.2a,b the inaccuracy is largely due to rotational error and
thus it is more evident near the sides of the rectangle. Figure 7.2c presents the absolute

odometry error as it accumulates over the distance traveled by the robot.

2. Triangulation Algorithm

The triangulation algorithm presented in Chapter 3 is used to map areas that are
bounded by the range limit of the robot tracker sensor. Experiments conducted first in

simulation and then in different locales in our building allowed us to verify the performance
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FI1GURE 7.3. The paths of the two robots after the completion of the exploration.

of our approach. In the next section we present experimental results from two typical

environments.

2.1. Simulation. Extensive experiments have been conducted using the robotic
simulation package RoboDaemon. The simulations allowed us to specify different parame-
ters such as odometry error, robot-tracker uncertainty and the complexity of the explored
environments. Figure 7.3 presents two typical environments used in the simulations (ap-
proximate area 144 m?) and the path the two robots followed. Figures 7.4 and 7.5 present
the exploration of two model environments; these examples illustrate different aspects of the
triangulation algorithm. Figures 7.4 (a-i) present snapshots of the exploration as perceived
by Robot 0 and Robot 1, and the resulting map at different instances of the exploration.
The two robots exchange roles when the line of visual contact is interrupted. In the first
row an early phase of the exploration is presented. The two robots have exchanged roles
twice and Robot 0 explores five new triangles. Consequently, in the second row Robot 1
is exploring again (Figure 7.4d), then the two robots exchange roles and Robot 0 explores
three additional triangles. The third row illustrates the final stages of the exploration where
Robot 1 explores the final parts of the environment using Robot 0 as a reference.

In Figure 7.4, in the last row, the early phase of the exploration is presented, using pure

odometry for positioning. The dashed line depicts the real path of the robot and the solid
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FIGURE 7.4. FJirst three rows: Exploring an unknown environment, figures b and
e illustrate the trajectory of Robot 0. Figures a,c,d,f,g,h illustrate the trajectory
of Robot 1. Finally the third column ( Figures c,f,i) presents the map up to that
point. Last row: Close-up on the build up of the uncertainty when only odometry
was used. The solid line is the odometry based estimation of the robots while the

dashed line is the real position of the robots (see text Section 7.1.1).
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line the odometry based paths. In small worlds and/or cluttered environments multiple
observations of the same object could be used in order to correct the positioning of the
moving robot. As can be seen in Figure 7.4(j,k), the accumulation of uncertainty causes
the map to be distorted although local consistency is maintained. These distortions could
lead over time to a map that is not even topologically sound.

The results from the exploration of a different environment are presented in Figure 7.5
depicted as a sequence of snapshots at successive times. The presence of reflex vertices
that interrupt the line of visual contact introduce internal triangles and therefore branches
in the dual graph making the exploration more complicated. The results are presented in
three columns. The first column depicts the trajectory of Robot 0 and the environment
as perceived by that robot. The second column depicts the trajectory of Robot I and its
perception of the world. Finally, the third column presents the constructed map up to that
point in the exploration. The light grey disk represents the position of the stationary robot
and the black disk the location of the moving robot in the figures of the moving robot.

Over the interval spanned by the images in the first row, Robot 1 is stationary (after
mapping two triangle), while Robot 0 is mapping the right branch of the first bifurcation.
The line of visual contact was broken by a reflex vertex; thus, a internal triangle was built
(node with degree 3), and two branches were started. Each branch consists of one open
triangle with a gateway to unexplored space. In the second row, Robot 0 is stationary (after
adding two more nodes in the embedded graph and Robot 1 is mapping the second occluding
vertex. Again an internal triangle is created (node with degree 3), and Robot I is mapping
the left branch of the bifurcation. In row three the environment is mapped for the area
that corresponds to the branch being explored, with the last triangle having two walls and
one internal diagonal (node with degree 1). Figure 7.51 presents the map up to that point
where the last wall (not fully explored yet) is marked with a thiner line. Then the two
robots proceed to the closest gate (following a depth first traversal of the embedded graph).
Row four demonstrates the exploration of Robot 0 of the final branch (right) of the second
bifurcation, while Robot 1 is stationary at the second occluding vertex. Finally, the fifth
row illustrates the final step of the exploration. Robot 0 is stationary at the first occluding

vertex encountered, while Robot I maps the final triangle. In Figure 7.50 the completed
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map is shown. The dual graph is presented in the figures of the third row superimposed on

the metric map.

2.2. Exploration with the two Superscout robots. A series of experiments
were performed in different locations in our building (McConnell Engineering Building,
McGill University) with a pair of Superscout robots from Nomadic Technologies, Inc. The
robots use a differential drive and are equipped with a ring of 16 sonar transducers. In
addition one of them (Robot 0 in our experiments) has a laser range finder from Accurange
(see Chapter 6 Section 3 for details) mounted on top, while the second robot (Robot 1
in our experiments) has a three plane target. The combination laser range finder/target
implements the robot tracker sensor (please refer to Chapter 6 for more information on
the sensor). The control software was run remotely on a 1GHz pentium 4 with 512Mb of
RAM and the communication was done over radio-ethernet. The two robots are powered by
two 12V/20Ah and can operate autonomously for 3-4 hours. The software controlling the
robots consisted of two components, the RoboDaemon RD11 control software that provided
an interface with the robots and my exploration program developed in C++ that is guiding
the exploration and interpreting the data.

2.2.1. Ezxploration of two laboratories. A complex environment was created inside
two adjacent rooms in the Centre for Intelligent Machines; Figure 7.6 presents pictures of
this environment from different views during the exploration. The two robots started at the
lower left side, inside the mobile robotics laboratory (as can be seen in Figure 7.6a); after
mapping the inside of one laboratory they passed through a narrow corridor (see Figure
7.6b,c) to the outer laboratory (see Figure 7.6d).

Figure 7.7 presents the progress of the triangulation algorithm as the two robots pro-
ceeded to explore the free space. Initially the two robots move to the closest wall and
proceed to opposite end-points of the wall (see Figure 7.7a). The path of Robot 0 is marked
in red and the path of Robot 1 is marked black. Robot I explores a single triangle (Figure
7.7b), after which it encounters a reflex vertex that interrupts the line of visual contact and
exchanges roles with Robot 0 (see Figure 7.7c). Robot () starts exploring and maps the inside
of the lab (see Figures 7.7d,e,f,g.h and 7.6a). During the exploration Robot 0 encounters
two reflex corners (see Figures 7.7e,h) but the line of visual contact is maintained and Robot

0 continues the exploration. In Figure 7.6b Robot 0 can be seen entering the corridor that
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FI1GURE 7.5. Exploring an unknown environment with two occluding ver-
tices: The first column illustrates the trajectory of Robot 0. (a,d,g,j,m). The second
column illustrates the trajectory of Robot I (b,e,hkn). Finally the third column

(n)

presents the map up to that point (c,f,i,],0). (See text Section 7.1.1).
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(c) (d)

FIGURE 7.6. Exploration inside two adjacent labs at the fourth floor of our building
(a) Beginning of the exploration Robot 1 is stationary at a reflex corner and Robot 0
explores a wall across from it. (b) Robot 0 has mapped inside of the lab and moves
along the corridor towards the exit. (c) Robot 1 starts exploring coming through
the corridor. Robot 0 is positioned at a reflex corner. (d) The last part of the
exploration, Robot 1 (on the right) is mapping the wall across from Robot 0 that is
placed at a reflex corner and provides corrections for Robot’s 1 pose estimation.

connects the two labs; the resulting map is presented in Figures 7.7(h,i). A reflex corner
is encountered and Robot 0 stops the exploration because the line of visual contact is in-
terrupted. The two robots exchange roles; Robot 1 passes through the corridor (see Figure
7.6¢ and 7.7j) and comes out to the second lab. Finally with Robot 0 position at the reflex
corner Robot 1 maps the outer lab (see Figures 7.7(k,,m,n) and 7.6d). Figure 7.70 presents
the final map with the complete triangulation of free space; the two robots are positioned
next to each other.

The laser sensor data were recorded during the exploration of Robot (. In order to
demonstrate the performance of cooperative localization the laser range finder was used
only as part of the robot tracker sensor; thus the map produced from the triangulation
algorithm is constructed solely by the sonar sensor data calculated using the corrected

poses of the two robots. To further validate our approach we fused the recorded laser data
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FIGURE 7.7. The exploration of the two laboratories. Red lines are the walls, blue
dashed lines are diagonals, green dotted lines are gates to unexplored space.
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FIGURE 7.8. (a) The laser data collected during the exploration. (b) Scan match
applied to the laser data and their position corrected using Stephen Gutmann’s
scanstudio. (c¢) The triangulation map produced using only the sonar for mapping.
The trajectory of Robot 0 is marked in magenta and the trajectory of Robot 1 is
marked black. The walls are displayed in red and their lengths (in cm) is marked
next to them. The internal diagonals that define the triangulation are marked as
blue dashed lines.
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using scan matching with Stephen Guttman’s scanstudio software that performs localization
of a single robot using the scan matching algorithm by Lu and Milios [68, 101]. Figure 7.8a
presents the laser points collected and Figure 7.8b presents the same data after the scan
matching. Note the detected target that marks the trajectory of Robot 1. Because the laser
range finder senses on the horizontal plane (when the robot is not tilted) in flat terrains
would map all the obstacles at the height it senses. As can be seen from the laser data
in Figure 7.8a,b the sensor from different positions scans at different planes (because the
floor is uneven and the robot tilts). Thus the top wall of the corridor is not fully mapped
(see section 4 for further discussion). Finally, Figure 7.8c presents the map created by the
triangulation algorithm. As can be seen the maps of Figures 7.8b and c are very similar.
The sonar data used for wall following were collected during the exploration. Figure
7.9 presents the sonar points drawn in blue; the left column presents the data gathered by
Robot 0 while the right column presents the data gathered by Robot 1. The trajectories
of the two robots are marked in red, and the positions from where the sonar scans were

“*” During the exploration the robots follow the walls at distance

taken are marked with
of 60cm (Figure 7.9a,b presents the only the sonar points detected in less than 65cm). In
order to filter out most of the noisy data any sonar point further than 120cm was rejected.
Figure 7.9c,d presents the data actually used during the exploration. As we discussed
earlier (Chapter 3 section 2) the sonar points are fit into line segments and then the lines
are merged together; as can be seen in Figure 7.9c,d the sonar data filtered at 120cm are
aligned with the walls. Figures 7.9¢,f and 7.9g,h present the sonar scans filtered at 250cm
and 400cm. The data are very noisy and if the robots believed the occupancy of space
from them navigation would be impossible. It is worth noting some straight lines formed
inside open space (see Figure 7.9g). They correspond to small anomalies on the floor at the
borders of the tiles in our laboratory (see Figure 7.6 for the appearance of the floors). As
can be seen in Figures 7.9a-d there is virtually no distortion of the data; this is due to our
cooperative localization approach which maintains an accurate position.

The positional error is maintained low throughout the exploration by the use of co-
operative localization. The motion commands given to the robot were recorded and used
to guide the prediction phase of a particle filter with the noise parameters recorded in our

laboratory using the two robots. Figure 7.10 presents the positional uncertainty growth
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FIGURE 7.9. Sonar data collected from Robot 0 (on the left) and Robot I (on the
right), filtered at different ranges: (a,b) 65cm; (c,d) 120cm; (e,f) 250cm; (g,h)
400cm. The sonar points are marked blue and the path of the robot is marked red.
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Uncertainty growth from odometry (robot 0) Uncertainty groth from odometry (robot 1)
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FIGURE 7.10. (a)The odometry uncertainty growth during the trajectory of Robot
0. (b) The odometry uncertainty growth during the trajectory of Robot 1.
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FIGURE 7.11. (a)The cooperative localization estimates (*) versus the trajectory
resulting from the motion commands (+) given to Robot 0 during the exploration.
(b) The same for Robot 1.

over the whole trajectory - the left figure is for Robot 0 and the right for Robot 1. As can
be seen the highest regions follow the intended path but over time the uncertainty spreads
out.

Figure 7.11 presents the pose estimates during the exploration when cooperative local-
ization was used (marked as green “+”) together with the position of the robot estimated
using the recorded motion commands (marked as blue “*”); the map of the environment is
drawn in red. The left figure presents the trajectory of Robot 0 and the right figure presents
the trajectory of Robot 1. Even though the actual trajectory of each robot was kept in a
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FIGURE 7.12. (a) The prediction phase of the particles for the trajectory of Robot
0. (b) The update phase of the particles for the trajectory of Robot 0. (c),(d)

Prediction and update phases for Robot 1.

straight line and closely corresponds with the cooperative localization estimates, the mo-

tion commands show a systematic drift (masked as blue “*” in Figure 7.11). The observed

drift corresponds to the odometry error during the exploration. In other words, the motion

commands drove the robot on the blue trajectory but because of odometric error the actual

trajectory is marked in green.

The robot tracker sensor estimates were combined with the odometer estimates using a

particle filter. As we saw in Chapter 5 the particle filter operates in two phases, prediction

and update:, first the particles are moved in order to predict what the pose of the moving

robot would be and then their weights are updated using the current sensor measurements.

Figure 7.12 presents the spatial distribution of the particles for the prediction phase (Figure
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Manual Map | Absolute Error
588cm | 577.5cm 0.5cm
305cm | 296.5cm 8.5cm

99cm | 96.0cm 3.0cm
102cm | 102.6cm 0.6cm
410cm | 403.1cm 6.9cm

99cm | 114.4cm 15.4cm
419cm | 419.7cm 0.7cm
179cm | 178.0cm 1.0cm
341cm | 333.4cm 7.6cm
545cm | 548.0cm 3.0cm
343cm | 343.5cm 0.5cm
241cm | 249.9cm 8.9cm
432cm | 427.9cm 4.1cm
168cm | 173.0cm 5.0cm

TABLE 7.1. The length of the walls measured with tape and from the triangula-
tion map (first two columns) together with the error. See Figure 2.2.1c for the

correspondence between walls and lengths.

7.12a,c) and for the update phase (Figure 7.12b,d). The top row corresponds to Robot 0

and the bottom row to Robot 1. The spread of the distribution in maintained narrow by

the frequent updates.

The resulting map of the exploration can be seen in Figure 7.8c. The trajectory of

Robot 0 is marked in magenta and the trajectory of Robot 1 is marked black. The walls are

displayed in red and their lengths (in cm) is marked next to them. The internal diagonals

that define the triangulation are marked as blue dashed lines. Moreover the lengths of

the walls were measured manually (by measuring tape) and the results are presented in

table 7.1 together with the estimated length from the triangulation map and the difference
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(c) (d)

FIGURE 7.13. Exploration at the sixth floor of our building (a) Robot 0 maps a
reflex corner. (b) Robot 0 follows a wall (c) Robot 0 reached a reflex corner that
interrupts line of sight. (d) Robot I starts exploring after a roles exchange.

between the two measurements. The mean error was 4.6cm per wall, the perimeter of the
environment mapped was measured to 42.71m while the perimeter of the resulting map was
42.63m. The angle of the two walls of the upper right corner was measured to 98° and the
map estimate is 97°.

2.2.2. Ezxploration of the 6th floor McConnell Eng. Building. = We explored a different
environment in the hallways of the 6th floor McConnell Eng. Building in McGill University.
Figure 7.13 presents pictures of this area from different views. The area explored was larger
and the only modifications done were to cover the openings of the elevators. The two robots
started at the back of the corridor facing the camera in Figure 7.13a. It was very narrow
as can be seen in Figure 7.14a where Robot 0 (in red) positioned itself on the to left corner

and Robot 1 (in black) started exploring clockwise from the lower left corner.
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FIGURE 7.14. The exploration hallways in the 6th floor. Red lines are the walls,
blue dashed lines are diagonals, green dotted lines are gates to unexplored space.

Figure 7.14 presents the exploration process through the resulting triangulation. Robot
1 explores first and maps one triangle before it encounters a reflex vertex and thus exchange
roles with Robot 0 (Figure 7.14b). Robot 0 start exploring and two reflex vertices are mapped
(Figures 7.14c,f, see also 7.13a for a picture of Robot 0 at the second reflex corner). As these

vertices do not interrupt the line of visual contact Robot 0 continues the exploration (Figure

98



7.2 TRIANGULATION ALGORITHM

Sonar from Robot 0 (range less than 65cm)

*ﬁ%***ﬂ&k*******##&**4%\*&***%ﬂ*bkﬁ;}

L L L L L L L L
-100 0 100 200 300 400 500 600 700 800

-50
-100

-150| "

-200
-250
-300
-350
-400
-450

¢ Prr stk b o

Sonar from Robot 1 (range less than 65cm)

(a)

Sonar from Robot 0 (range less than 120cm)

bk

- o L L L L L L L
-100 0 100 200 300 400 500 600 700 800

-100

-200

-300

-400

-500

(c)

400

300

200

100

-100

-200

Sonar from Robot 0 (range less than 250cm)
ey,

Sag s vieneadlil

L L L L
-200 0 200 400 600 800 1000

-100

-200

-300

-400

-500

500

400

300

200

100

-100f,

-200

-300

L L L L
-200 0 200 400 600 800 1000

-100

-200

-300

-400

-500

-600

-700

T L R

L L L L L~ I
-200 0 200 400 600 800 1000 1200

(8)

(h)

FIGURE 7.15. Sonar data collected from Robot 0 (on the left) and Robot 1 (on
the right), filtered at different ranges: (a,b) 65c¢m; (c,d) 120cm; (e,f) 250cm; (g,h)
400cm. The sonar points are marked blue and the trajectory for the robot is marked

red.
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FIGURE 7.16. (a) The laser data collected during the exploration. (b) Scan match
applied to the laser data and their position corrected using Stephen Gutmann’s
scanstudio.

7.13b) mapping in total five triangles (see Figures 7.14b-f for the sequence of exploration.
As can be seen in Figure 7.13c Robot 0 reached a reflex corner that interrupts the line of
visual contact and the two robots exchange roles. Robot 1 proceeds to map the opposite
side of the open area in front of the elevators (see Figure 7.13d). The distance across the
open area was approximately 8m and the laser barely detected the target by scanning the
lower part of it. Robot 1 then proceeded to map the rest of the space (see Figure 7.14g-k).

The sonar data again were recorded and are presented in Figure 7.15 (in the same
format as in Figure 7.9). It is worth noting that there is less noise, the main reason for
this being the smoothness of the floor (lack of tiles). But in general the sonar sensor is not
reliable for more than 2m. Part of the limitation comes from the height at which the sonar
transducers are located on the robot. The laser data were also recorded and are presented
using the Scanstudio: Figure 7.16a shows the raw measurements and Figure 7.16b shows
the data after successful scan matching. The results are similar to the triangulation map
obtained which is presented in Figure 7.17. As can be seen there is not much difference
between the raw and the scan matched laser data because the pose of the robot is maintained
through cooperative localization.

The motion commands were used again to estimate the trajectory of the robots (marked

as blue “*”) and compared with the pose estimates from cooperative localization (marked as
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FIGURE 7.17. The triangulation map produced using only the sonar for mapping.
The trajectory of Robot 0 is marked in magenta and the trajectory of Robot 1 is
marked black. The walls are displayed in red and their lengths (in cm) is marked
next to them. The internal diagonals that define the triangulation are marked as
blue dashed lines.
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FIGURE 7.18. (a) The cooperative localization estimates (*) versus the trajectory
resulting from the motion commands (+) given to Robot 0 during the exploration.
(b) The same for Robot 1.

green “+7) in Figure 7.18a,b, for Robot 0 and Robot I respectively. The walls are presented
in red. Again the drift due to odometry error is clearly detectable.

Figure 7.19 present the distribution of particles during the prediction phase 7.19a,c and
the update phase 7.19b,d. Robot (0 is presented on the top row and Robot 1 on the bottom;
the walls are drawn in red. As can be seen during the prediction phase the particles spread
and then during the update phase they create a peak; this also can be seen at the z axes

of the graphs, for prediction the highest value is 0.08 and for update is 0.3; these numbers

101



7.2 TRIANGULATION ALGORITHM

Prediction Phase Robot 0

Update Phase Robot 0

Prediction Phase Robot 1

Update Phase Rebot 1

FIGURE 7.19. (a) The prediction phase of the particles for the trajectory of Robot 0.
(b) The update phase of the particles for the trajectory of Robot 0. (c),(d) Prediction
and update phases for Robot 1. The walls of the environment are indicated in red.

represent the confidence of the estimation. In general though the particle distribution is

kept concentrated by the frequent updates with the estimates of the robot tracker sensor.

A second experiment was recorded on the 6th floor with a small modification in the

environment: two additional walls were used forming a reflex corner in front of the elevators.

Figure 7.20 presents the exploration sequence. The new corner is mapped in Figure 7.20h.

The two robots started in similar positions as in the previous experiments and they proceed

to map the environment, Robot I moving first (Figures 7.20a,b). Then Robot () maps the

top part of the environments (Figure 7.20c-1). Robot I then proceeds counter clockwise and

completes the exploration (see Figures 7.20j-o).
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(m) (n) (0)
FiGURE 7.20. The exploration of the 6th floor with a small modification. Red
lines are the walls, blue dashed lines are diagonals, green dotted lines are gates to
unexplored space.
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7.2 TRIANGULATION ALGORITHM

FIGURE 7.21. (a) The laser data collected during the exploration. (b) Scan match
applied to the laser data and their position corrected using Stephen Gutmann’s
scanstudio. (c¢) The triangulation map produced using only the sonar for mapping.

960.9

L L L L A
0 200 400 600 800 1000

FIGURE 7.22. The triangulation map produced using only the sonar for mapping.
The trajectory of Robot 0 is marked in magenta and the trajectory of Robot 1 is
marked black. The walls are displayed in red and their lengths (in cm) is marked
next to them. The internal diagonals that define the triangulation are marked as
blue dashed lines.

The recorded laser data can be seen in Figure 7.21a,b; note the target detected along
the trajectory of Robot 1. The resulting map is presented in Figure 7.22, the numbers
represent the estimated length of the walls and they agree again up to a few centimeters
with the measured length of the walls (as in the map of the two laboratories).

2.2.3. Ezperiments with the Visual Robot Tracker. In addition to the experiments

with the laser robot tracker sensor the visual robot tracker was used in a small environment.
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7.3 MORE THAN TWO ROBOTS

Preliminary exploration tests were carried out in our laboratory in workspaces of area
roughly 16 m?. This comparatively small test-bed allowed us to control various factors such
as inhomogeneities in the terrain as a function of trajectory and obtain ground truth data.
Using this test-bed we compared the time, accuracy, and robustness of different exploration
strategies. In our experimental arrangement the role of the stationary robot is played by
a tripod mounted camera at the same height as Nomad 200 from Nomadics Technologies,
Inc. The camera was placed next to the first wall. This allowed us to more reliably and
repeatably verify ground truth. It is worth noting that our strategy works equally well with
homogeneous robots and with heterogeneous robots, eg. one robot has a camera the other
robot has the pattern.

A laser pointer pointing straight down to the floor has been placed on top of the moving
robot in order to accurately mark its current position on the floor. This setup allowed us
to measure the displacement from the initial position after the completion of the tour.

Figure 7.23b shows the actual path of the moving robot, the odometry-based estimate
of position, and the tracker-based estimate. The final displacement from pure odometry
estimates is approximately 15cm with an orientation error of 15°. The tracker estimate has
approximately 1.3cm error. This corroborates our assumption that joint exploration and

localization using a “tracker” can lead to much more robust modeling than odometry alone.

3. More than two robots

In this section we discuss the benefits of cooperative localization for a team of mobile
robots. Furthermore, we consider the effects of different robot tracker sensors on the accu-
racy of localization for a moving robot using only the information from the rest of the robots
(as opposed to observations of the environment). This approach results in an open loop
estimate (with respect to the entire team) of the moving robot’s pose without dependence
on information from the environment. The experimental results allows us to examine the ef-
fectiveness of cooperative localization and estimate upper bounds on the error accumulation

for different sensing modalities.

3.1. Cooperative Localization. Several different sensors have been employed for
the estimation of the pose of one robot with respect to another robot. We restrict our

attention to robot tracker sensors which return information in the frame of reference of the
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FIGURE 7.23. (a) The average error during the exploration of 50 triangles (over 100
experiments) without and with cooperative localization. (b)The path of the robot
after the completion of the exploration. The outside solid line marks the position
of the walls the moving robot followed. The actual path of the robot is the solid
line, the odometry based estimate of position is the dotted line, while the tracker
estimate is the dashed-dotted line.

observing robot (i.e they estimate pose parameters relative to the robot making the obser-
vation). Consequently, for “two-dimensional robots” in a two dimensional environment, or
for robots whose pose can be approximated as a combination of 2D position and an orienta-
tion, we can express the pose using three measurements; for ease of reference we represent
them by the triplet 7' = [p ¢ 0], where p is the distance between the two robots, ¢ is the
angle at which the observing robot sees the observed robot relative to the heading of the
observing robot, and 6 is the heading of the observed robot as measured by the observing
robot relative to the heading of the observing robot. If the stationary robot is equipped
with the Robot Tracker, where X, = [Zym, Ym,Om]? is the pose of the moving robot and
X, = [z5,ys,05]7 is the pose of the stationary robot then equation 7.1 returns the sensor

output 7"

p \/chy2 Where :
0| = | atan2(dy,dz) —0s; |,dz =z, — x5 (7.1)
¢ atan2(—dy, —dz) — O | dy = ym — Ys

In order to estimate the probability distribution function (pdf) of the pose of the moving

robot 7 at time ¢ (P(X!)) we employ a particle filter (Monte Carlo simulation approach: see
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FIGURE 7.24. (a) Estimation of the pose of robot R2 using only the distance from
robot R1 (d1) and from robot R3 (d3). (b) Average error in position estimation
using the distance between the robots only (3,4 and 10 robots; bars indicate standard
deviation).

[80, 37, 98]). The weights of the particles (W}) at time ¢ are updated using a Gaussian

2

distribution (see equation 7.2 where [p;, 6;, #;]7 has been calculated as in equation 7.1 but

(1334

using the pose of particle “i” (X,,,) instead of the moving robot pose (X;,)).

—(p—p:)2 —(6-6,)2 —(¢—¢7)2
1 (p=p;) 1 (0-0,)" 1 —
Wi=W!"t——e % e * e ¢ (7.2)

¢ Y 2wo, V2mwoy V2mog

3.2. Sensing Modalities. = As noted above, several simple sensing configurations
for a robot tracker are available. For example, simple schemes using a camera allow one
robot to observe the other and provide different kinds of positional constraint such as the
distance between two robots and the relative orientations. Moreover the group size affects
the accuracy of the localization.

In the next part we present the effect the group size has on the accuracy of the local-
ization for different sensors. The experimental arrangement of the robots is simulated and
is consistent across all the sensing configurations. The robots start in a single line and they
move abreast one at a time, first in ascending order and then in descending order for a set
number of exchanges. The selected robot moves for 5 steps and after each step cooperative
localization is employed and the pose of the moving robot is estimated. Each step is a
forward translation by 100cm. Figure 7.24a presents a group of three robots, after the first

robot has finished the five steps and the second robot performs the fifth step.
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Mean Positional Error (Azimuth Only)
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FIGURE 7.25. Average error in position estimation using the orientation of the
moving robot is seen by the stationary ones.

3.2.1. Range Only.  One simple tracking method is to return the relative distance
between the robots. Such a method has been employed by [67] in the millibots project
where an ultra-sound wave was used in order to recover the relative distance. In order to
recover the position of one moving robot in the frame of reference of another at least two
stationary robots (not collinear with the moving one) are needed thus the minimum size of
the group using this scheme is three robots.

Estimating the distance between two robots is very robust and relatively easy. In
experimental simulations, the distance between every pair of robots was estimated and
Gaussian, zero mean, noise was added with o, = 2cm regardless the distance between the
two robots. Figure 7.24b presents the mean error per unit distance traveled for all robots,
averaged over 20 trials. As can be seen in Figure 7.24b with five robots, the positional
accuracy is acceptable with an error of 20cm after 40m traveled; for ten robots the accuracy
of the localization is very good.

3.2.2. Azimuth (Angle) Only.  Several robotic systems employ an omnidirectional
vision sensor that reports the angle at which another robot is seen. This is also consistent
with information available from several types of observing systems based on pan-tilt units.
In such cases orientation at which the moving robot is seen can be recovered with high
accuracy. We performed a series of trials using only the angle at which one robot is observed,
with groups of robots of different sizes. As can be seen in Figure 7.25 the accuracy of the
localization does not improve as the group size increases. This is not surprising because

small errors in the estimated orientation of the stationary robots scale non-linearly with the
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Pdf of Robot 2 after weighting using azimuth from Robot 1

Pdf of the Moving Robot (2) using only odometry information (Prediction)

Pdf of Robot 2 after weighting using azimuth from Robot 3 Pdf of Robot 2 after weighting using azimuth from both robots (Update)

i

(c) (d)

FIGURE 7.26. The pdf of the moving robot (R2) at different phases of its estimation:
(a) prediction using odometry only; (b) using the orientation from stationary robot
R1; (c) using the orientation from stationary robot R3; (d) final pdf.

distance. Thus after a few exchanges the error in the pose estimation is dominated by the
error in the orientation of the stationary robots.

To illustrate the implementation of the particle filter, we present the probability dis-
tribution function (pdf) of the pose of the moving robot after one step (see Figure 7.26).
The robot group size is three and it is the middle robot R2 that moves. The predicted pdf
after a forward step (using odometry information only) can be seen in the Figure 7.26a the
next two Figures 7.26 and 7.26¢ present the pdf updated using the orientation at which the
moving robot is seen by a stationary one (first by robot R1 then by robot R3); finally, the
Figure 7.26d presents the final pdf which combines the information from odometry and the
observations from the two stationary robots. Clearly the uncertainty of the robot’s position

is reduced with additional observations.
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FIGURE 7.27. Average error in position estimation using both the distance between
the robots and the orientation the moving robot is seen by the stationary ones. (a)
Average error in positioning of the team of robots one trial (3,5 and 10 robots). (b)
Average error in position estimation over twenty trials (3,5, 10 and 40 robots).

3.2.3. Position Only.  Another common approach is to use the position of one robot
computed in the frame of reference of another (relative position). This scheme has been
employed with two robots (see [24]) in order to reduce the uncertainty. The range and
azimuth information ([p, #]) is combined in order to improve the pose estimation. As can be
seen in Figure 7.27a even with three robots the error in pose estimation is relatively small
(average error 30cm for 40m distance traveled per robot, or 0.75%). In our experiments the
distance between the two robots was estimated and, as above, zero-mean Gaussian noise
was added both to distance and to orientation with o, = 2cm and oy = 0.5° respectively.
The experiment was repeated twenty times and the average error in position is shown in
Figure 7.27b for groups of robots of size 3,5,10 and 40.

3.2.4. Full Pose. Some robot tracker sensors provide accurate information for all
three parameters [p, 6, ¢] and they can be used to accurate estimate the full pose of the
moving robots (see [87, 137]). In the experimental setup the robot tracker sensor was
characterized by Gaussian, zero mean, noise with o = [2¢m,0.5°,1°]. By using the full
equation 7.2 we weighted the pdf of the pose of the moving robot and performed a series
of experiments for 3, 5 and 10 robots; very low positional error was observed (see Figure
7.28).

3.2.5. Summarizing. In the previous sections we examined the effect of the size

of the team of robots and the sensing paradigm on cooperative localization; a synopsis
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FIGURE 7.28. Average error in position estimation using full pose [p, 8, ¢].

| # of Robots I 3 | 5 | 10 |
Range only (p) 38.80cm | 21.63cm | 8.13cm
Azimuth only (0) 27.06cm | 32.20cm | 33.72cm
Position only (p,0) | 34.25cm | 21.79cm | 7.50cm
Full Pose 28.73cm | 16.71cm | 6.05cm
(p, 6, ¢)

TABLE 7.2. The mean error in position estimation after 40m travel over 20 trials.

of the results can be seen in Table 7.2. Also, preliminary results from experiments with
varying odometry error have shown that cooperative localization is robust even with 10-20%

odometry errors.

4. Discussion

The experiments performed with the real robots made clear the fact that different
sensors have different strengths and weaknesses. The sonar sensor is very noisy even at the
range of two meters, it was able however to robustly detect obstacles of different heights
in close range. Therefore, the sonar sensor is very useful for obstacle avoidance and wall
following in close range. On the contrary, the laser range finder has higher accuracy but is
limited on one plane only; small variations on the floor inclination changed the height at
which the laser was scanning by as much as 25cm. The laser sensor was valuable as part
of the robot tracker sensor but it was not possible to utilize it at its full range because
of the floor inclination. During an experiment on the 7th floor of our building the target
mounted on the robot was not detected even at a distance of 7Tm. Moreover, the laser range

finder would miss any obstacle above or below the scanning plane and thus it can not be
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used for navigation. Extending the robot tracker in such a way that the scanning plane
would be controlled (e.g. by using a pan and tilt unit) is necessary for any use in real
world applications. One other limitation of the current implementation of the triangulation
algorithm is the mapping of small walls, in particular when the robot goes around a reflex
corner; the length of the adjacent walls should be minimum 50cm.

The experimental results verify the improvement in the map accuracy. Areas of 13m
by 5m and 1200m by 9m were mapped completely, with mean error less than 5cm. The
perimeters of the environments mapped were of the order of 42-44 meters. These results
demonstrate the practical feasibility of the algorithms used, and illustrate some of the per-
formance characteristics we predicted. In the next chapter we present the use of cooperative
localization in order to assist in the mapping of the spatial distribution of a property of
interest over an unknown environment, a process akin to coverage. A heterogeneous team

of robots is used.
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CHAPTER 8

Collaborative Exploration for Visual Map

Construction

There is nothing more practical than a good theory.

—Author unknown.

1. Introduction

In the previous chapters we examine the use of cooperative localization together with
mapping by sweeping the line of visual contact. In this chapter we are going to apply
cooperative localization in a different mapping application. In particular, we discuss how
to map a property of interest over an unknown environment. A significant issue faced
by many map-building schemes is the management and estimation of positional (or pose)
errors as the robot collects observations from the environment. That is, as the robots
collect successive measurements from different poses, the certainty of their pose estimates
decreases with each new measurement. In some cases where the observation lies on a
high-dimensional manifold, correlation between dimensions allows for globally consistent
alignment of the observations via an expectation-maximization or iterative optimization
approach to correcting the observation poses [103, 169]. However, it is often the case that
either there is insufficient geometric constraint in the observations to produce confident
pose estimates even post hoc, or that the computational cost of making the appropriate
inferences is infeasible. Uncertainty modeling methods such as Kalman filtering can reduce

the severity of the problem, but certainly do not eliminate it.



8.1 INTRODUCTION

FiGure 8.1. Collaborative explorers

This chapter addresses the problem of establishing accurate pose estimates in the con-
text of robotic mapping. The pose estimates can be used to collect accurately localized
measurements in their own right, or as a precursor to a system that builds a map. The
robot collecting measurements for the map operates in concert with a second robot that
acts as an active observer. In our cooperative localization scheme, this second robot tracks
the motions of the first as it collects data and provides it with the information required to
prevent odometric error from accumulating. We can view the robots are being “connected”
by a wvirtual tether which is established between the two robots and which enables the task
of mapping to be accomplished without significant error and independent of the ground
surface conditions and the quality of the odometry estimate. In particular, the property of
interest we map is the visual appearance and the utility of visual landmarks as developed
by Robert Sim [154]. In principle, more than one of these active observers could be used
simultaneously, although this is not elaborated in this thesis. Beyond presenting the details
of the approach and its implementation, this chapter provides a quantitative evaluation
validating the effectiveness of this methodology.

The remainder of this chapter is structured as follows: Section 2 discusses the general

framework in which our approach applies. We then discuss a particular application of our
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approach to the task of visual landmark learning in Section 3 and experimental results are

presented in Section 4.

2. Motivation

(a) (b)

FIGURE 8.2. Mapping: (a) Continuous function such as: Radiation, Visual ap-
pearance, Elevation, Magnetic field, Temperature, etc. (b) Discrete function such
as: Mine detection, Lost objects, Holes, Electrical outlets, etc.

The work presented here is motivated by the need to use a mobile robot in order to ac-
curately map a spatially varying property of an unknown (possibly hazardous) environment.
Such a property could be a continuous function (see Figure 8.2a) over the accessible area
such as radiation, temperature, magnetic field variation, elevation or visual appearance,
or the property could be a discrete function (see Figure 8.2b) such as presence of mines,
lost objects, holes/anomalies on the ground, or electrical outlets. In most cases the sensor
used to map arbitrary properties such as those noted above is not suitable for the accurate
localization of the exploring robot — for example, a radiation meter cannot readily be used
to accurately recover the pose of the exploring robot. Therefore, the self-localization ability
of a single robot on the basis of the measurement of the continuous function of interest
is poor without the assistance of additional sensory apparatus. Furthermore, the ground
surface quality may be uneven, resulting in wheel slippage, and rendering the odometry sen-

sors unreliable. Our approach employs cooperative localization as described in the previous
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chapters in order to recover the pose of the exploring robot with high accuracy, independent
of the ground surface properties and the reliability of the odometry sensors.

Another motivation for using more than one mobile robot is that several applications
require the exploration or inspection of hazardous environments with an attendant risk to
the robot doing the work. Such applications include but are not limited to: de-mining
rural areas, inspecting nuclear facilities or marking/mapping of chemical spills. In order
to improve robustness or reduce the potential cost in such a scenario we can deploy a
team of heterogeneous robots consisting of a “base” robot which is equipped with the main
computer, a communication module and the robot tracker sensor, and a team of lower-cost
“exploring” robots that are equipped with only the mapping sensor (and the target for the
robot tracker). In particular, our scheme obviates the need for accurate odometry on the
exploring robots. The base robot is always located at a safe area keeping visual and radio
contact with the exploring robots. If any of the exploring robots are destroyed the expense

is limited, and the mission can continue with the surviving robots.

3. Application: Landmark Learning

In this section we demonstrate the effectiveness of our approach as it applies to the
problem of learning visual landmarks which are useful for the task of pose estimation of a
single robot equipped with a camera based on visual observations of the environment. The
trackers described in the Chapter 6 Sections 2,3 can be employed to properly register the
landmark observations on the map, i.e. to provide “ground truth” positions while the robot
explores the visual environment. We employ the landmark learning framework developed by
Sim and Dudek and described in [53, 151] and [149], which tracks the set of points output
by an arbitrary model of visual attention and attempts to construct a representation of the
landmark as a function of the pose of the robot. Such a representation can then be later
exploited for the task of estimating the pose of the robot from detected visual landmarks

in the absence of a second robot or a tracker.l.

!The work on visual landmarks is used as a test-bed in order to validate the cooperative localization approach
introduced in this thesis. A brief overview has been included here for completeness sake. For a detailed
description of the visual landmarks based localization please refer to [154, 155, 152, 153, 151, 149, 150,
157, 156] and to http://www.cim.mcgill.ca/ simra.
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FIGURE 8.3. The off-line training method. Images (large rectangles) are collected
sampling the pose space. Landmarks are extracted from the images and matched
across the samples. The tracked landmarks are parameterized as a function of pose
and saved for future pose estimation. Figure courtesy of R. Sim.

The learning method is depicted in Figure 8.3 and operates as follows (refer to the cited

work for further details):

(i)

Exploration: One robot tracks the other as it collects images sampling a range
of poses in the environment. The pose at which each image is taken is recorded
as the estimate given by the tracker.

Detection: Landmark candidates are extracted from each image using a model
of visual attention. Landmark candidates are rectangular image regions that
satisfy a visual attention criterion.

Matching: Tracked landmarks are extracted by tracking visually similar candi-
date landmarks over the configuration space.

Parameterization: The tracked landmarks are parameterized on the basis of a
set of computed landmark attributes (for example, position in the image, intensity
distribution, edge distribution, etc), and then measured in terms of their a priori

utility for pose estimation.
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(v) The set of sufficiently useful tracked landmarks is stored for future retrieval.

Observation likelihood as a function of pose.
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FI1GURE 8.4. The likelihood of an observation as a function of pose. Figure courtesy
of R. Sim.

For the purposes of our experiments, the visual landmarks are initially selected from
a subset of the training images using an attention operator that responds to local maxima
of edge density in the image. The selected landmark candidates are then tracked over the
remaining images along the robot’s trajectory by maximizing correlation with the local
appearance of the initially detected landmark. The set of matches to a given candidate
constitute a tracked landmark, and is stored for parameterization and evaluation.

The parameterization of each landmark feature f; is accomplished by employing a radial

basis function regularization framework to model the observation generating function

z = Fi(q), (8.1)

where z is a low dimensional vector-valued representation of the landmark attributes and q
is the pose of the robot. In other words, F;(-) is the function that predicts the attributes of
the landmark as a function of the pose of the robot. Furthermore, the landmark is evaluated
for its utility by computing the covariance C of a randomly sampled subset of leave-one-out

cross-validation residuals over the training set.
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The parameterization of each landmark affords a maximum likelihood prediction of an
observation, given an a priori pose estimate q, as well as a measure of the uncertainty (C)
of that prediction. As such, the landmark models are useful for the task of probabilistic
robot localization. That is, we can construct a likelihood function p(z|q) which allows us to
measure the likelihood of an observation z, assuming knowledge of the robot’s pose q. Such
a likelihood function can be employed in a Bayesian framework to infer the probability
distribution of q given the observation z:

p(z|lqQ)p(q)

(2) (8.2)

p(alz) =

where p(q) represents the prior information about q and p(z) is a constant relative to the
independent variable q. Several such probability distributions can be generated— one for
each observed landmark— and can be combined to obtain a full posterior pose distribution.
Note that this framework is more generic than a Kalman filter in that it allows for a multi-
modal representation of the pose likelihood.

When the robot requires a pose estimate without the aid of the tracker, it can obtain
a camera image and locate the learned landmarks in the image using the predictive model.
The differences in appearance and position between the prediction and the observation of
each landmark are combined to compute the likelihood of the observation in the Bayesian
framework. This process is illustrated in Figure 8.5. The maximum a priori pose estimate
can be recovered by gradient ascent over the observation likelihood as a function of pose.
An example likelihood function is plotted at a coarse scale in Figure 8.4. Note that the pose
likelihood is a useful measure of confidence in the final estimate allowing for the rejection
of outlier pose estimates on the basis of a user-defined threshold.

As noted, the pattern of landmarks observed and computed over the environment during

the mapping stage can be used for accurate single-robot pose estimation.

4. Experimental Results:

Construction of Landmark-based Visual Maps

In this section we present the results of deploying the tracking method for the task
of landmark learning. Our environment consisted of a laboratory partitioned into two

“rooms” by room dividers, with an open doorway connecting them. The first two pictures
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FIGURE 8.5. Pose estimation based on learned visual landmarks. Landmarks (small
squares) are extracted from the current camera observation and matched to the
previously learned tracked landmarks. Each match generates a pose estimate, which
are filtered and combined to generate a final pose estimate. Figure courtesy of R.
Sim.

in Figure 8.6 are the robot’s-eye-view of the two rooms, and the third picture presents the
top view of the floor plan. At the outset, one robot remained stationary while the other
used a seed-spreader exploration procedure [104] across the floor, taking image samples at
40cm intervals. When the robot had completed the first room, it moved beyond the door
and the stationary robot followed it to the threshold, where it remained stationary while

tracking the exploratory robot as it continued its exploration of the second room.

4.1. Experiment 1: a) Odometry versus tracking: The trajectory of the ex-
ploratory robot was defined at the outset by a user. However, as the robot explored,
accumulated error in odometry resulted in the robot straying from the desired path. The
tracking estimate of the stationary robot was provided to the moving robot in order to
correct this accumulated error. During the exploration the pose of the robot was corrected
based on the observations of the robot tracker. During the experiment the pure odometry
estimates were kept for comparisons. Figure 8.7 plots the uncorrected odometric trajectory

(plotted as 'x’) and the actual trajectory of the robot, as measured by the tracker (plotted
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FIGURE 8.6. Views of the two “rooms” as seen by the robot, and the floor plan of
the two “rooms”.
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FIGURE 8.7. Odometric (x) vs Tracker-corrected (o) trajectories of the robot.

as '0’). For the sake of clarity, the odometric error was reset to zero between the first and
second rooms. Figure 8.8 presents the accumulated odometric error in the second room
versus total distance traveled (after it was reset to zero)

b) Tracking versus vision-based pose estimation: Once image samples were obtained
using the tracker estimates as ground truth position estimates, it was possible to apply our
landmark learning framework to the image samples in order to learn a mapping between
appearance-based landmarks and the pose of the robot. Figure 8.9 shows the discrepancies
between the pose estimates from the tracker (marked as circles) and the landmark-based

vision pose estimator (marked as x’s) in Room 2. At each position, the two 2-D projections
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FIGURE 8.8. Odometric error versus distance traveled.
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FIGURE 8.9. Tracker estimates (0) vs Vision-based estimates (x) for training images.

of the alternative pose estimates are joined by a line. While the tracker is clearly more
accurate, the quality of the landmark-based pose estimates is sufficient for situations where

only one robot is present.
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Localization results for kltsmall.dat
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FIGURE 8.10. Tracker estimates (0) vs Image-based estimates (x) for a set of 21
random positions.

Our final stage of this experiment involved navigating the robot to a series of random
positions and acquiring image- and tracker-based pose estimates, which are plotted together
in Figure 8.10. This final experiment illustrates the use of a multi-sensor estimator in
removing outliers. Assuming that the tracker-based position is correct, the mean error in
the image-based estimate was 33cm, a large part of which can be attributed to the two

significant outliers from nearly the same position.

4.2. Experiment 2. A second experiment was performed where the two robots
explored a single large room. At the outset, one robot remained stationary while the other
used a seed-spreader exploration procedure [104] across the floor, taking image samples at
25cm intervals, and in four orthogonal viewing directions, two of which are illustrated in
Figure 8.11.

As before, the trajectory of the exploratory robot was defined at the outset by a user.
However, as the robot explored, accumulated error in odometry resulted in the robot stray-
ing from the desired path. The differential drive configuration of the exploratory robot,
coupled with frequent rotations to capture the four viewing directions led to a rapid, and

somewhat systematic degradation in dead reckoning, as illustrated in Figure 8.12a, where
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Fi1GURE 8.11. Opposing views of the lab as seen by the exploring robot.

the uncorrected odometric trajectory is plotted as a dash-dotted line, and the actual tra-
jectory of the robot, as observed by the tracker, is plotted as a solid line. The accumulated

odometric error is plotted versus total distance traveled in Figure 8.12b.

Trajectory of the Mapping Robot (solid: Tracker, dash—dot: Odometer) Error in Position vs Distance Traveled
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FIGURE 8.12. In this experiment the robot took pictures in four orientation; the
higher number of rotations increased non-linearly the odometric error. (a) Odo-
metric (denoted by dash-dotted line) vs Tracker-corrected (denoted by a solid line)
trajectories of the robot. (b) Odometric error versus distance traveled.

Once image samples were obtained using the tracker estimates as ground truth position
estimates, it was possible to apply our landmark learning framework to the image samples
in order to learn a mapping between appearance-based landmarks and the pose of the

robot. Training was applied separately to each of the four viewing directions, developing

124



8.4 EXPERIMENTAL RESULTS: CONSTRUCTION OF LANDMARK-BASED VISUAL MAPS

a set of tracked landmark observations. Again the final stage of our experiment involved
navigating the robot to a series of 93 random positions and acquiring images along the
four orthogonal viewing directions. Image- and tracker-based maximum likelihood pose
estimates were then generated for one of the viewing directions, and outliers removed on
the basis of a likelihood threshold. Of the 93 observations, 4 estimates were rejected. In
general, these outliers corresponded to observations where the robot was very close to the
wall it was facing. One would expect that an observation from a different viewing direction
would return an estimate with higher confidence. We have omitted this application for the
sake of brevity.

The remaining 89 image-based estimates of high confidence are plotted with their as-
sociated tracker-based estimates in Figure 8.13. Assuming that the tracker-based position
is correct, the mean error in the image-based estimate was 17cm, (7.7cm in the z direction
vs 15cm in the y direction). The larger error in the y direction corresponds to the fact that
the camera was pointed parallel to the positive y axis, and changes in observations due to
forward motion are not as pronounced as changes due to side-to-side motion. The smallest
absolute error was 0.49cm, which is insignificant compared to the “ground truth” error, and
the largest error was 76cm. Note that most of the larger errors occur for large values of
y. This is due to the fact that the camera was closest to the wall it was facing at these
positions y, and as has been mentioned, tracking scene features over 25cm pose intervals
became difficult.

4.2.1. Random Walk. Figure 8.14 presents a random walk of the exploring robot
through the mapped environment. The robot starts at an random location (marked as a
“7) initially the odometry estimate is set to the value of the robot tracker estimate at
that starting position, the pose estimate from the vision based system is approximately
30cm to the right of the robot tracker estimate. The robot took seven random steps and
the three estimated trajectories are presented in Figure 8.14. First the odometer estimate
(marked as triangles connected with a dashed line) is plotted; second, the robot tracker
estimate (marked as “4” connected by a solid line), and third the visual pose estimator
results (marked as “0” connected with a dash-dotted line). The robot tracker estimate
provides a close approximation to ground truth at the end of the random walk the disparity

between the robot tracker and the visual pose estimator is 17.5cm and between the robot
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Localization results for database.dat
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FIGURE 8.13. Tracker estimates (0) vs Image-based estimates (x) for a set of 93
random positions.

Random Walk using Robot Tracker and Image Based Localization
T T T T T T T

— COOperative
Localization

£ ~ = = = Odometry

® o4 Image Based
'Q‘ Localization 1

Y-axis

250 300 350 400 450 500 550 600
X-axis

FIGURE 8.14. The trajectory of the moving robot based on odometry estimates
(triangles connected with a dashed line), the robot tracker cooperative localization
(’+’ connected with a solid line) and the image based localization (0’ connected
with a dash-dotted line).

tracker and the odometer is 68cm. The much higher disparity is a result of an increase in

the accumulated error in orientation.
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In this chapter we presented a method for the automatic mapping of an arbitrary envi-
ronment which utilizes cooperative localization in order to maintain a virtual tether between
two robots as one explores the environment and the other tracks its pose. Furthermore, we
validated the utility of a set of learned landmarks for localization when the second robot
cannot be deployed. This demonstrates conclusively that the cooperative localization ap-
proach provides more accurate pose estimates, and hence a more accurate appearance-based
map, than could be achieved with the robots operating independently.

The particular map we produce, an appearance based representation of the environ-
ment, allows a single robot to accurately estimate its position on subsequent visits to the
same area. While such single-robot pose estimates are not as accurate as when two robots
are used, their accuracy is substantially ameliorated by the fact that two robots were used
in the initial mapping stage. The use of an appearance-based model obviates most de-
pendences on the particular geometry of the local environment. Further conclusions and
extensions to the work presented in this and the previous chapters are discussed in the next

chapter.
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CHAPTER 9

Conclusions

... Ithaca has given you the beautiful voyage.

Without her you would have never set out on the road.
... Wise as you have become, with so much experience,
you must already have understood what Ithacas mean.

—From the poem lthaca by C. Cavafis 1911

In this thesis, we have described a new solution to the exploration and navigation
problem based on the use of cooperating robots. We have described alternative approaches
depending on the size of the environment relative to the range of the robot tracker sensor
we employ.

Our approach is particularly suited in environments where robot positioning and ob-
stacle detection might be difficult using traditional methods. In fact, such difficulties are
likely to arise in many real-world environments. Qur approach is based on exploiting a
line-of-sight constraint between two (or more) robots to achieve exploration with reduced
odometric error. This approach can also cope with obstacles with hard-to-sense reflectance
characteristics. Different algorithms were proposed depending on the scale of the environ-
ment. Where the environment is small enough so that the robots can see each other from
any two points on its boundary that have clear line of sight between them (i.e. they are
never unable to see one another simply because they are too far away), then the triangula-

tion algorithm is applied. If the environment is larger than the range of the robot tracker



CHAPTER 9. CONCLUSIONS

sensor then the trapezoidation algorithm is used '. Moreover, a robot tracker sensor was
employed to monitor the moving robot and judiciously correct its pose when uncertainty
became to big.

A probabilistic framework was developed in order to estimate the uncertainty build up
during the exploration. Monte Carlo simulation in the form of particle filtering was used to
model the complex odometry error behaviour and the impact of the robot tracker sensor.
The robot tracker was used in an “as needed” basis when the uncertainty was above a
certain bound.

The most important contribution of this thesis is dual. First the ability of the robots
to see each other is used in a systematic manner to explore/map the free space in the
environment independently from the reflectance properties of the obstacles. It is the first
time when the ability of two (or more) robots to observe each other is exploited in order
to infer about the occupancy of the space between them. Second, the use of cooperative
localization decouples the odometry error from the environmental conditions such as the
quality of the floor and the visibility of the objects (which in an unknown environment
cannot be predicted).

A series of experiments were conducted in order to validate our approach. An accurate
model for odometry error accumulation was developed and validated through experiments
using different robots (the Nomad 200 and the Superscout II from Nomadic Technologies
Inc, and the RWI B12 from the Real World Interface) navigating over different surfaces
(tiles, carpet, concrete, etc.) Finally, a large number of experiments were conducted in
simulation using different world models. During the simulation experiments different types
of odometry error were used and the number of robots was varied from two to forty.

In the multi-robot paradigm we proposed a new methodology for estimating the bounds
of the accumulated uncertainty based on the statistical properties of the robot tracker sensor
used and the number of robots.

Finally the methodology of cooperative localization was applied in a different multi-robot
exploration application. More specifically, the problem of accurately mapping a spatially
varying property of an unknown (possibly hazardous) environment, and in particular cre-
ating a map of visual appearance (as defined by a set of visual landmarks), was addressed.

1An open issue is how to automatically detect such situations efficiently during exploration and switch
strategies, or switch back-and-forth between strategies based on local properties of the environment.
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Furthermore, we validate the utility of a set of learned landmarks for localization when
the second robot cannot be deployed. This demonstrates conclusively that the cooperative
localization approach provides more accurate pose estimates than single robot, and hence
a more accurate appearance-based map, than could be achieved with the robots operating

independently.

1. Future Work

The problem of autonomous exploration and mapping of unknown environments ap-
pears in numerous applications and covers a wide variety of environments. In this thesis,
we presented two algorithms for the complete exploration of unknown environments by a
team of mobile robots. We looked at large environments which were assumed to be flat,
the mobile robots were wheeled indoor models, and the resulting map was of the form of a
spatial decomposition of a simple polygon with holes. Extensions to our work are discussed
below.

e During the exploration the mobile agents collect information from different sources.
This information is corrupted by noise and the greedy algorithms proposed in this
thesis build only an incremental map over time. The incremental nature of the
map synthesis, like other EM algorithms, does not assure a probabilistically opti-
mal path. After every motion/sensing operation the following data are available
for the robot: the motion command (AX, AY') executed, the new position from
the odometry estimates {Zodom , Yodom, Bodom } , the tracker estimate < p,0, ¢ >
relative to the stationary robot, and the sensor data Y Ly, ¢. > These data are
stored and at the completion of the exploration they construct a constraint net-
work for the environment and the path travelled by the mobile robots team. An
off-line optimization algorithm can be applied in order to construct a map that
is optimal over the above set of constraints [101].

e Both the triangulation and the trapezoidation algorithm assume that the robots
operate inside a polygonal world. Although a polygonal approximation is always

possible (see Chapter 2 Section 6) it will increase the computational complexity

2a set of line segments relative to the robots pose.
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of the algorithm. An extension of the triangulation algorithm for curved environ-
ments appears feasible from preliminary research. Future work should include
the development of wall following strategies for curved environments and the
derivation of a completeness proof for the exploration algorithm.

One of the main assumptions in the current work is that the mobile robots operate
on a level environment and a 2D map of the world is enough. This assuption is a
reasonable approximation for most indoors environments and for wheeled robots.

Two major extensions are proposed as future areas of research.

— The collaborative exploration philosophy could be extended to explore un-
even terains such as outdoors or on another planet using a team of rovers or
even legged robots. A polyhedral terrain approximation of such an environ-
ment (2.5D) can be used. The pose of the robot is extended to position in
3D {z,y, z} and orientation of roll, pitch, yaw {6, ¢,%}. In this case a more
elaborate tracking device is needed.

— Furthermore, the extension to aerial mapping from flying robots or under-
water exploration should be addressed, together with cooperating teams of

grounded and flying vehicles.

In certain environments the odometry estimates are so poor that they are useless.
In such situations cooperative localization could be used in order to update the
pose estimate of a mobile robot after an action. For example legged robots moving
over debris are unable to maintain any sort of reliable dead reckoning.
Preliminary experiments performed in an open area where the robots were manu-
ally moved to different position showed that cooperative localization could provide
a basic localization scheme in existing systems.

The motion strategies proposed in our work are deterministic. Preliminary ex-
periments showed that a randomized motion strategy can sometimes outperform
a deterministic one. While this bears further examination it seems likely that
for teams of more than two or three robots randomized formation control may

provide an appealing alternative to deterministic methods.
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e In Chapter 8 we presented a method for the automatic mapping of an arbitrary
environment which utilizes cooperative localization in order to maintain a virtual
tether between two robots as one explores the environment and the other tracks
its pose. The experimental results collected demonstrated conclusively that the
virtual tether provides more accurate pose estimates, and hence a more accurate
appearance-based map, than could be achieved with the robots operating inde-
pendently. It would appear that these advantages become even more profound
if more than two robots are used for position estimation and mapping. In the
particular algorithmic scheme presented the use of many more robots would be
an issue, but it seems likely that several feasible solutions can be formulated.

e In this thesis we employed a particle filter in order estimate the pose of a pair of
robots during collaborative exploration. Further extensions of the particle filter
approach could include more elaborate particle resampling methods that dynam-
ically trade off efficiency for potential robustness. By estimating the parameters
of the particle cloud, it seems possible to vary the model complexity on an as-
needed basis. Further work involves the introduction of an additional weighting

function based on other sensory input, such as the sensor used for wall following.

2. Final Words

The main problem addressed in this thesis (Simultaneous Localization and Mapping)
is central to the field of Mobile Robotics. Our approach takes advantage of a multi-robot
system in order to robustly explore an unknown environment. While the research of multi-
robot systems is still at its early stages, many researchers are applying collaborative methods
in order to overcome the limitations of single robot systems. The results produced by this

thesis fit in this ongoing effort.
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APPENDIX A

Proof of Optimal Coverage

In this Appendix we present the optimality proof of the trapezoidation algorithm with
respect to the distance traveled. Every time one robot is moving it covers a small area of
free space, by alternating roles the two robots cover all of free space. Therefore, the total
area covered is the sum of the areas covered in each move every single exchange minus the
overlapping covered area. This is equivalent with a tiling problem where every small area
covered by the motion of one robot represents a tile, and the objective is to cover the free
space with tiles without leaving any space uncovered. We present an optimal tiling of the
space, under certain assumptions.

Assumptions Every tile can be contained in a wedge of radius R and angle 6.

We consider only tilings defined by the line of sight, between the two robots, sweeping
across the space. One end of the line is fixed (the position of the stationary robot) and the
other follows the trajectory of the second robot. The length of the line of sight is bounded
by the sensing range R. The sweep of the line and the bounding circle define a wedge inside

which a tile is placed.

1. Proof

Lemma 1: A tiling in which no tile with an angle more than 180° is used can replace
any arbitrary tiling, without increasing the complexity (number of tiles).

Proof: If a tile with an angle more than 180° is used then at least another tile with
an angle less than 180° is necessary to cover the remaining free area. The combination of

the two (or more) tiles is equivalent (in terms of complexity) to two (or more) tiles of angle
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01 >180

£
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FIGURE A.1. Equivalence among two pairs of tiles.

180° or less (as in Figure A.1). The number of exchanges stays the same and the total path
traveled is 27 R for a mR? area.
Lemma 2: When two tiles are connected along the curved portion of their wedges,

the most efficient curve (in terms of path length) is the common chord they share.

FIGURE A.2. Shortest path along the arc connections.

Proof:Given two tiles (eg. PiAB and P, AB, see Figure A.2), the shortest distance
between A and B is given by the straight line connecting A and B. If the two robots travel
in a a different path (other than a straight line) then the length of the path traveled would
be larger than AB.

Lemma 3: When the robots exchange roles they produce tiles (areas of free space)
that are connected along the rays that specify the boundaries of the wedges (see Figure
A3).

Proof: Let two robots explore a series of areas of free space by exchanging roles.
Without loss of generality, let robot number one move inside the corresponding wedges as

it covers the paths, AC, CE, EG, GI while robot number two moves across BD, DF, FH.
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FIGURE A.3. Sequence of adjacent tiles. Dark lines define the wedges and each
wedge is defined by three letters. Dashed lines define the sensor range boundary.

That happens because after the motion of one robot and the mapping of free space the two
robots have to exchange roles and the other robot would continue mapping the free space
starting from the common line of sight. Therefore each two neighboring tiles (such as ACB,
BDC) are going to be connected along the common ray / line of sight (BC) that connects
them when they exchange roles.

Lemma 4: Assume a sequence of N tiles (a stripe) connected as in Lemma 3 with
angles 0;(1 < i < N) for each wedge. There exist an angle 6’ such that: a sequence of N
tiles all with the same angle 6’ will cover an equal or larger area for the same length or less
of the path traveled.

Proof: The total length of the path traveled for the two stripes is a sum of the sub-
paths P% and P? and is given in Equation A.1:

N

N
doph=3"p"
i=1

i=1
which is equivalent to (A.1)

N - o'
. 1 _ . s
;_1 4R sin 1 ;_1 4R sin 7

We are going to prove that the sum of the areas covered with different angles is smaller

or equal to the area covered by the same angle (see Equation A.2).
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N N
A <Y A
=1 =1

(A.2)
N N
0; o'
Y ? 2 .
.ElR smE < ElR sm§
1= 1=

Removing the constant terms from both sides Equation A.1 and Equation A.2 became:

Given N angles 0; : i =1, N. If

Z sin % = N sin — (A.3)

Then

.0 .
g sin < g sin o (A.4)
e For N=2, we solve equation A.3 for §' (N=2):

. 0 . 0 .0
sm—l—l—sm—2:2sm—<:>

4 4 4
(A.5)
! in 0L in 92
sine—z sin 7t + sin 7
4 2

For any pair (01,6) where 0; € [0, 7] then AA = ZSin%' — (sin 971 + sin 972) >0
(see the graph of AA in Figure A.4).
As AA > 0 then
sin 02—1 + sin% < 2sin %’ (A.6)
Q.E.D. for N=2.
e For N > 2 we examine two cases, first N = 2K
— For N =2K .
Let the angles be in pairs of (02;_1,02; : 1 < i < (N/2) = 2K=1)_ Then for

and then the general case.

every pair (6a;_1,09;) calculate the angle 8! : 1 < i < 2K~1 ag in the case for

N=2 (Equation A.T7).
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FIGURE A.4. Graph of AA for 0 < 6; < 180°, AA > 0 for any pair of angles

. 09 e 0o;
)  sin 2 4 sin 2
in =& — A7
sin 5 (A7)
From Equation A.6:
2K 2K -1
0; O9; 02
Zsiné = Z(sin% —I—sin%) <
=1 =1
(A.8)
2K71 ’ 2 —1 ,
Z 2sin =+ =2 sin
i=1 i=1
Therefore:
K K—1
2Zsin@<222 sine—z{ (A.9)
. 2 7 ¢ 2 '
i=1 i=1
Now we have M = 2K~1 angles (#!). Repeat the calculations for the 6!

= 2K-2 angles (0!'). Solving for pairs of angles (6; ,, 0%, :

1 < i < (N/4) = 2K-2). (alculate from Equation A.10 all the angles
071 <i<2K2

angles finding M’

.0 . 0.
¢!  sin 2L 4 gin 2%
sin ZZ = 4 5 4 (A.10)
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From Equation A.6:
2K—2 0[

S . 71— . 7 <
ZEZI sin 5 ZEZI (sin 5 + sin 5 ) <

(A.11)
2K—2 2K—2
o o
Z 2sin§Z =2 Z sin?Z
i=1 =1
From Equation A.8 and Equation A.11
K K—-1 K—2
2Z:sin@<222: sin0—5<2x222 sine—él (A.12)
=1 2~ i=1 2~ i=1 2

Repeating the previous steps K times. For #(5) that satisfies Equation A.12
Equation A.14 is true.

2K 0 2K71 6/ 2K72 0” 0(K)
Zsinjz?ZsinZ:4ZsinZ:NsinT (A.13)
=1 =1 =1
2K 2K—1 2K—2
N . 0] .0/ . o)
§sm5§2§31n§’§4§sm?’§...§Nsm 5 (A.14)

Q.E.D. For any N in the form: N = 2K

— For N # 2K:
Let K € N such that 25 < N < 2K+l Then for the §; : 1 < i < N
solve Equation A.15 for the #’. And we want to prove that the inequality in
Equation A.16 is true.

N . /

> sin% = Nsin% (A.15)
i=1

N 0, N ,
Zsin5Z < Zsin; (A.16)
i=1 i=1

Consequently, by adding in both sides of Equation A.15 (M sin %’) where
M = (2K+1 — N), Equation A.15 becomes Equation A.17.
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! / ! !

AN 0 0 0
.Y Y .U T gk41 T
;_1 sin — + M sin 1 N sin 1 + M sin 1 2% sin 1 (A.17)
Now the number of terms in each side of Equation A.15, is 2K+1 and from

Equation A.14 we get:

! !

N

0; 0 0
Zsiné—i—MsinE < (N+M)Sin§(:>
i=1

(A.18)

!

N

0; 0
'leinaZ < Nsina
1=

Q.E.D.

Theorem 1: For any tiling, and with optimality criterion the shortest path for a given
number of exchanges, the optimal tile is the union of two isosceles triangles (equal edges
are R), with the angle of the two equal edges equal to /2 , where 6§ the wedge angle (see
Figure A.5).

SN Maximum Range ———  Lineof Sight/
Tile sides.

Actua Path

FIGURE A.5. Positioning of the wedge stripes.

Proof: From lemma 3 and for the same angle 6 for every wedge, the wedges are going
to be arranged into stripes as in Figure A.3. Moreover given a constant number of tiles the
angle 0 is set. When one stripe is positioned next to its neighbor, there must be complete

coverage, with minimum overlap. The optimal positioning of the wedges is displayed in
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Figure A.6, such that the curves are complement each other. From lemma 2, the optimal

path is that given in Figure A.5, by connecting with straight lines the overlapped areas.

FIGURE A.6. Optimal tiling.

Q.E.D.
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APPENDIX B

Odometry Error Study

1. Introduction

In this Appendix we consider the measurement of odometric uncertainty for a mobile
robot. The primary emphasis is to experimentally estimate the rate of odometry error
buildup in a small differential-drive research robot, and to model its behavior probabilis-
tically. Although the use of Kalman filters and related techniques are common place for
robotic systems, it is not uncommon for mobile robotics practitioners to merely make ed-
ucated guesses not only for the rate of error accumulation for their robots, but also for
the error model itself. While there are a few notable papers that rigorously consider er-
ror measurement for mobile robots [16, 18, 116], the most common error model used in
practice is an unrealistic univariate two-dimensional Gaussian. Furthermore, in simulated
environments very crude odometry error models are used, if the error is modeled at all.

Our goal was to develop a more realistic odometry error model that would reflect
(at least partially) the complexity of the robot’s locomotion. Such a model is used to
describe faithfully the probability distribution function of the robot’s pose after an arbitrary
motion. The odometry error study presented here in combination with the proposed model
provides a practical framework for the implementation of realistic odometry error in different
simulation packages. Our primary experimental data is obtained from a differential-drive
robot, although we believe the proposed probabilistic model applies to other types of drive
mechanism and we have tested it informally on synchro-drive systems as well. The odometry

error is detected using a calibrated laser range finder.
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FIGURE B.1. Measuring the odometry error on carpet.

2. Odometry Study of a Differential Drive Robot

As a baseline we consider the odometry error accrued under various conditions by a
commercial differential-drive robot, the Nomadic Technologies Superscout II. This robot
uses two wheels to provide differential drive and odometry feedback with a third rear-
mounted castor wheel for balance. Without loss of generality any arbitrary motion by
AX,AY can be achieved by combining a rotation that points the robot towards the target
location, followed by a translation that moves the robot to the target location. Therefore

we divided the observations into rotational errors and translational errors.

2.1. Rotation. Empirical knowledge suggests that the largest factor in odome-

try error is the rotational error!

. In order to measure the rotational error we placed the
robot inside a “C”-shaped enclosure consisting of four walls (see Figure B.1,B.2a). The

intersections of the four walls provide three geometric landmarks detectable both in world

!While we make this observation empirically, it follows naturally from the kinematics of the robot and a
simple model for uncertainty in wheel velocity.
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o XPlot v6.9(G.D.) | =] XPlot_v6.9(G.D.)

(a) (b)

FI1GURE B.2. The four walls providing three landmarks. (a) Before the rotation.
(b) After the rotation.

coordinates and “raw” laser coordinates (see Chapter 6 section 3.2). Moreover, the orien-
tations of the four walls in world coordinates should change by the amount of the robot’s
rotation. To estimate the error, the three landmarks are detected then the robot rotates
and the three landmarks are detected again (see Figure B.2b). The three landmarks in
laser coordinates provide three estimates for the rotation and the orientations of the four
walls provide four more estimates. The seven estimates are kept only if they all agree up
to 0.2 degree. We proceed to measure the rotational error for different motion parameters
(rotation angle, speed, acceleration) and on different surfaces.

First, we measured the error in rotation for different rotation and translation speeds
and for different angles. Figures B.3,B.4 present the error measurements relative to the
odometer estimate (Figure B.3) and relative to the intended pose (Figure B.4); for every
speed/angle we gather twenty samples. It is worth noting that they are concentrated (small
standard deviation) around a non zero mean value. Moreover from Figures B.3,B.4 it is
clear that a systematic error occurs that biases the error by the direction of the rotation

(negative rotation have positive mean error). As it was expected the small rotations provide
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Error in Rotation from Odometer (for three different speeds)
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FI1GURE B.3. Error in rotation relative to the odometer for different angles and for

different speeds (“o” speed 10, “x” speed 50, “+” speed 90, lines connect the mean

values).

negligible error. Surprisingly though, the higher speed produced less odometry error (“+”
in the figures).

The effect of different surfaces on the rotational error was studied next. Four different
surfaces were tested for a rotation of —90° and forty samples were collected each time. The
two types of carpets follow more closely a normal distribution than the other two surfaces.
This is due to the fact that the surface is smooth contrary to the tile floor that contains
bumps. The friction between the wheels of the robot and the floor (or the carpet) was
relatively similar. On the contrary the plastic surface provided less friction thus significantly
increasing the rotational error.

From Figure B.6 we see that the error from the intended rotation is much larger. Even
though the odometer reported a pose different than the intended one, the control software
of the robot stopped the rotation. For applications that require precise positioning, this

extra error should be taken into account.
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Error in Rotation from Intended Angle (for three different speeds)
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FIGURE B.4. Error in rotation relative to the intended pose for different angles and
for different speeds (as in Figure B.3)

From the results described above we can deduce that a study of the odometry error of
the particular mobile robot used is essential in order to model the systematic error that oc-
curs during rotations. A zero mean Gaussian representation would require an unnecessarily

large standard deviation forcing us to consider poses of the robot that are in fact unlikely.

3. Translation

The same setup used for the estimation of the rotational error is used also for the
translation. The same enclosure was used (see Figure B.1). The robot was moved forward
by a distance D over different surfaces and with different speeds. After every translation
the robot was translated back (by -D) and the pose of the robot was reset to the origin
(P, = [z, yr, 0:]F =[0,0,0]7). Figure B.7 presents the error accumulated after an intended
translation of 100cm. The robot was moved 165 times over different areas of our lab (tiled
floor). The first three sub-plots present a histogram of the error along the X and Y axis
and for the orientation ©. The fourth sub-plot present the spatial distribution of the robot
poses for all the motions.

Table B.1 illustrates the effect of speed in the accumulation of odometry error for three

different speeds (20, 60, 100) during the translation of 100cm along the x-axis. There is a
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FiGure B.5. Error distribution from the odometry measurement for different sur-
faces (rotation of 90°).

Speed 20 60 100

M o M o M o
X -1.843 | 0.372 | -1.850 | 0.363 | -2.266 | 0.526
Y -0.863 | 0.317 | -0.977 | 0.491 | -1.041 | 0.491
S 0.587 | 0.215 | 0.760 | 0.366 | 0.107 | 0.314

TABLE B.1. Mean error and Standard Deviation along the X,Y-axis (in cm) and
orientation © (in degrees) after the translation of 100cm for three different speeds.

significant increase when the higher speed was used, especially in the systematic error as it
manifests in the mean error along the axis of translation. The observations are consistent
with the work presented by Moon et al. [116] where higher acceleration gives reduced orien-
tation error. As can be seen in Table B.1 the high acceleration results in small orientation
error but higher error along the direction of the translation.

The measurement of odometry error over different surfaces is presented next. Figure
B.8 presents the results for a translation of 120cm on a plastic surface. The same behavior
as with the rotation manifests during the translation, with the error in the distance traveled
(X-axis) much higher than the error on carpet or tile floor. Figure B.9 presents the results

for the translation on carpet.
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Histogram of Error (E=—-0.4557 6=0.1334) Histogram of Error (E=-1.7205 0=0.2564)
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FIGURE B.6. Error distribution from the intended pose for different surfaces (ro-
tation of 90°).

The statistical properties of the odometry error collected above enable us to create a
realistic error model for the type of robot used. Furthermore, the odometry error measure-

ments could be utilized in the construction of realistic simulation experiments.

4. Odometry Error Modeling

In the past little attention has been paid to the modeling of odometry error. The
computing power was not enough to permit a precise modeling forcing early researchers to
a simple Gaussian pdf around the final position of the moving robot as the most general
error model. With the computing power currently available, even on board autonomous
robots, more elaborate techniques such as condensation (a Monte-Carlo simulation method)
and multiple Gaussians are used in order to track the accumulation of uncertainty during
motion. In many cases, however, the error model is still based on a single random variable
drawn from a normal distribution.

There are many sources of error that contribute to the accumulation of uncertainty

during motion such as wheel slippage, difference in the diameters of the wheels and anomalies
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Ficure B.7. Error distribution after translation of 100cm. Tile floor, 165 samples.

of the floor 2. Without loss of generality any arbitrary motion by AX, AY can be achieved
by combining a rotation that points the robot towards the target location, followed by a
translation that moves the robot to the target location.

For modeling purposes the odometry error could be divided into rotational error 3 and
translational error. These errors can be modeled statistically by random variables drawn
from three Gaussians with zero mean and oyot, Otrans, Odrift Standard deviations. The first
Gaussian models the error accumulated during pure rotations of the robot. The other two
Gaussians model the error that occurs during a forward translation of the robot and affects
the complete pose of the moving robot. It is worth noting that an additional source of error
could be added that would represent bumps on the floor and small collisions by adding

some “salt and pepper” noise.

4.1. Rotation. As we saw in Chapter 5 section 2.1.1 the noise model for rotational

is straight forward described by the general equation B.1.

Al
01«:—1—1 = elc +A9+N(Mrotao'rot%) (B'l)

*For a more detailed study please refer to Borenstein [16, 57].
3For simplicity’s sake it is assumed that only the orientation of the moving robot is affected.
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FiGURE B.8. Error distribution after translation of 120cm. Plastic surface, 43 samples.

4.2. Translation. @ Modeling the translation of the robot is more difficult because
the noise model is more complex. During a translation by a distance R towards the orien-
tation the robot two kinds of uncertainty accumulate: first, the distance the robot traveled
is given by R plus an error. Second, the orientation of the robot constantly changes adding
the equivalent of a Brownian type of noise to the final position. While for the real robot the
drift is a continuous process that affects the complete trajectory of the translation during
simulations, but more important during the modeling of uncertainty, a discretization of the
process is required. The simplest approximation ¢ of the above process is to model the
translation as a partial rotation followed by a translation followed by a second rotation
(Fig. B.10). The reason for this is that the robot would deviate from the trajectory, hence
the initial rotation by a small angle, and also the final orientation of the robot is corrupted
by some noise, hence the second rotation.

Orientation: For a single translation modeled as one step the orientation of the robot
at the beginning would be 6; and at the end the orientation is 6;11 = 0; + &, + &y,, where
Ep, and &y, are the amount of the two rotations that occur before and after the translation

(see Fig. B.10). From experimental data we could have an estimate about the standard

It is the most commonly used.
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Ficure B.9. Error distribution after translation of 120cm. Carpet surface, 43 samples.

deviation of the orientation as a function of the distance traveled (oqrf; in degrees per meter

traveled). The standard deviation of the orientation after one translation can be calculated

in terms of the characteristics of the noise &,,7 = 1,2, and if &, = &, = &, then the

standard deviation of the noise &, is calculated in the equation B.2.

Starting Position

Dp+Ep

Finishing Position

F1GURE B.10. One step in translation.
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Opn = B{0;1160],,} where
fiv1i = Oip1 — E{0i1)} = 0;i + E, + Eg, — 6
= &g, + &y, Therefore
0hy = E{(E +Eo,)(En, +E0,)"}
= E{(&,)"} + E{(&)%} +
2E{(&9,&p,)} where
E{(E9,€p,)} = 0 Uncorrelated, and
E{(€5,)%} = E{(€s,)*} = 0} Therefore

_ 2
99,41 = 203' =

06;11
7 (B.2)

More realistically, the translation could be modeled as a series of N equal steps of R/N

gj

length each, then the pose of the robot after step i would be: X; = (xi,yi,6;)T and the
trajectory could be modeled as: Xg,X7..-X,. Figure B.10 illustrates one step from X; to
Xi+1. If the translation was performed in one step only then the drift could be modeled as
a small rotation before the translation and a small rotation after the translation. Equation
B.3 expresses the above described process, £, is the noise added in the distance traveled
and &y,,&p, is the noise added in the orientation of the robot due to drift. The number
of steps N used to model the uncertainty should not change the resulting distribution of
the robot position. The statistical properties of the distribution of the robot Pose are

established experimentally.

Tyl zi + (Ap+ Eap) cos (0; + &)
Xit1 = | yiy1 | = | vi + (Bp+Eap)sin (6 + Ep,) (B-3)
0it1 0; + &, + &o,

Orientation: At the end of step 7 the orientation of the robot is #; = 6;,_1 + n; where

n; is the noise accumulated during that step. We assume the noise n; to be zero mean
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Gaussian and as we saw earlier the result of the addition of two Gaussians (see equation

N

B.2). Therefore after the Nth step the orientation of the robot is Oy = 0y + an And

=1

the statistical properties of the distribution are :

ox

Ostep

N
E{0x} = E{60}+ Y _ E{n;} where

i=1
N
ZE{nZ} = 0 zero mean noise <
i=1
E{6n} = 6

E{0x6%} where Oy = Oy — E{On} =0y — 0, &

N N
E{(6n — 6:)(0n — 01)"} = B{D_n) O _mi)"}

=1 i=1

E{(ni+...+nx)(n1+... +nn)"}

N
> E{ni} 4+ E{ni(ng+...nn)"} + E{na(n1 +n3... +nn)"} +

=1

N J<>1

ZE’{nf} becauseE{n;( Z (n;))T} = 0 Uncorrelated <«
i=1 j=1:N

Nai2 & on = \/ﬁai & Odriftp = mastep% &

Odrift ¥ VIN

(B.11)

(B.12)

(B.13)

In conclusion, for a given set of uncertainty parameters, defined as < gyrans, Odrift >,

the noise (€, £, , £p,) that should be added during the modeling of odometry error is given

in equation B.14, where N(0, 1) is a random number drawn from a Gaussian distribution

with zero mean and sigma equal to one.

N(Oa l)o'trans \/NAP

(c:Ap N(O 1) O'drift\/NAp
501 = ’ ’\/i
&,) | 1)deﬁ7\/\/§m

(B.14)
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B.4 ODOMETRY ERROR MODELING

Average values of the std along the X,YP during transiation

4{

STD along the X axis

STD along the Y axis

10 15
Number of steps per translation

FI1cURE B.11. The standard deviations of 30000 particles as they move along the
x axis for 100cm using different number of steps each time. The experiment is
repeated 100 times.

Using the above model we run experiments for different number of steps using multiple
samples. It is worth noting that a change in the number of steps affects only the distribution
of the points along the direction normal to the direction of the translation and only for small
number of steps. As the number of steps increases the standard deviation of the samples
along the direction perpendicular to the direction of the translation converges. Figure
B.11 presents the standard deviation of 10000 particles along the X-axis, Y-axis and the
orientation after they moved along the X-axis for 300cm, for different number of steps.
The standard deviations along the axis of motion and for the orientation is constant for all

practical purposes.
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APPENDIX C

Resampling Methods

In this Appendix three methods of resampling are described together with some variations
that help improve the performance. In every case the input is an array ! of the weights
of the particles (normalized to sum up to one) and the output is an array of indices that
indicate which particles are going to propagate forward. The premise of all algorithm is
that particles with high weights are going to be duplicated while the particles with small

(or zero) weights are going to be eliminated.

1. Select with Replacement

The simplest method of resampling is to select each particle with a probability equal to
its weight. In order to do that efficiently, first the cumulative sum of the particle weights are
calculated, and then N sorted random numbers (sorting is O(n log(n)) uniformly distributed
in [0, 1] are selected. Finally, the number of the sorted random numbers that appear in each
interval of the cumulative sum represents the number of copies of this particular particle
which are going to be propagated forward to the next stage. Intuitively, if a particle has a
small weight, the equivalent cumulative sum interval is small and therefore, there is only a
small chance that any of the random numbers would appear in it; in contrast, if the weight
is large then many random numbers are going to be found in it and thus, many duplicates of
that particle are going to survive. Algorithm 6 presents a formal description of the “select

9

with replacement” algorithm.

!The arrays start at 1.



C.2 LINEAR TIME RESAMPLING

Input: double W[N]
Require: ZZ]\;I W,=1
Q = cumsum(W); { calculate the running totals Q; = > 7_, Wi}
t = rand(N+1); {t is an array of N+1 random numbers.}
T = sort(t); {Sort them (0O(nlogn) time)}
T(N+1) = 1; i=1; j=1; {Arrays start at 1}
while (i < N) do
if T[] < Q[j] then
Index[i]=j;
i=i+1;
else
=i+
end if
end while
Return(Index)

Algorithm 6: Select with Replacement Resampling Algorithm; functions are noted as
underlined text, Comments are inside curly brackets “{}”.

2. Linear time Resampling

Input: double W[N]
Require: YN Wi =1
Q = cumsum(W); {calculate the running totals Q; =Y/ Wi}
t = -log(rand(N+1));
T = cumsum(t); {calculate the running totals Tj; =7 %}
TN = T/T(N+1);{normalize T to TN;}
i=1; j=1; {Arrays start at 1}
while (i < N) do
if T[] < Q[j] then
Index[i]=j;
i=i+1;
else
=it
end if
end while
Return(Index)

Algorithm 7: Linear Time Resampling Algorithm; functions are noted as underlined text,
Comments are inside curly brackets “{}”.

Carpenter et al. [27] proposed a linear time algorithm for resampling from a set of
particles. It is based on a manipulation of the random number sequence in order to achieve

a new sorted random number sequence in linear time. Using the cumulative sum of the

174




C.4 VARIATIONS ON RESAMPLING

negative logarithm of N random numbers uniformly distributed in [0, 1], a new sequence
of N sorted random number uniformly distributed in [0,1] is created. The final step is
the same as in the previous algorithm where the particles are selected with a probability
proportional to their weights. Algorithm 7 presents a formal description of the “select with

replacement” algorithm.

3. Resampling by Liu et al.

Instead of using directly the weights (w;) of the particles in order to decide which ones
are going to be propagated forward, another number a; can be used, usually a function of
the particles weights (a; = f(w;)). A generic choice is the the square root (f(w;) = \/wy).
Then the new weights (a;) are normalized so they sum up to the number of particles N
(Zfil a; = N). Then each particle is examined separately, and, if its weight (a;) is greater
or equal to one, k copies of it are propagated forward (k = |a;]); otherwise, the particle
“survives” with probability equal to a;. One drawback of this approach is that the number
of particles after resampling is not N anymore as the choice of how many particles survive

is stochastic 2.

4. Variations on Resampling

Two main variations at the resampling stage have been proposed: corrective resampling

and keeping a small percentage of particles from the old distribution.

4.1. Corrective Resampling.  Jensfelt et al. [79] suggested a modification to the
traditional SIR filter that “boosts” the contribution of the sensing versus the contribution
of the predictive model. The particle population is “injected” during the update phase with
a small number of particles created directly from the sensor data independently of where

the rest of the particles are located.

4.2. Maintaining the variance of the distribution. Contrasting to the previ-
ous approach is the method of maintaining a small percentage of the particle population
independently of their weights. More precisely during the resampling stage a small number
of particles selected uniformly from the particle population are being propagated forward
given a small weight. The intuition behind this approach is to maintain the coverage of the

2Stochastic is a process that is random but it follows certain distributions.
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C.4 VARIATIONS ON RESAMPLING

Input: double W[N]
for (j =1 to N) do {Update the weights}
alj] = vW[j]
end for
sum = 0;
for (j =1 to N) do {calculate Zfil a; }
sum = sum + ali;
end for
for (j =1 to N) do {Normalize the weights (a) to sum up to N}

alj] = N+ 5%
end for
i=1;
for (j =1 to N) do {For each particle}
if (a[j] > 1) then {Accept the ones with bigger weights}
for (I =1 to |a[j]] ) do {Add |a;] copies of the j"* Particle}
Index[i]=j7;
1 =1+ 1;
end for
else
R =rand(1);
if a[j] > R then {Accept the particle with probability a;}
Index[i]=j;
1 =1+ 1;
end if
end if
end for
Return(Index)

Algorithm 8: Resampling Algorithm; functions are noted as underlined text, Comments
are inside curly brackets “{}”.

predictive model in the particle population without affecting the accuracy of the localiza-

tion.
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