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Abstract  This paper deals with terrain mapping and position estimation using
multiple robots. Here we will discuss work where a larger group of
robots can mutually estimate one another’s position (in 2D or 3D) and
uncertainty using a sample-based (particle filter) model of uncertainty.
Our prior work has dealt with a pair of robots that estimate one an-
other’s position using visual tracking and coordinated motion and we
extend these results and consider a richer set of sensing and motion op-
tions. In particular, we focus on issues related to confidence estimation
for groups of more than two robots.

Keywords: Cooperative Localization, Multi-Robot Navigation, Position Estima-
tion, Localization, Mapping.

1. Introduction

In this paper we discuss the benefits of cooperative localization for a
team of mobile robots. The term cooperative localization describes the
technique whereby the members of a team of robots estimate one an-
other’s positions. This is achieved by employing a special sensor (robot
tracker) that estimates a function of the pose of a moving robot rela-
tive to one or more stationary ones (see section 1.1). Furthermore, we
consider the effects of different robot tracker sensors on the accuracy
of localization for a moving robot using only the information from the
rest of the robots (as opposed to observations of the environment). This
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approach results in an open loop estimate (with respect to the entire
team) of the moving robot’s pose without dependence on information
from the environment. The experimental results allows us to examine
the effectiveness of cooperative localization and estimate upper bounds
on the error accumulation for different sensing modalities.
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Figure 1.  (a) Two robots, one equipped with laser range finder (right) and the
other with a target (left), employing cooperative localization. (b) Pose Estimation
via Robot Tracker: Observation of the Moving Robot by the Stationary Robot. Note
that the “camera” indicates the robot with the Robot Tracker; and éw, (,/;w are angles
in world coordinates.

1.1 Cooperative Localization

Several different sensors have been employed for the estimation of
the pose of one robot with respect to another robot. We restrict our
attention to robot tracker sensors which return information in the frame
of reference of the observing robot (i.e they estimate pose parameters
relative to the robot making the observation). Consequently, for “two-
dimensional robots” in a two dimensional environment, or for robots
whose pose can be approximated as a combination of 2D position and
an orientation, we can express the pose using three measurements; for
ease of reference we represent them by the triplet T = [p ¢ 6], where
p is the distance between the two robots, ¢ is the angle at which the
observing robot sees the observed robot relative to the heading of the
observing robot, and 6 is the heading of the observed robot as measured
by the observing robot relative to the heading of the observing robot.
(Figure 1b). If the stationary robot is equipped with the Robot Tracker,
where X,;, = [y, Ym,Om]" is the pose of the moving robot and X, =
[zs,ys,05]7 is the pose of the stationary robot then equation 1 returns
the sensor output 7'

p v dz? + dy? Where :
0 = | atan2(dy,dz) — 05 |,dx =Ty — 5 (1)
() atan2(—dy, —dz) — 0, | Ay = Ym — Ys
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In order to estimate the probability distribution function (pdf) of the
pose of the moving robot i at time ¢ (P(X!)) we employ a particle filter
(Monte Carlo simulation approach: see Jensfelt et al., 2000; Dellaert
et al., 1999; Liu et al., 2001). The weights of the particles (W}) at
time ¢ are updated using a Gaussian distribution (see equation 2 where
[pi, 0;, #;]T has been calculated as in equation 1 but using the pose of

[133))

particle “i” (X,,,) instead of the moving robot pose (X;,)).
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The rest of the paper is structured as follows. The next Section 2
presents some background work. Section 3 contains an analysis and ex-
perimental study of the primary different classes of sensory information
that can be naturally used in cooperative localization. Finally, Section
4 presents our conclusions and a brief discussion of future work.

2. Previous Work

Prior work on multiple robots has considered collaborative strategies
when the lack of landmarks made it impossible otherwise (Dudek et al.,
1996). A number of authors have considered pragmatic multi-robot map-
making. Several existing approaches operate in the sonar domain, where
it is relatively straightforward to transform observations from a given
position to the frame of reference of the other observers thereby exploit-
ing structural relationships in the data (Leonard and Durrant-Whyte,
1991; Fox et al., 1998; Burgard et al., 2000). One approach to the fusion
of such data is through the use of Kalman Filtering and its extensions (
Roumeliotis and Bekey, 2000b; Roumeliotis and Bekey, 2000a).

In other work, Rekleitis, Dudek and Milios have demonstrated the
utility of introducing a second robot to aid in the tracking of the ex-
ploratory robot’s position (Rekleitis et al., 2000). In that work, the
robots exchange roles from time to time during exploration thus serving
to minimize the accumulation of odometry error. The authors refer to
this procedure as cooperative localization.

Recently, several authors have considered using a team of mobile
robots in order to localize using each other. A variety of alternative
sensors has been considered. For example, Kato et al., 1999 use robots
equipped with omnidirectional vision cameras in order to identify and
localize each other. In contrast, Davison and Kita, 2000 use a pair of
robots, one equipped with an active stereo vision and one with active
lighting to localize. The various methods employed for localization use
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different sensors with different levels of accuracy; some are able to esti-
mate accurately the distance between the robots, others the orientation
(azimuth) of the observed robot relative to the observing robot and some
are able to estimate even the orientation of the observed robot.

3. Sensing Modalities

As noted above, several simple sensing configurations for a robot
tracker are available. For example, simple schemes using a camera allow
one robot to observe the other and provide different kinds of positional
constraint such as the distance between two robots and the relative orien-
tations. Moreover the group size affects the accuracy of the localization.

In the next part we present the effect the group size has on the accu-
racy of the localization for different sensors. The experimental arrange-
ment of the robots is simulated and is consistent across all the sensing
configurations. The robots start in a single line and they move abreast
one at a time, first in ascending order and then in descending order
for a set number of exchanges. The selected robot moves for 5 steps
and after each step cooperative localization is employed and the pose of
the moving robot is estimated. Each step is a forward translation by
100cm. Figure 2a presents a group of three robots, after the first robot
has finished the five steps and the second robot performs the fifth step.

Mean Positional Error (Range only)
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Figure 2. (a) Estimation of the pose of robot R2 using only the distance from robot
R1 (d1) and from robot R3 (d3). (b) Average error in position estimation using the
distance between the robots only (3,4 and 10 robots; bars indicate std. deviation).

3.1 Range Only

One simple method is to return the relative distance between the
robots. Such a method has been employed by Grabowski and Khosla,
2001 in the millibots project where an ultra-sound wave was used in
order to recover the relative distance. In order to recover the position
of one moving robot in the frame of reference of another, at least two
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stationary robots (that are not collinear with the moving one) are needed
thus the minimum size of the group using this scheme is three robots.
Estimating the distance between two robots is very robust and rel-
atively easy. In experimental simulations, the distance between every
pair of robots was estimated and Gaussian, zero mean, noise was added
with o, = 2cm regardless the distance between the two robots. Figure
2b presents the mean error per unit distance traveled for all robots, av-
eraged over 20 trials. As can be seen in Figure 2b with five robots,
the positional accuracy is acceptable with an error of 20cm after 40m
traveled; for ten robots the accuracy of the localization is very good.

3.2 Azimuth (Angle) Only

Several robotic systems employ an omni- [ e rosons s amanon
directional vision sensor that reports the an-
gle at which another robot is seen. This
is also consistent with information available
from several types of observing systems based
on pan-tilt units. In such cases orientation
at which the moving robot is seen can be re-
covered with high accuracy. We performed a L -

. . . . Figure 3: Average error in po-

series of trials using only the angle at which . " cstimation using the ori-
one robot is observed, using groups of robots entation of the moving robot is
of different sizes. As can be seen in Figure seen by the stationary ones.,
3 the accuracy of the localization does not improve as the group size
increases. This is not surprising because small errors in the estimated
orientation of the stationary robots scale non-linearly with the distance.
Thus after a few exchanges the error in the pose estimation is dominated
by the error in the orientation of the stationary robots.

To illustrate the implementation of the particle filter, we present the
probability distribution function (pdf) of the pose of the moving robot
after one step (see Figure 4). The robot group size is three and it is the
middle robot R2 that moves. The predicted pdf after a forward step can
be seen in the first subfigure (4a) using odometry information only; the
next two subfigures (4b,4c) present the pdf updated using the orientation
at which the moving robot is seen by a stationary one (first by robot R1
then by robot R3); finally, the subfigure 4d presents the final pdf which
combines the information from odometry and the observations from the
two stationary robots. Clearly the uncertainty of the robot’s position is
reduced with additional observations.

Distance Travelled (in cm)
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Figure 4.  The pdf of the moving robot (R2) at different phases of its estimation:

(a) prediction using odometry only; (b) using the orientation from stationary robot
R1; (c) using the orientation from stationary robot R3; (d) final pdf.
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Figure 5. Average error in position estimation using both the distance between
the robots and the orientation the moving robot is seen by the stationary ones. (a)
Average error in positioning of the team of robots one trial (3,5 and 10 robots). (b)
Average error in position estimation over twenty trials (3,5, 10 and 40 robots).
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3.3 Position Only

Another common approach is to use the position of one robot com-
puted in the frame of reference of another (relative position). This
scheme has been employed with two robots (see Burgard et al., 2000)
in order to reduce the uncertainty. The range and azimuth information
([p,0]) is combined in order to improve the pose estimation. As can be
seen in Figure ba even with three robots the error in pose estimation is
relatively small (average error 30cm for 40m distance traveled per robot,
or 0.75%). In our experiments the distance between the two robots was
estimated and, as above, zero-mean Gaussian noise was added both to
distance and to orientation with o, = 2cm and oy = 0.5° respectively.
The experiment was repeated twenty times and the average error in
position is shown in Figure 5b for groups of robots of size 3,5,10 and 40.

Mean Error in Position Estimation (Full Pose)

. | # of Robots I 3 | 5 | 10 |
Range (p) 38.80 | 21.63 | 8.13
s | 1 Azimuth () 32.83 | 32.20
L e | | Position (p,0) | 34.25 | 21.79 | 7.50
L it | [ Full Pose 28.73 | 16.72 | 6.08
£ EA (P, 0, ¢)
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Figure 6. Average error Table 1. The mean error in position es-
in position estimation us- timation after 40m travel over 20 trials.

ing full pose [p, 8, ¢].
3.4 Full Pose

Some robot tracker sensors provide accurate information for all three
parameters [p, 0, ¢] and they can be used to accurate estimate the full
pose of the moving robots (see Kurazume and Hirose, 1998; Rekleitis
et al., 2001). In the experimental setup the robot tracker sensor was
characterized by Gaussian, zero mean, noise with o = [2¢m,0.5°,1°].
By using the full equation 2 we weighted the pdf of the pose of the
moving robot and performed a series of experiments for 3, 5 and 10
robots; with very low positional error (see Figure 6).

4. Conclusions

In this work we examined the effect of the size of the team of robots
and the sensing paradigm on cooperative localization (see Table 1 for
a synopsis). Also, preliminary results from experiments with varying
odometry error have shown that cooperative localization is robust even
with 10-20% odometry errors.



In future work we hope to further extend the uncertainty study for
different group configurations and motion strategies. An interesting ex-
tension would be for the robots to autonomously develop a collaborative
strategy to improve the accuracy of localization (see Potter et al., 2001).
Given a large group of robots, an estimate of the effects of team size on
error accumulation would allow the group of be effectively partitioned
to accomplish sub-tasks while retaining a desired level of accuracy in
positioning.
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