
TOWARDS AUTONOMOUS LONG-RANGE NAVIGATION 
‘ISAIRAS 2005 CONFERENCE’, MUNICH, 5-8 SEPTEMBER 2005 

 
Erick Dupuis, Pierre Allard, Joseph Bakambu, Tom Lamarche, Wen-Hong Zhu, Ioannis Rekleitis 

 
Canadian Space Agency, Space Technologies 

6767 route de l’Aéroport, St-Hubert (Qc), J3Y 8Y9, Canada 
Email:firstname.lastname@space.gc.ca 

 
 

ABSTRACT 
 
The recent success of NASA’s Mars Exploration 
Rovers has demonstrated the important benefits that 
mobility adds to landed planetary exploration missions.  
 
The Canadian Space Agency (CSA) has been 
conducting research in ground control and in 
autonomous robotics for several years already. One of 
the target applications is planetary exploration using 
mobile platforms. The emphasis of our research 
program is on reactive on-board autonomy software 
and long-range rover navigation.  
 
This paper describes recent activities of the CSA in this 
area.  Key results are described in the areas of terrain 
modelling, path planning and rover guidance. 

1 INTRODUCTION 

The recent success of the Mars Exploration Rovers 
“Spirit” and “Opportunity” has demonstrated the 
important benefits that mobility adds to landed 
planetary exploration missions. The recent 
announcement by NASA to increase its activities in 
planetary exploration (via Moon and Mars missions) 
and the ESA Aurora program will certainly result in an 
increase in the number of robotic vehicles roaming on 
the surface of other planets. The current state-of-the-art 
in control of planetary rovers requires intensive human 
involvement throughout the planning portion of the 
operations [5]. Unless the terrain is relatively easy to 
navigate, rovers are typically limited to traverses on the 
order of a few tens of meters. Recently, the Mars 
Exploration Rovers “Spirit” and “Opportunity” have 
managed to conduct traverses on the order of 100 
meters per day.  
 
Although the terrains in which these traverses were 
accomplished were relatively free from obstacles, this 
is already quite an achievement. However, to increase 
the science return and minimise operations costs, future 
planetary missions will undoubtedly require the ability 
to traverse even longer distances autonomously. One of 
the key technologies that will be required to succeed 
towards the ambitious objectives that are being set 

internationally will be to streamline the operations of 
future space missions.  
 
To address this requirement, many laboratories are 
currently pursuing autonomous navigation of rovers for 
planetary exploration. Several teams approach the 
problem of long-range navigation through a succession 
of short-range traverses. Typically, the rover performs 
a traversability analysis of the terrain in the immediate 
vicinity of the rover, picks a local path that is obstacle-
free and moves the rover towards the target destination 
(or way point) [10][15]. In contrast to this approach, a 
more behaviourist implementation has been 
successfully demonstrated on a rover in a desert 
environment [11]. Despite the fact that only simple 
navigation behaviours were used, the robot 
successfully performed traverses up to 1.3 km in 
natural settings with way points spaced up to 200m 
apart while using a very limited sensor suite for 
environment sensing. In addition, some work has been 
done on instrument placement to reduce the level of 
human involvement necessary to position a scientific 
instrument on a target area of interest [13]. In contrast 
with the previous approaches some research is 
conducted to increase autonomy by performing basic 
paradigm shifts. Examples of such research are the 
inclusion of on-board planning and re-planning 
capability [5] or localisation schemes targeted 
specifically at long-range navigation [7]. Furthermore, 
it is worth noting that during last years the contestants 
in the DARPA Grand Challenge, vehicles with far 
superior capabilities of the planetary rovers were able 
to traverse only a small fraction of the target trajectory; 
a fact that highlights the difficulties of long range 
navigation.   
 
The Canadian Space Agency (CSA) has been 
conducting research in ground control and in 
autonomous robotics for several years already. One of 
the target applications is planetary exploration using 
mobile platforms. The emphasis of our research 
program is on reactive on-board autonomy software 
and long-range rover navigation. This paper describes 
recent activities of the CSA in this area.  Particular 
emphasis is put on terrain scanning and modelling, 
path planning in natural settings and rover guidance. 

_____________________________________________________ 
Proc. ‘ISAIRAS 2005 Conference’, Munich, Germany, 
5-8 September 2005 (ESA SP-603, September 2005) 
 



Experimental results from the summer 2004 test 
campaign are presented. 

2 TERRAIN MODELLING 

Range imaging is a reliable and simple way to extract 
accurate three-dimensional data of objects and 
environments. With readily available range sensors, it 
is understandably becoming a very popular technology 
for 3D modelling. Range sensing is, in our case, the 
data source to our terrain modelling algorithms, the 
first step of the long-range navigation scheme. The 
sensor used in our laboratory is an ILRIS-3D LIght 
Detection And Ranging (LIDAR) sensor commercially 
available from Optech Inc. This scanner uses TOF 
(Time-Of-Flight) principle to measure depth data on 
two axes. That is, a single scan provides a complete 
“image” of the scanned area, not just a line. Although it 
is not optimised for ranges under ~10 meters, its ability 
to gather data ranging from half a meter to more than a 
kilometre away makes it well adapted to long-range 
considerations. Specifications in a nutshell are: eye-
safe IR laser, data sample rate of 2000 points/second, 
±20° field-of-view on both axes, modelled output 
accuracy in the 5mm range and a maximum angular 
resolution of 26x10-6 radians (2.6mm spacing at 
100m). 
 

 
Figure 1 - Scan of the Mars yard (CSA building in 

background) 
 

 
Figure 2 - Scan of the Mars yard cliff 

 

Data returned by the ILRIS-3D is a point cloud 
expressed as a list of three-dimensional coordinates in 
the scanner's reference frame. For navigation in a 
planetary exploration scenario, analysis was conducted 
to establish the most appropriate data structure to map 
unknown and unstructured environments. 

2.1 Meshing 
Since a point cloud is not an appropriate structure to 
plan navigation, an irregular triangle mesh structure 
was chosen. One of the main advantages of the 
triangular irregular mesh over classical digital 
elevation maps (DEM) is that it inherently supports 
variable resolution. This allows modelling precise 
details of uneven areas while simplifying flat areas to 
just a few triangles, therefore minimising the overall 
memory requirements. Variable resolution could also 
be accomplished by the quad-tree representation, a 
cousin of the DEM. Unfortunately, quad-trees 
introduce a loss of precision because the acquired data 
points get approximated by square areas. Moreover, a 
small change in the data (a small shift in an area) could 
mean reprocessing the complete data set thus, making 
their use very time intensive. Adding to that, both 
DEM and quad-trees are 2.5D representations. 
Therefore, they do not support concave geological 
structures like overhangs and caverns, which pose no 
problem to irregular triangular meshes. 
 
Once a static LIDAR scan is taken, we generate the 
initial high-resolution mesh from the data points. 
Triangulating a set of general three-dimensional points 
presents many difficulties like, for example, 
determining neighbour points that define a common 
surface on the real object. To avoid such problem, we 
take advantage of a property inherent to range sensing 
devices, namely 2.5D data. As a matter of fact, even 
though we tend to say these sensors provide 3D points, 
a single scan will in reality always be a set of 2.5D 
data. Even though you may get Cartesian data (x, y, z) 
from the range sensor, it is converted from the original 
measurements made in a spherical coordinates system 
(θ, φ, r) defining respectively azimuth, elevation and 
radius (distance). Data of one scan in this coordinate 
system is 2.5D, with only one radius (r) value 
corresponding to any angular position set (θ, φ). That 
means that neighbours in the θ-φ plane are necessarily 
neighbours in reality (discontinuity may exist, but will 
be handled later by the shadow removing algorithm). 
From there, we compute the Delaunay triangulation of 
the points projected in the 2D θ-φ plane. This is done 
by temporarily generating emulated "r" values for 
every point according to the equation below, which 
produces a paraboloid of revolution. 
 
 r = θ 2 + φ 2 
 



The resulting emulated surface is fed into a 3D convex 
hull algorithm [9]. The lower part of the returned hull 
is the Delaunay triangulation of the data points 
projected in the θ-φ plane. Projecting this 2D 
triangulation back on the original coordinates gives us 
our initial mesh. It is worth noting that once projected 
on the original data, the triangulation may not hold its 
Delaunay properties anymore (min-max and empty-
circle criterions).  
 
We now have a mesh that does not present any holes, 
even though the real surface "seen" by the LIDAR 
usually has some discontinuities due to the sensor's low 
angle of incidence (Figure 4). These shadow regions 
exist whenever there is an object in front of another. 
Triangles covering these shadow regions must be 
identified and removed from the mesh because they do 
not model an existing surface. 
 

X

Z

Y

θ

φ
r

 
Figure 3 - ILRIS-3D reference frame 

 

discontinuity

shadowed region  
Figure 4 - "Shadows" 

2.2 Shadow filtering 
Two consecutive algorithms are used to remove the 
"shadow" triangles. The first one, doing most of the 
job, is based on the coefficient of variance (CV) of the 
triangles' vertices distance (r). For every triangle we 
have in the mesh, we compute the average distance 
(rmean) and standard deviation (s) of its vertices’ length. 
Coefficient of variance then provides a normalized 
representation of the distance variability among these 
three vertices (2). That is, triangles having their three 
vertices near one another will have a low CV while 
elongated triangles (presumably shadow triangles) will 
have higher CV. 

 100×=
meanr
sCV   

The CV threshold to apply will depend on the scanning 
resolution. For example, empirical testing showed that 
a threshold of 8% resulted in reasonable filtering of the 
shadows for scan steps around 0.26° while 4% was 
adequate for a higher resolution of 0.16° steps (Figure 
5: down-sampled data of Figure 1 without the 
background buildings). Note here that this filtering also 
has the effect of removing the unwanted triangles 
generated by outlier points, if any. In some cases, there 
will also be unwanted large triangles linking points 
located at the extremity of the scan. This makes sense 
from the convex hull algorithm point of view, but it is 
not representative of the real scanned environment. 
These triangles are simply treated by the second 
algorithm, which eliminates any triangle that has a 
perimeter larger than a specified threshold. 

2.3 Decimating 
Finally, in order to reduce memory requirements, the 
mesh is simplified. The preliminary implementation 
currently used is a simplified version of the decimation 
algorithm presented in [14]. Mainly, we do not deal 
with what [14] refers to as "complex triangles" because 
our triangulation algorithm does not create any. Plus, 
instead of using the presented plane splitting technique 
for re-triangulating the holes, we simply "slide" 
triangles references from the eliminated vertex to the 
closest vertex among its neighbours. Triangles that 
were squeezed to flat lines by the operation are 
removed. Evaluating the decimation criteria on one 
point out of two, alternating on every consecutive pass 
seems to preserve a relatively good shape ratio among 
the triangles. Figure 6 shows some results. Note that 
even though the edge preservation criterion is not 
implemented yet, the mesh boundaries are still 
relatively faithful to the original mesh. 

 
Figure 5 - Triangulation of a 49468 points scan, 1279 

shadow triangles removed, 97623 triangles left 

 
Figure 6 - Decimated triangulation, 23775 triangles left 



3 SCAN REGISTRATION AND 
LOCALIZATION 

A complete 3D reconstruction of a free-form surface 
requires acquisition of data from multiple viewpoints 
in order to compensate for the limitations of the field of 
view and for self-occlusion. In this paper, the 
reconstruction of the environment is performed in two 
steps. The first step consists of the assembly of the 
different views by estimating the rigid transformation 
between the poses from where each view was taken. 
The second step is the environment reconstruction, 
achieved by fitting a triangular mesh on each scan (as 
described above). Reconstructing a map of the 
environment in this way, allows us to conserve all 
information provided by scans. Thus our map of the 
environment is a set of scans mesh inter-related by the 
rigid transformation between scans.   

3.1 Assembly of the different scans 
In this step, different scans are registered in a common 
coordinate system. Since the coordinates of the 
viewpoint may not be available or may be inaccurate, 
the original ICP in Besl and McKay [4] may not 
converge to the global minimum. Thus, to assemble all 
views in the same coordinate frame, we used a variant 
of ICP, which differs from the original ICP by 
searching for the closest point under a constraint of 
similarity in geometric primitives. The geometric 
primitives used in this paper are the normal vector and 
the change of geometric curvature. The change of 
geometric curvature is a parameter of how much the 
surface formed by a point and its neighbours deviates 
from the tangential plane [3], and is invariant to the 3D 
rigid motion. Hence, in our algorithm, surface points 
are represented in ℜ . Coordinates of a point 7 P on 
the surface are ( where 

 are the Cartesian coordinates of 

),,,,,, Knnnzyx zyx

],,[ zyx P , 

 are the coordinates of the normal vector 
and K is the change in curvature. Geometric primitives 
are used in matching by incorporating them in a 7D 
distance metric  of the form:  

]z,,[ yx nnn

αD

2
7

1

2 )(),( qipi
i

iqpD λλαα −= ∑
=

                                                                         

where the iλ  are coordinates of a 7D point and the 

iα are the weights of each coordinate. Using this 
distance metric for finding the closest point is a 
combination of the 3D distance, the difference of the 
orientation of the normal vectors, and the difference of 
the change of curvature. 
Our ICP algorithm can be summarize as follow: Let 

 and Q be 

two sets of points in ℜ . The goal is to find a rigid 
transformation 

},...,,{ 21 npppP = },...,,{ 21 mqqq=

7

,TR )(T =  composed of a rotation 
matrix R  and a translation vector t  that best aligns 
P  to match Q . An informal description of the 
algorithm follows: 

P

,k
iClosestPo

(Dε

)T

=

/ pQ k
i∈

,(R=

t+Pk
i

+1P =:

 
1. Compute the normal vector and the change of 

curvature at each point of each cloud of 
points , Q . Build a k-D tree representation 
of the cloud of points Q . 

2. Initialize the matching process. 
3. Repeat until the termination criterion is 

reached: 
 

• Compute the closest points 
. Where 

i=1,2,…,n,  

. A k-D tree is used to speed up this 
search. 

)int( Qpqi

min(),qq ii = )),( QpD k
iα

• Discard undesired matches through 
statistical analysis of the distances, as 
described in Zhang [19].  

• Compute the rigid transformation 
T  from the remaining matches, 
as in Zhang [19] and Besl and McKay[4].  

• Apply the rigid transformation to all points 
in  and rotate 
accordingly the normal vectors. 

RPk
i

• If the mean square error drops below a 
threshold, TERMINATE. 

 

 
Figure 7 - Three terrain scans to be assembled 

To illustrate the performance of different view 
assemblies, several views of the CSA’s Mars 



Emulation Terrain were taken from different 
viewpoints. Figure 7 illustrates three different views 
and Figure 8 gives the result of the assembled views 
using the above ICP algorithm.  
 

 
Figure 8 - Assembled terrain scans in a single data set 

 
Localization 
The variant of ICP presented above is also used to 
localize the rover while navigating in the previously 
reconstructed environment. Given an estimation of the 
current position and orientation of the rover provided 
by our 3D odometry algorithm and a simulated LIDAR 
field of view model, one can extract a part of the map 
(sub-map), which can be visible from the current pose 
of the rover. Using ICP for matching the currently 
acquired scan with the sub map can refine the 3D 
odometry pose, thus improves the localization of the 
rover.  
 
One important issue that need to be addressed is how to 
set the initial estimation of the pose of the rover in the 
global map of the environment. We are currently 
investigating two approaches: harmonic shape image 
[18] and spin-image [6] matching. Spin image is a local 
representation and does not preserve the continuity of 
the surface. Spin-image matching is time and memory 
consuming but provides point-to-point correspondence. 
Harmonic shape image preserves the geometric 
information, both shape and continuity, of the 
underlying surface. Its matching is a patch based 
matching, therefore doesn’t provide point-to-point 
correspondence. According to the advantage and 
disadvantage of Spin image and harmonic shape image 
(see [6] and [18] for more details), we adopted the 
divide-and-conquer strategy. Our strategy consisted of 
applying first the harmonic shape images matching to 
find the local area where the rover is located in the 
global map and then use spin image matching only in 
this local area to find the correspondence between 

points and finally find the corresponding rigid 
transformation.  

4 PATH PLANNING 

In the context of long-range navigation, the path 
planners used on the CSA’s Mobile Robotics Testbed 
concentrate on finding a global solution to travel 
between two points in natural settings while optimizing 
some cost function. The emphasis is on global path 
planning rather than local path planning and obstacle 
avoidance. The basic assumption is that a priori 
knowledge of the environment is available at a coarse 
resolution from orbital imagery/altimetry and is refined 
using local range sensing of the environment. The 
composite environment model (coarse with refined 
portions) is then used to plan a path that will be 
generally safe and that will be updated periodically as 
new environment data is available. 
 
Previous CSA work used DEM from which a separate 
traversability map was created based on local slope. 
The traversability map was itself represented in a quad-
tree structure on which a graph search algorithm was 
applied to find a safe path [8] [17]. While this approach 
worked, it required a separate structure for the terrain 
data and traversability map, which forced the update of 
the traversability map and the quad-tree structure when 
the DEM was modified. 
 
The use of irregular triangular mesh to represent terrain 
data allows us to integrate the terrain representation 
with the path planning easily. To do so, an undirected 
weighted graph representing the triangles connectivity 
is created where the triangles are the vertices of the 
graph and a triangle connectivity to its neighbours are 
represented as edges.  The JGraphT Java Library [12], 
available freely on the Web, has been used to 
implement the graph structure and functions. 
 
The edge weight or cost is defined by providing a 
function that yields a cost based the distance between 
the vertices, slope of the edge, slope of the triangles, 
mean altitude, or a combination of these to yield the 
cost associated with moving from one triangle to 
another.  The cost function is associated to the edges at 
the graph creation, but the actual cost computed only 
on request. 
 
Once the graph is constructed, a path between the 
current rover location and a destination can be planned. 
The process involves four steps: 
 
1) Finding the two triangles where the current 

location and the destination lie; 



2) Applying the Dijkstra's shortest path search 
algorithm (provided in JGraphT) to find a safe 
path; 

3) Creating a list of waypoints based on the path 
found; 

4) Generating a simplified trajectory from the list of 
waypoints. 

 
Applying the Dijkstra's shortest path algorithm on the 
triangle connectivity graph from the current location to 
the destination triangles produces a list of edges along 
the path. This list is used to create a list of the triangles 
to be traversed. Finding the center of each of the 
triangles making the path yields a list of waypoints. 
 
The trajectory defined by the waypoints list has often a 
"saw tooth" look, which makes it difficult to follow for 
the robot guidance. In order to alleviate the problem, 
the waypoint list is processed in order to remove 
unnecessary waypoints while maintaining the resulting 
trajectory on safe ground. Figure 9a and Figure 7b 
show the effect of the trajectory simplification. 
 

 
Figure 9a - Trajectory generated using waypoint list 

 

 
Figure 7b - Trajectory after simplification 

 
Various cost functions have been tested with the path 
planner. For example, Figure 10 shows the result for 
planning a path from location (15.0, 5.0) to (80.0, 
100.0) (in meters) using a cost function that takes into 
account distance and slope.  

 
Figure 10 - Trajectory minimizing slope and distance 

travelled 

5 ROVER GUIDANCE 

The usage of a scanning lidar for terrain sensing results 
in a concept of operation slightly different from the 
more common schemes using stereo pairs. Indeed the 
scanning lidar used on the CSA’s Mobile Robotics 
Test-bed typically takes on the order of one or two 
minutes to perform a terrain scan but it has a sensing 
range of over a kilometre. As a result, the terrain is not 
imaged continuously. It is rather imaged using 
snapshots taken at discrete intervals. Obviously, since 
the lidar is located near ground level, the effective 
range of the measurements is typically not on the order 
of kilometres but of a few tens of meters. 
Consequently, the rover has the ability to plan path 
segments on the order of 20 to 30 meters and does not 
rely on environment sensing while moving along these 
path segments. It has, therefore, been necessary to 
develop guidance software that can keep the robot 
precisely on the planned trajectory. The proposed rover 
guidance has two mains parts: 3D odometry and 
autonomous motion controller.  

5.1 3D Odometry  
 
The first step to ensure that the robot does not deviate 
from the planned trajectory is to provide accurate 
knowledge of its position. This task can be 
accomplished by fusing odometry, inertial, and also 
absolute heading data. In this system, the robot 
odometry is combined with a solid-state IMU (inertial 
measurement unit) sensor to provide inertial navigation 
with 3D odometry. An absolute heading sensor, a 
digital compass TCM2 from PNI Corporation provides 
absolute orientation in Yaw (in Mars exploration, this 
sensor could easily be replaced by a sun sensor).  
 
The angular velocities measured by the IMU are 
integrated to form the orientation in SO(3) using the 
quaternion formulation. Once the orientation is 



obtained, the 3D odometry can be easily obtained by 
incorporating the robot odometry based on the wheel 
movements. However, data drifting in 3D odometry is 
fundamental. Correction or re-calibration is needed 
regularly. In the system, the gravitational vector is 
extracted from the three-axis acceleration signals 
provided by the solid-state IMU. The gravitational 
vector is used to correct the pitch and roll generated by 
the 3D odometry. Since the gravitational acceleration 
vector is very noise, particularly when the robot rolls 
over small rocks, a Kalman filter based on quaternion 
in SO(3) is used. Finally, the yaw correction is 
performed by the absolute heading sensor, which is 
activated every time the robot stops because the 
compass data is not reliable when the robot motors are 
running due to the electromagnetic interference. 
 
Table 1 lists three different IMU with their cost, 
random walk, and the resulting orientation drifting. 
The first row corresponds to the IMU used in this 
system. The second and third rows correspond to two 
IMU suggested by Durrant-Whyte [16]. The angular 
velocity random walk is a key indicator that represents 
the original performance of the IMU. In general, it is 
proportional to the standard deviation of the angular 
velocity measurement noise. A big random walk is 
always associated with a low price and a high 
orientation drifting for a given integration algorithm. In 
view of the first two rows, the random walk in the first 
row is about 4.5 times higher than that in the second 
row. But the orientation drifting in the first row is only 
twice as much as the second row.  This indicates the 
effectiveness of the quaternion-based integrator 
developed at CSA. 
 

Table 1 - Comparison of drift for different IMU 

IMU Price 
(US$) 

Random 
Walk  
(deg/hr1/2) 

Orientation 
drifting 

IMU300 
(Crossbow) 

3K < 2.25 3 deg in 10 
minutes 
6 deg in 15 
minutes 

ISIS-IMU 
(Inertial 
Science) 

10K <0.5 3 deg in 15 
minutes 

DMARS-I 
(Inertial 
Science) 

30K <0.02 0.5 deg in 
15 minutes 

 
Experimental results of the 3D odometry with the 
gravitational vector based pitch and roll correction are 
illustrated in Figure 11. The dashed line represents the 
planned trajectory that covers an 8m by 8m region. The 
solid line represents the actual robot positions in 3D. In 
the far edge when x is around 10m. The vertical 
difference between the solid line and the dashed line is 

due to the fact that the commanded trajectory does not 
take into account a rise in the physical terrain. After 
completion of the closed trajectory, the total travelled 
distance is approximately 32m. The position drifting in 
z only amounts to 3.1cm. This error is indicative of the 
portion of the error due to drift of the IMU. In contrast, 
the position drifting by using the robot odometry alone 
(based on wheel movements) amounts to 9.3m for the 
same trajectory, resulting from the significant 
orientation error caused by wheel slippage. 

 
Figure 11 - Experimental results from 8m x 8m 

outdoors traverse 

5.2 Autonomous Motion Controller  
 
The developed motion control is based on a 
discontinuous state feedback control law initially 
proposed by Astolfi [2].  
Experimental results in an outdoor 3D environment 
(see Figure 1) show the robustness and the stability of 
the developed path following approach. The Figure 12 
illustrates an 8m by 8m square-shaped reference path 
following result. A part on the path was on a slope and 
during the autonomous motion execution, artificial 
perturbations were induced twice as show in Figure 13. 
This figure shows that the rover can robustly, quickly 
and smoothly recover the path. During our tests with 
and without perturbations, physical error at the end of 
the motion was always negligible (about few 
centimeters in position and few degree in orientation) 
and it is due essentially to the wheels slippage and the 
gyroscope drift. For example, the errors of the test in 
Figure 12 and Figure 13 were on the order of 15 
centimeters in position and 3.3 degree in orientation. 
The physical error in position was measured by putting 
marks on the ground, while an onboard compass (in 
rest state) provided the orientation error. The same 
trajectory was executed without perturbation and the 
result is shown in Figure 11. Others trajectory such as 
eight-shape (Figure 14, Figure 15) and closed-spiral-
shaped (Figure 16, Figure 17) have been also executed. 
All those results illustrate the precision and the 
performance of the proposed autonomous motion 
controller and the 3D odometry based localization. 



0
2

4
6

8
10

0

2

4

6

8

10
-0.5

0

0.5

1

X (meters)

Guidance Results in 3D Terrain

Y (meters)

Z 

Commanded Trajectory
Actual Trajectory (3D Odometry)

 
Figure 12 - Square-shaped path following with 

artificially induced perturbations: in 3D 

-1 0 1 2 3 4 5 6 7 8 9
-1

0

1

2

3

4

5

6

7

8

9

X (meters)

Y

2D projection of Guidance Results

Way points
Commended Trajectory
Actual Trajectory (3D Odometry)

Artificially induced pertubations 

 
Figure 13 - Square-shaped path following with 
artificially induced perturbations: 2D projection 
 

-2 0
2 4 6 8 10

-2 0 2 4 6 8 10 
-2 

-1.5 
-1 

-0.5 
0 

0.5 
1 

1.5 
2 

X (meters) 

Guidance Results in 3D 
T i

Y (meters) 

Z 

Commanded Trajectory 
Actual Trajectory (3D Odometry) 

 
Figure 14 - Eight-shaped trajectory execution 

-3 -2 -1 0 1 2 3
-6

-4

-2

0

2

4

6
2D projection of Guidance Results

X (meters)

Y

Way points
Commended Trajectory
Actual Trajectory (3D Odometry)

 
Figure 15 - Eight-shaped trajectory 2D projection 

 

-2
0

2
4

6
8

10

-2
0

2
4

6
8

10

-1

-0.5

0

0.5

1

X (meters)

Guidance Results in 3D Terrain

Y (meters)

Z 

Commanded Trajectory
Actual Trajectory (3D Odometry)

 
Figure 16 – Closed spiral-shaped trajectory execution 

-4 -2 0 2 4 6 8 10
-6

-4

-2

0

2

4

6
2D projection of Guidance Results

X (meters)

Y
 (m
et
er
s
)

Way points
Commended Trajectory
Actual Trajectory (3D Odometry)

 
Figure 17 - Spiral-shaped trajectory 2D projection 

6 CONCLUSION 

This article has presented and discussed the advantages 
of map building via triangulation and path planning 
through an irregular triangulated mesh, and the 
algorithms used for rover guidance in outdoor terrain. 
Experimental results demonstrate that the terrain-
modelling scheme can be used to model natural terrains 
efficiently and is directly usable for path planning 
using a variety of cost functions. The robustness and 
stability of the rover guidance in rough 3D terrain is 
demonstrated. Closed trajectories of up to 50 meters 
have been executed successfully in natural terrain even 
in the presence of external disturbances. Position errors 



on the order of less than 1% of the total distance 
travelled have been observed in many cases.  
 
Future work will focus on Simultaneous Localisation 
and Mapping, increased autonomy and longer-range 
navigation. Traverses on the order of 100 metres and 
more will require the ability to stitch maps together and 
to perform map-based localisation. 

7 REFERENCES 

[1] A. P. Aguiar, A. N. Atassi, A. M. Pascoal , 
"Regulation of a Nonholonomic Dynamic 
Wheeled Mobile Robot with Parametric 
Modeling Uncertainty using Lyapunov 
Functions", Proc.of CDC 39th IEEE Conf. On 
Decision and Control, Sydney, Australia, 
December 2000. 

[2] A. Astolfi, "Exponential stabilization of 
wheeled mobile robot via discontinuous 
control", Journal of Dynamic Systems 
Measurement and Control, March 1999, pp. 
121-126   

[3] K.-H. Bae and D. D. Lichti. Automated 
registration of unorganised point clouds from 
terrestrial laser scanners. In The 20th ISPRS 
Congress, Istanbul, Turkey, July 2004. 

[4] P. J. Besl and N. D. McKay. Amethod for 
registration of 3-d shapes. IEEE Trans. on 
Pattern Analysis and Machine Intelligence, 
14(2):239-256, 1992. 

[5] T. Estlin, F. Fisher, D. Gaines, C. Chouinard, 
S. Schaffer, I. Nesnas, "Continuous Planning 
and Execution for an Autonomous Rover," 
Proceedings of the Third International NASA 
Workshop on Planning and Scheduling for 
Space, Houston, TX, October 2002. 

[6] A. Johnson. Spin-Image: a representation for 
3-D surface matching. Ph.D thesis, Carnegie 
Mellon University, 1997. 

[7] S. Lacroix, I-K Jung, J. Gancet, J-J Gonzalez-
Barbosa, “Towards long range autonomous 
navigation”, Proc. of 7th ESA Workshop on 
Advanced Space Technologies in Robotics 
and Automation, Noordwijk, the Netherlands, 
November 2002. 

[8] C. Lange, P.Allard, E. Dupuis, Y. Gonthier, 
"Unified Facility for the Development, 
Integration and Testing of Autonomous 
Navigation Schemes for Planetary 
Exploration", Romansy Conference, Montreal 
Canada, June 2004. 

[9] J.E. Lloyd, "ConvexHull3D", 
http://www.cs.ubc.ca/spider/lloyd/java/conve
xhull3d.html 

[10] M. Maurette, “Mars Rover Autonomous 
Navigation”, Autonomous Robots, v. 14, 
pp.199-208, 2003 

[11] D.P.Miller, T.Hunt, M.Roman, S.Swindell, 
and L.Tan & A.Winterholler, “Experiments 
with a Long-Range Planetary Rover”, Proc. 
of 7th International Symposium on Artificial 
Intelligence, Robotics and Automation in 
Space, Nara, Japan, May 2003. 

[12] B. Naveh and al. "JGraphT", 
http://jgrapht.sourceforge.net  

[13] L. Pedersen, R. Sargent, M. Bualat, C. Kunz, 
S. Lee, and A. Wright, “Single-Cycle 
Instrument Deployment for Mars Rovers”, 
Proc. of 7th International Symposium on 
Artificial Intelligence, Robotics and 
Automation in Space, Nara, Japan, May 2003. 

[14] W.J. Schroeder, J.A. Zarge, and W.E. 
Lorensen, "Decimation of Triangle Meshes", 
Computer Graphics (SIGGRAPH '92 
Proceedings), Vol. 26, No. 2, July 1992, pp. 
65-70. 

[15] C. Urmson, R. Simmons, I. Nesnas, "A 
Generic Framework for Robotic Navigation," 
Proceedings of the IEEE Aerospace 
Conference, Montana, March 2003. 

[16] H. Durrant-Whyte, "A critical review of the 
state-of-the-art in autonomous land vehicle 
systems and technology," Sandia Report 
SAND2001-3685, Sandia National 
Laboratory, Albuquerque, NM, 2001.  

[17] S. Gemme, J. N. Bakambu and I. M. Rekleitis 
" 3D Reconstruction of Environments for 
Planetary Exploration", Second Canadian 
Conference on Computer and Robot Vision 
(CRV 2005) , Victoria, BC, Canada, pages 
594--601, May 9-11, 2005 

[18] Dongmei Zhang. Harmonic Shape Images: A 
3D Free-form Surface Representation and its 
Application in surface Maching. Ph.D thesis, 
Carnegie Mellon University, 1999 

[19] Z. Zhang. Iterative point matching for 
registration of free-form curves and surfaces. 
Int. Journal of Computer Vision, 13(2):119-
152, 1992. 


	INTRODUCTION
	TERRAIN MODELLING
	Meshing
	Shadow filtering
	Decimating

	SCAN REGISTRATION AND LOCALIZATION
	Assembly of the different scans

	PATH PLANNING
	ROVER GUIDANCE
	3D Odometry
	Autonomous Motion Controller

	CONCLUSION
	REFERENCES

