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ABSTRACT

This paper proposes a solution to the problem of cooperative exploration using an
Unmanned Ground Vehicle (UGV) and an Unmanned Aerial Vehicle (UAV). More
specifically, the UGV navigates through the free space, and the UAV provides en-
hanced situational awareness via its higher vantage point. The motivating applica-
tion is search and rescue in a damaged building. A camera atop the UGV is used to
track a fiducial tag on the underside of the UAV, allowing the UAV to maintain a
fixed pose relative to the UGV. Furthermore, the UAV uses its front facing camera
to provide a birds-eye-view to the remote operator, allowing for observation beyond
obstacles that obscure the UGV’s sensors. The proposed approach has been tested
using a TurtleBot 2 equipped with a Hokuyo laser ranger finder and a Parrot Bebop 2.
Experimental results demonstrate the feasibility of this approach. This work is based

on several open source packages and the generated code will be available online.
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CHAPTER 1

INTRODUCTION

With the proliferation of unmanned air vehicles (UAVs) a new viewpoint, a birds-
eye-view, has become available in many domains, allowing structure inspection, envi-
ronmental monitoring, virtual tourism, and search and rescue. The majority of aerial
vehicles are severely limited in the sensing payload they can carry due to weight
constraints. As such, simple tasks such as obstacle avoidance and localization in an
unknown environment become rather challenging. On the other hand, ground robots,
while extremely capable in navigating safely inside an unknown environment, are re-
stricted to a limited field of view. Deploying a robot team comprised of a ground
and an aerial vehicle enables an enhanced field of view while maintaining safe navi-
gation and localization. Recent advances in robotics have made collaboration among
a heterogeneous team of robots possible [39]. At the same time, many interesting
problems associated with multi-robot collaborative exploration are being discussed,
such as coordination, communication protocols, bandwidth constraints, etc. [24, 42].
One motivating application is search and rescue in a damaged building, where the
UGV navigates on the ground while the UAV maintains a fixed pose above the UGV
employing a robot-tracker sensor consisting of a camera and fiducial marker. The
robot team could search and map dangerous areas, monitored by a remote operator
1

at a safe distance.

The goal of this thesis is to present a collaborative exploration approach utiliz-

!Early parts of this work have been submitted jointly with Kelly Benson, Daniel Madison, Patrick
Hamod, Jason O’Kane, and Ioannis Rekleitis to the 2017 International Conference on Unmanned
Aircraft Systems.



ing a UGV and a UAV. The UGV, a Kobuki TurtleBot 2 equipped with a Hokuyo
laser range finder and an upwards-facing camera, is responsible for guiding the UAV
through the corridors of a building; see Fig. 1.1. The UAV, a Parrot Bebop 2 equipped
with a forward facing camera, provides enhanced situational awareness to a remote
expert; see Fig. 1.2. The UAV does not process all data and commands on-board.
Instead, utilizing a WiFi connection, the sensor data are transmitted to a ground
station where all the processing takes place. Currently we utilize two computers: one
on the UGV and a separate one as a ground control station (GCS). A unique fiducial
tag placed on the bottom of the UAV is tracked by a wide angle camera on top of
the UGV, and the relative pose between the two vehicles is estimated.

Using cooperative localization, the pose of the UAV is calculated using the Turtle-
Bot’s pose and the relative pose of the two robots. This calculated pose is compared
to the pose provided by ORB-SLAM2 [29], a monocular SLAM package run using
data provided by the UAV’s camera. These two localization techniques improve the
accuracy of UAV’s estimated pose, allowing for easier path planning and tracking of
the tag.

Related work is discussed next. Chapter 3 outlines the proposed methodology.
Experimental results and factors affecting the performance are discussed in Chapter

4. The thesis concludes with a discussion of lessons learned and future directions.
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Figure 1.1 The Kobuki TurtleBot 2 used in this thesis. Also seen are the Hokuyo

laser, TurtleBot camera, and router used.



Figure 1.2 The Parrot Bebop 2 used in this thesis.



Figure 1.3 A fiducial tag attached to the bottom of a Parrot Bebop 2.



CHAPTER 2

RELATED WORKS

Cooperative robotics has been explored as early as the 90’s, such as when Cao et
al. [4] discussed possible future applications and the open problem of collaboration
between autonomous robots. Yuta and Premvuti [43] discussed how to organize
multiple autonomous robots. Several previous experiments have examined the best
software for tag tracking, autonomous communication between robots, or have used
similar setups involving both a ground and an aerial based robot. Collaboration
between UGVs and UAVs has been proposed for a variety of fields. For example, in
the detection and fighting of wildfires [32], in measuring the amount of nitrogen in
the soil for agricultural applications [41], for surveillance [17], and for detecting and

disposing of mines [10]. UAVs have also been used to monitor traffic [20].

2.1 RoBOT COLLABORATION

Chaimowicz and Kumar [5] discussed ground robot and aerial robot localization in
their 2007 paper. Their research focused on environments with limited GPS access,
and on using GPS in conjunction with other sensors. Similar concerns also drove
the work of Frietsch, Meister, Schlaile, and Trommer [15]. However, unlike these
two previous works, the approach proposed by this thesis assumes no GPS access,
instead relying on cooperative localization [36] between the two vehicles as well as
pose estimates calculated from the laser scan and cameras.

Another area of interest is collaboration between sea-based robots and aerial

robots; see Murphy et al. [30] and Shkurti et. al. [39]. In their paper titled "Multi-



domain monitoring of marine environments using a heterogeneous robot team," Shkurti
et. al. used underwater vehicles, airboats, and aerial vehicles to autonomously col-
lect footage of underwater scenes. In Murphy’s experiment, the robots were used
to survey storm damage from Hurricane Wilma. It was also "the first known use of
unmanned sea surface vehicles (USVs) for emergency response’ [30].

MacArthur and Crane [25] investigated using a UAV in the state estimation of a
UGV. In their paper, they discuss camera calibration and extracting pose from camera
data, as well as the coordinate transforms needed. Unlike with this project, GPS was
integrated with pose information. MacArthur and Crane found that localization of a
UGV using a passive UAV was successful in both simulated and experimental runs.

Cooperation between UAVs and UGVs for target detection and formation holding
was proposed by Tanner [40]. Duan and Liu [9] discuss an overview of multiple vehi-
cles collaborating with a focus on military applications. Papachristos and Tzes [31]
proposed a tethered solution to address the limited battery time for longer opera-
tions. Autonomous landing on a UGV charging station was proposed by Rezelj and

Skocaj [37].

2.2 TAG TRACKING

Other projects on similar topics have focused more on landing the drone on a target
rather than following the target for cooperative exploration with a ground vehicle.
One example is the research by Minhua and Jiangtao, which involved landing an
AR.Drone 2.0 on an augmented reality tag that designated a landing pad [28]. Minhua
and Jiangtao tried two different methods of tracking the landing pad. The first was a
QR code, which they found gave the UAV more information about the landing area,
but at the cost of more processing time [28]. This caused delays and inaccuracy while
tracking the QR code. The second method they tried was tracking augmented reality

tags through a package called ar_track_alvar, which they found processed the tag



faster. This faster computation is possible because ar_track_alvar is initialized
with the size of the tag to help it better determine the position of the tag relative
to the frame given. In this experiment, Minhua and Jiantao modified the front
camera of the drone to point towards the ground for better tag tracking because
the front camera has a higher resolution [28]. They also experimented with using
ar_track_alvar in conjunction with tum_ardrone, a wrapper for PTAM (Parallel
Tracking and Mapping) and PID controller for the drone, when they were landing
the AR.Drone on a tag. They found that using ar track_alvar to find the tag and
tum_ardrone for the PID controller to move the UAV into position of the tag landing

zone worked fairly well [28].
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Figure 2.1 An example of a QR code is shown to the left, while two fiducial tags
generated by ar_ track alvar are shown on the right.

Another example of previous work related to autonomous flight is the experiment
by Rezelj and Skocaj focused on landing a modified AR.Drone on a TurtleBot with
an augmented reality tag, so that the drone could charge and then take off again by
making use of the ground vehicle’s longer battery life [37].

Although a fiducial tag will be used as a marker for the UGV in this project, it is
important to point out that other methods of tracking are available, such as tracking
a colored object or a 3-D moving target, such as in Chakrabarty’s experiment with

an AR.Drone [6].



Lawrence and Turchina [23] evaluated different approaches to fiducial tag track-
ing. In their experiments on pose estimating software packages, they found that
ar_track_alvar was the best package for estimating the pose of a tag from the frame
of a camera. Packages they tried include: ar_sys, ar_pose, visp_auto_tracker,
and ar_track_alvar. However, not all of them work with ROS and some require a
wrapper. Due to time constraints, and the fact that ar_pose was not available in
ROS, they did not test it extensively. It is also important to note that the camera
they used to test the packages had a resolution of 640x480, while our tracking camera
has a resolution of 1920x1080. The higher resolution of the Bird’s Eye View cam-
era allows for better tag tracking, since the tag can move farther distances and still
remain within view of the camera. The next tested package, ar_sys, gave a range
of 30cm to 120cm at 30hz. Unfortunately, with our camera’s resolution, this would
require the UAV to fly too close to the UGV. The next package, visp_auto_tracker,
had a range of 60cm to 300cm at 30hz. One major drawback of this package was that
if the UAV lost sight of the tag, it needed to re-establish at the minimum distance to
continue tracking. Thus with this package, any time the tag was lost the UAV would
have to maneuver to a precise location to reinitialize the tracking. Lastly, Lawrence
and Turchina tested ar_track_alvar, which ran from 30cm to 300cm at 10hz. This
package had the best range for establishing tracking and is what this project will use.
One problem of tag tracking software, in addition to range limitations and reinitial-
izing the package when the tag is lost, is blurring of the tag due to motion. This
makes detecting the tag more difficult, and is discussed in detail in "A motion blur
resilient fiducial for quad-copter imaging" by Meghshyam Prasad et al. [33].

One problem with ar_track_alvar is determining what to do if the tag moves
out of view of the camera. If the tag is not visible, the package has no way of
tracking the UGV. Huang et al. proposed a solution to this in their paper "An
Object Following Method Based on Computational Geometry and PTAM for UAV



in Unknown Environments" [18]. Their solution was to use a Kalman filter in order

to predict the velocity of the tag, so the tag can be found and tracking reinitialized.

2.3 MONOCULAR SLAM

Monocular Simultaneous Localization and Mapping relies on computer vision tech-
niques to calculate the pose of the robot and map the environment. In this thesis,
monocular SLAM is performed on the UAV’s front camera for state estimation. Real-
time monocular SLAM was once thought impossible due to high computational costs
and was first implemented in the Parallel Tracking and Mapping (PTAM) pack-
age. Now, there exists a great variety of monocular SLAM packages, including LSD-
SLAM [11], SVO [13], and RatSLAM [27]. Many open-source vision-based SLAM
packages were compared in the 2016 paper by Li et. al. [12]. ORB-SLAM was found
to be one of the better performing packages, and is used in this project.

PTAM was originally made by Klein and Murray in 2007 [21]. Using the infor-
mation of the UAV’s camera combined with the IMU, it is able to find "features," or
the edges of detected obstacles, in order to estimate distance traveled as well as scale
of distances of objects from the UAV. PTAM has also been used in the collaboration
of multiple UAVs. Bazen et al’s 2016 experiment [2] involved coordinating a fleet
of quad-rotors using ardrone_autonomy and tum_ardrone. They found that, while
the completed missions were more accurate when PTAM was used, the missions were
successful less frequently. They theorized this was due to delay "between acquisition
of information by the drones and their actual displacement based on this information"
[2].

Another later monocular SLAM package, ORB-SLAM [29], improves upon the
work by Klein and Murray. ORB-SLAM uses ORB features, which are binary fea-
tures that are invariant to rotation and scale. Unlike PTAM, ORB-SLAM is able to

initialize with no user input, which is necessary for autonomous robot systems. ORB-
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SLAM allows for more accurate mapping by performing loop closure, where loops are
detected and the ends merged to remove drift over time. Additionally, the number of
keyframes used by ORB-SLAM when matching features increases depending on the
complexity of the image, unlike in PTAM where keyframes increase over time. This
is done by "culling" keyframes that are no longer used, and allows for ORB-SLAM to

run for longer periods of time.

2.4 COOPERATIVE LOCALIZATION

Cooperative localization (CL) deals with estimating the pose of teams of mobile robots
using sensor data. This is done in order to provide enhanced localization compared
to the robots’ localization capabilities without cooperation. In order for this to be
done, a transformation matrix between two robots must be calculated. Cooperative
localization was first introduced by Kurazume et. al. [22] in 1994. At the time it
was known as "cooperative positioning." In this experiment, robots were separated
into two different teams: one team moving, while the other team remains a stationary
landmark for the other team. The teams then switch roles until all robots reach their
target position.

The term "cooperative localization" first appeared in 1998 in works by Bison et.
al. and Rekleitis et. al. [3, 36]. Since its conception, CL has been applied to
many different problem types in both 2- and 3-D, including vision-based [26, 14],
sonar-based [38, 34], and range-based [35, 16]. Two types of cooperative localization
techniques especially relevant to this thesis are those dealing with vision-based and
3-D problems. In 2009, Bahr et. al. used cooperative localization for the localization
of autonomous underwater vehicles. The goal of this work was to "create a fully
mobile network of AUVs [Autonomous Underwater Vehicles] that perform acoustic
ranging and data exchange with one another to achieve cooperative positioning for

extended duration missions over large areas" [1].

11



Early work was done on vision-based CL by Jennings, Murray, and Little [19]. In
this work, two stereo vision-based mobile robots explore and map their environment.
One robot finds landmarks in the environment that the second robot then uses to
localize itself relative to the first robot’s reference frame. This allows the robots to
collaborate on tasks using a common local reference frame without a complete map
of the environment. In 2011, Chang et. al. [7] worked with humanoid robots in
the RoboCup environment to localize and track moving objects using vision-based
cooperative localization. First, they estimated the robot pose by modeling the uncer-
tainty of motion commands and measurements. Then when other robots were within
the field of view, state estimates were refined using the estimated pose and distances

calculated based on the image.
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CHAPTER 3

APPROACH

This chapter describes the necessary parts of the Bird’s Eye View system and how
they must act together in order to achieve the goals set out above. The robots must
be able to communicate with each other and with a Ground Control Station. One
of the robots must detect the fiducial tag on the other and extract the coordinate
transformation between the UAV and the UGV. The UAV has to be able to hover
above the UGV while tag-tracking is maintained. The UGV must autonomously
explore a hallway, and finally, the UAV must be able to detect the pose of the UGV
and move accordingly while maintaining tag tracking.

In the development of the UAV/UGV system, several open source ROS packages
were used: bebop_autonomy, as a driver for the Bebop and joystick; usb_cam, a
driver for the Logitech HD Pro Webcam C910; and ORB-SLAM 2, a monocular
SLAM package. Package documentation such as the setup and use of these packages

is described in more detail in Appendix A.

3.1 RoBOT TEAM NETWORK

Communication between the UAV, UGV, and a Ground Control Station is enabled by
a network connecting the 3 systems. The Bird’s Eye View project requires two PCs: a
Ground Control Station (GCS) and a TurtleBot PC. The TurtleBot PC is connected
to the TurtleBot and the Hokuyo laser scanner via USB. A portable router and power
source (for the router) are also placed on the TurtleBot. The specific router used in

this project is the TP-Link 150Mbps Wireless-N Nano Pocket Router. The TurtleBot

13



PC was connected to this router using an Ethernet cable. The Ground Control Station
was then connected wirelessly via WiFi to the router. These two connections allow
the TurtleBot PC and GCS to communicate with each other. Since the TurtleBot PC
can be controlled wirelessly using the GCS, the GCS can now be used to control both
the Bebop and the TurtleBot. The GCS must be kept within range of the portable
router in order for both robots to operate correctly. However, the TurtleBot PC will

always be within range of the router. All components of the Bird’s Eye View network

are shown in the diagram below; see Fig 3.1.

Ground
Control
Station

Figure 3.1 Shows the network connections between the ground Control Station
(GCS), the TurtleBot, and the Bebop. Connections are shown in blue.
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3.2 MOVEMENT OF THE UGV

Two different motion strategies were used for the UGV. First, in order to challenge
the tracking capabilities of the UAV, the UGV is placed inside an enclosed area and a
random walk is executed. The UGV moves forward until it reaches near an obstacle,
then performs an in-place rotation of 180 degrees plus a small random value, then
moves again in a straight line. An example of random walk motion can be seen in
Figure 3.2. The UAV was able to follow the UGV throughout these movements, even

though in place rotations are more challenging.

Y W "
A

Figure 3.2 An example of a random walk motion algorithm showing laser scans
and odometry data in rviz.

Second, the UGV uses a center-of-the corridor following algorithm employing a

PID controller to navigate hallways. This algorithm compares the distances read by



the laser scanner 60 degrees off the center of the UGV. As the UGV moves forward,
it also turns slightly favoring the side with the longer distance. This is the core
behavior of the generalized Voronoi graph algorithm [8]. Under the GVG algorithm,
the UGV begins by moving away from the closest obstacle, and then moves following
the equidistant from two obstacles loci. Once the UGV is equidistant to more than
two obstacles, its location is defined as a meetpoint. The GVG is defined as the graph
where edges represent equidistant to two obstacles points, and vertices represent
points where three or more edges meet. Every new meetpoint has at least three
edges. If all the edges of a meetpoint are explored then the meetpoint is marked as
explored. The algorithm follows edges until all meetpoints are marked as explored.
Communication between the two robots improves the UGV’s movement algorithm.
The UGV does not start moving until the UAV is able to see the fiducial tag. This
allows for a much simpler initialization process. Furthermore, should the UAV lose
sight of the tag for more than two seconds, the UGV halts its motion and waits for
the UGV to find the tag again. Should the UGV be unable to find the tag again, it
is possible for an operator to step in and move the UAV back into position using the

joystick controller.

3.3 TAG DETECTION & MOVEMENT OF THE UAV

When first launched by a trained operator, the UAV must be moved into position so
the fiducial tag is above the TurtleBot’s camera using a Logitech F710 joystick and
the bebop_autonomy package. The joystick allows for precise control in moving the
UAV to a position where it is able to recognize the tag. The joystick also provides
a safety feature to control the UAV should loss of control occur during the flight.
Once in position, the UAV then autonomously follows the UGV utilizing the fiducial
tag. Early work employed the Parrot AR.Drone 2.0 and the tag was mounted on the

UGV, see Fig. 3.3. This previous approach is discussed further in Section 3.6.

16



Tracking Map, quaity good. Found: 213/299 143/224 53/89 22/56 Map: 694P, 7KF
Quality: best scale: Inf (scc: 0.500) PTAM time: 6 ms (6 ms total)

Figure 3.3 Early UAV camera feeds: In the left image, the bottom camera
observes the tag placed on top of the UGV. The right image shows the front camera
view with PTAM detected features overlayed.

The Bird’s Eye View system uses tags generated by the ar_track_alvar ROS
package. When a tag is within view of the UGV’s upward-facing camera, the esti-

mated pose of the tag is published to the ar_pose_marker ROS topic; see Fig. 3.4.

fusb_cam/fimage_raw

Figure 3.4 Bebop 2 flying over the UGV with a tag.
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The drone then moves so that the tag remains directly over the camera. This is done
by transforming the tag’s pose to x, y, z, and yaw values relative to the UAV’s frame
of reference. To maintain tracking, the tag must remain within the camera’s field of
view. A 4.6 cm tag was found to be most visible from a height of 0.65 to 0.95 meters.
As a result, a constant height value of 0.8 is added to the negative z dimension. Next,
the x- and y-velocities of the tag are calculated using the current state of the tag, the
previous state, and the time difference between the two states. The current pose of
the tag and the tag velocities are used to calculate the speed that UAV should fly in

order to maintain sight of the tag. The UAV’s velocities are calculated as follows:

UAV.angular.z = tag.yaw * ¢

UAV.linear.z = tag.z * c
UAV.linear.x = tag.x x d + tag.vx
UAV.linear.y = tag.y * d + tag.vy

In these equations, ¢ and d are constant scaling factors. These factors are necessary
because the bebop_autonomy driver expects velocities between -1 and 1 inclusive.
Best results were obtained using ¢ = 0.4 and d = 0.07. The velocities do not take
into account any information generated by ORB-SLAM, as it is much less reliable

than cooperative localization.

3.4 COOPERATIVE LOCALIZATION

The Bird’s Eye View package performs the cooperative localization of the UAV using
the pose of the UGV provided by the ROS topic odom and pose of the tag provided
by ar_pose_marker. First, the odometry data is transformed from the base link
frame to the map frame. This transform converts the local pose at the rotational

center of the robot to the fixed world frame. The map frame should not drift over

18



time and is generated by the gmapping package using odometry data. This transform
is necessary to ensure that cooperative localization done with respect to the UGV’s
pose can be shown in the world map frame. The relationship between the camera’s
pose and the robot’s base_link is always fixed. The camera is located approximately
0.45 meters above the TurtleBot’s base. This distance is taken into account when

calculating the UAV’s pose. Next, the relationship between the fiducial tag’s position

/TO (ORB-SLAM 2) )&\

r’\&p

gmapping (LIDAR+Odometry)

(
=g

Figure 3.5 Shows the relationships between different odometry and localization
methods used.

and the TurtleBot’s camera is obtained using the data provided by ar_track_alvar.
This pose along with the difference between the height of the camera and height of
the base_link is added to the UGV’s pose. The resulting pose is the UAV’s current
position in the world frame as estimated using cooperative localization. Since the

UAV’s and UGV’s poses are both with respect to the world frame, they are easily
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plotted in rviz alongside the laser scan data. The two principal methods used in the
cooperative localization package are available in Appendix B. Figure 3.5 shows how

the different odometry and SLAM data relate to one another.

3.5 UAV LocaLizaTioN Using ORB-SLAM

X - ORB-S5LAM2: Current Frame

SLAM MODE | KFs: 99, MPs: 7770, Matches: 334

Figure 3.6 Shows the Bebop’s front camera view with ORB-SLAM features
overlayed in green.

In addition to being calculated through cooperative localization, the UAV’s pose is
also computed by ORB-SLAM 2. ORB-SLAM detects features in the UAV’s camera
feed and uses the change in location of these features to determine the pose of the
camera. These features can be seen in Fig. 3.6; new features are added every time
a new keyframe is taken. Because monocular ORB-SLAM does not use odometry
data from the UAV or have a baseline for the size of its surroundings, it has no way

of knowing how to scale the poses it calculates. As a result, it uses an arbitrary
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scale. In order to compare ORB-SLAM poses to the poses calculated by gmapping
and cooperative localization, the scale of the ORB-SLAM data must be adjusted to
match. The data is translated to the start position in the world frame and then
multiplied by a scaling factor.

In order for ORB-SLAM to be used during the experimental runs, ORB-SLAM 2
must be modified to publish the calculated camera pose to a rostopic. This is done by
getting the matrix returned by the ORB-SLAM method TrackMonocular, converting
it to an odometry message by separating out the rotation and translation values, and

then publishing this odometry message.

3.6 REJECTED APPROACH

Originally this project was attempted using an AR.Drone 2.0 rather than a Bebop.
The ROS package tum_ardrone was used as a PID controller and monocular SLAM
(Simultaneous Localization and Mapping) package. In this iteration, the tag was
placed on the UGV while the UAV used its bottom-facing camera to track the tag’s
motion. However, this UAV was unable to use the front and bottom cameras si-
multaneously. To deal with this issue, a workaround using a camera switching node
to toggle between the front and bottom cameras approximately once a second was
implemented. If the cameras swapped too fast, the topics would become corrupted;
too slow and the UAV would be unable to track the UGV. The ROS package joy
was used for joystick control.

However, this approach did not succeed. PTAM was not able to accurately es-
timate the UAV’s pose with such limited camera frames, resulting in large amounts
of drift. Additionally, the bottom-facing camera on the AR.Drone had a lower res-
olution, meaning if the UGV moved at a rate greater than 0.2 meters per second,
the UGV could move out of view of the UAV in the time it took the cameras to

switch. This would lead to a loss of tracking. Furthermore, the switching delay oc-
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casionally caused corrupted images. The Parrot AR.Drone 2.0 was very unstable in
position keeping, and it drifted easily away from the target due to a less advanced
ROS driver. In particular, the AR.Drone had difficulty rotating while maintaining
its position. This drift was compounded with a loss of feature tracking by PTAM,
which does not perform well during rotations because all known features are lost if
rotation occurs too quickly.

Another problem encountered was that the PID controller used by tum_ardrone
was not intended to be used with a moving target such as a TurtleBot. The controller
would not advance to new target destinations until the previous destination had been
reached. When combined with the constant drift of the AR.Drone, this meant that the
target destination could not be updated quickly enough. By the time the AR.Drone
accounted for it’s drift and made it to the first target, the TurtleBot would have

moved out of the field of view of the AR.Drone’s downward-facing camera.
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CHAPTER 4

REsuLTS

In order to evaluate the system’s performance, several criteria must be taken into
account: how well the UGV navigates the environment; how well the UAV tracks and
follows the UGV; and whether the above tasks are able to be completed autonomously.
Experimental data was collected by having the robots explore the hallways of the
Swearingen Engineering Center and a bounded arena in multiple trials. After the
UAV is positioned within the camera’s view, no other assistance is provided by the
operator except in the case of an emergency.

The Bird’s Eye View project can be evaluated by comparing the poses of the
UAV and UGV to determine how well the UAV succeeds in following the UGV. The
pose of both the UAV and UGV are visualized in rviz, and the pose provided by
cooperative localization is compared to the pose calculated by ORB-SLAM. Finally,
the video from the TurtleBot’s camera is be examined to determine if any issues in
tag detection or following are present.

Figure 4.1 presents the paths of the two robots for an early experiment using the
Parrot Ar.Drone 2.0 UAV. While the UGV moves smoothly along the corridor, the
UAV has a much less direct trajectory as it drifts away repeatedly, and the controller
brings it back above the UGV. Additionally, the ending position of the UAV was
several meters before the end position of the UGV. This is because PTAM would
lose feature detection frequently because of the low frame rate. Whenever feature
detection and tracking was lost, the pose of the UAV could not be updated. When

feature detection resumed, all of the motion that occurred while tracking was down
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PTAM Drone Map View

Drone Pose: xyze(-031, 2.95 -0.08), rpy=(15.33, 131, -154.63)

Figure 4.1 Early Experiments with the AR.Drone 2.0. Shows a 2-dimensional map
of the environment and path taken by the robots.

was lost.

Figure 4.2 shows the more stable performance of the Parrot Bebop 2. Similarly
to Fig. 4.1, in this trial run the UGV traveled along the corridor on Swearingen’s
first floor. This trial used the center-of-the-corridor algorithm. As can be seen in
Fig.4.2, the UAV very closely followed the UGV as it navigated the hallway. The
tag remained within view as the robots rotated, and tracking was maintained. No
operator assistance was provided during this run. This experiment ended when the
Bebop’s battery died. Since the Bebop is only capable of 25-30 minutes of flight, care

must be taken to recharge the battery after every flight. One solution to extending the

24



life of the Bird’s Eye View system can be seen in the work of Rezelj and Skocaj [37].

The UAV could land on the UGV when the battery was low and recharge before

resuming its exploration.

Figure 4.2 Traversing down the corridor with the walls mapped. The UGV
trajectory is shown in blue and the UAV trajectory, above, in pink.

Figure 4.3 presents a more challenging scenario where the UGV performed a ran-
dom walk inside a bounded arena. The UAV followed along even when the UGV
performed a 180 degree rotation. Since the Bebop is prone to drift when rotating,
maintaining track of the tag is more difficult during pure rotation than translation
with rotation. As result, more noise can be seen in the path of the UAV than in the
previous center-of-the-corridor experiment. In addition, the rotations must be done
slowly in order for ORB-SLAM to be able to maintain feature detection. Despite
this, the UAV was still capable of following the UGV as it performed these rotations.

Figure 4.4(a) shows the Pangolin GUI generated by ORB-SLAM. It shows the
feature points and keyframes used in calculating the pose of the UAV. This pose is
given in a world reference frame. However, since ORB-SLAM does not have any

knowledge of the scale of the system, it is not the same world coordinate frame used
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Figure 4.3 Random walk experiment with the walls mapped. The UGV trajectory
is shown in blue and the UAV trajectory, above, in pink.

by the UGV and cooperative localization. In order to be compared directly to those
poses, the ORB-SLAM data must be scaled accordingly. Figure 4.4(b) shows this
data scaled and plotted next to the CL data and UGV’s trajectory. As can be seen in
this figure, the ORB-SLAM data is not as accurate as the CL data. The trajectory
drifts upward over time and is not corrected. However, the x- and y-dimensions of the
ORB-SLAM trajectory are very similar to those found using cooperative localization.
This scaled pose could be used as an estimate for the UAV’s world frame pose when
the tag is not visible by the system. Using the UGV’s global pose and ORB-SLAM,
the UAV could attempt to find the UGV without the help of a trained operator if
tracking is lost.

Figure 4.5 shows a long trial run down the 3rd floor of Swearingen. This ex-
periment ran for 808 seconds, or 13 minutes. At a speed of .15 meters/second, the
UAV and UGV covered 120 meters. For increased distance, the speed of the UGV
could be increased. However, if the speed is too high, the UAV will be unable to

follow the tag. This is because at high speeds the UAV will move out of view of the
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Figure 4.4 Center-of-the-corridor ORB-SLAM experiments: (a) The left image
shows a map of features and keyframes generated by ORB-SLAM. (b) In the right
image, the UGV trajectory is shown in blue, the UAV trajectory as calculated by
CL in pink, and the UAV trajectory according to ORB-SLAM in green.

UGV’s camera. During this experiment, the operator intervened one time when the
UAV flew directly under an A/C vent and was blown off course. The length of this
experiment shows that the UAV is able to follow the UGV for long distances without

drifting off course. In all of the experimental data collected, the pose of the UAV

Figure 4.5 Traversing Swearingen’s 3rd floor with the walls mapped. The UGV
trajectory is shown in blue and the UAV trajectory, above, in pink.
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and UGV are very similar, excluding the difference in height above the ground. The
UGV successfully navigates the corridors of the Swearingen building, staying in the
center of the hallway, and the maps produced by rviz and ORB-SLAM accurately
show the robots’ paths through the hallways. As all of these objectives are met, one
can say the two robots are able to co-operatively and autonomously explore and map

an unfamiliar environment.

28



CHAPTER 5

CONCLUSION

This thesis aims to determine the abilities of a UAV and UGV team to autonomously
search, map, and explore an indoor environment. The two vehicles remain in contact
with each other visually and over a WiFi network. Cooperative localization of the
UAV using the UGV’s pose and relative pose between the two is combined with
the UAV’s pose as calculated by ORB-SLAM for more accurate localization. The
framework developed in this thesis is for application in search and rescue.

The results show that the UGV is able to autonomously navigate the environment
and that the UAV is able to follow the UGV using vision-based techniques for long
periods of time. The pose of the UAV is calculated both using cooperative localization
and the monocular SLAM package ORB-SLAM for enhanced localization. These
poses are plotted in rviz alongside the TurtleBot’s pose as calculated from the laser
data to show the viability of this approach.

Future work not covered in this thesis could include more robust communication
over the WiFi network. For example, if the UAV loses track of the tag, once the
UGV has stopped moving due to the lost tag signal it receives, the UGV could send
its current pose data to the UAV. Once this data has been transformed to the UAV’s
coordinate frame, the UAV could then fly to the location of the UGV using ORB-
SLAM to localize. Once the tag is back within sight, the UAV would notify the UGV
and the UGV would continue on navigating the environment.

Another way to improve upon this project would be expanding ORB-SLAM to

perform 3-D mapping of an area using both the UAV’s front camera and UGV’s laser
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scanner. Currently the maps provided by the laser rangefinder and ORB-SLAM are

kept separate, but could be combined for increased accuracy.
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APPENDIX A

PLATFORM DOCUMENTATION

A.1 SOFTWARE INSTALLATION

The Bird’s Eye View project depends upon a functioning Kobuki TurtleBot 2 with a
Hokuyo laser scanner, a Parrot Bebop 2, a portable router, and a Logitech joystick
controller. A functioning ROS installation is also needed. The software needed in
order for all these parts to work together is specified below, along with installation

instructions.

A.1.1 ROS

A complete guide to installing and using ROS, the robot operating system, can be
found in the ROS wiki at http://wiki.ros.org/R0S/Installation. This project

uses ROS Indigo on an Ubuntu 14.04 machine.

A.1.2 KoBUKI TURTLEBOT 2

The software needed for the TurtleBot 2 and its installation is described in detail in
the platform documentation by Adem Coskun. Instructions are also available in the
ROS wiki at http://wiki.ros.org/Robots/TurtleBot. These instructions assume
a Microsoft Kinect is used as a sensor; however, the TurtleBot used for this project
instead uses a Hokuyo 20m laser scanner.

This laser scanner requires the ROS package urg_node to be installed. This can

be done by running the command
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$ sudo apt—get install ros—indigo—urg—node

on an Ubuntu machine. Before running this node, ROS must be granted access to

the laser scanner. To do this, run
$ sudo chmod atrw /dev/ttyACMO

This package is used instead of hokyo_node because this model laser scanner connects
using an Ethernet port, which is not supported by hokuyo_node. If using a Hokuyo

laser that connects via USB, run

$ sudo apt—get install ros—indigo—hokuyo—node

A.1.3 PARROT BEBOP 2

The Bebop requires multiple packages in order to navigate, to map its surroundings
and track the position of the robot, to track a fiducial tag, and to switch between the
front and bottom cameras. The packages required in order for the robot to perform all
tasks necessary for this project are: bebop_autonomy; orb_slam; ar_track_alvar;
usb_cam; and the ar_tag following package, which will later be available on the
official Bird’s Eye View GitHub. These packages depend upon OpenCV, which comes
preinstalled with Ubuntu 14.04. However, it should be noted that OpenCV 3.0 will
give compilation errors; instead, version 2.4.10 should be used. To check which version

you have, run
$ dpkg —1 | grep libopencv

Installation instructions for OpenCV 2.4.10 can be found at http://docs.opencv.

org/2.4/doc/tutorials/introduction/linux_install/linux_install.html.

BEBOP AUTONOMY

The bebop_autonomy package should be installed first, as the packages described

below depend upon it. bebop_autonomy is an open-source ROS driver for the Parrot
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Bebop quad-copter (both 1 and 2). It can be installed by first running

$ sudo apt—get install build—essential python—rosdep

python—catkin—tools

to insure these necessary packages are installed. Next, in the catkin workspace direc-

tory,

$ git clone https://github.com/AutonomyLab/bebop_autonomy. git
src /bebop__autonomy

Update rosdep database and install dependencies (including
parrot__arsdk)

rosdep update

rosdep install —from—paths src —i

Build the workspace

o K L £ H I

catkin build -DCMAKE BUILD TYPE=RelWithDebInfo

should be run to install bebop_autonomy and to insure that all dependencies are
installed. Documentation for the Bebop is available at http://bebop-autonomy.

readthedocs.io/en/latest/installation.html.

ORB-SLAM 2

The ORB-SLAM 2 package is made up of three different threads: tracking, local
mapping, and loop closure [29]. The package is available on GitHub. To begin, first
make sure to install OpenCV, Eigen 3, and Pangolin, as ORB-SLAM depends on
these packages.

After installing the above, ORB-SLAM 2 can be installed by running the following

commands

$ git clone https://github.com/raulmur/ORB_SLAM2. git
ORB_SLAM2
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$ cd ORB SLAM?2
$ chmod +x build.sh
$ ./build.sh

in order to install this package. Then run

$ export ROS PACKAGE PATH=${ROS PACKAGE PATH}:PATH/
ORB_SLAM2/Examples /ROS

$ chmod +x build ros.sh

$ ./build_ros.sh

to add ORB-SLAM to the ROS PACKAGE PATH environment variable and
build the package. Further documentation is available at https://github.com/
raulmur/0ORB_SLAM2. Sample data sets are available at http://vision.in.tum.de/
data/datasets/rgbd-dataset/download.

Before using ORB-SLAM, a settings .yaml file must be created. This file contains
camera parameters and ORB-SLAM parameters. An example .yaml file is provided

in the ORB-SLAM source.

AR TRACK ALVAR

The ar_track_alvar package is an open source AR tag tracking library. This package
is capable of generating AR tags, as well as identifying and tracking the pose of

individual AR tags. To install this package, tun
$ sudo apt—get install ros—indigo—ar—track—alvar

Pre-made fiducial tags can be downloaded from the ar_track_alvar ROS wiki page
at http://wiki.ros.org/ar_track_alvar. Alternately, a tag with custom ID num-

bers, border widths, or sizes can be generated by running

$ rosrun ar track alvar createMarker
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The size of the tag must then be updated in the launch file of your choice (e.g.
launch/pr2_indiv_no_kinect.launch) by changing 4.4 in the line shown below to

the size of the tag in cm.

<arg name="marker_size' default="4.4" />

A.1.4 LocGITECcH F710 JOYSTICK

This project requires the use of a joystick controller to move the Bebop into an initial
position above the TurtleBot. To get the joystick up and running, first install the

ROS joy package.

$ sudo apt—get install ros—indigo—joy
To identify your joystick, run

$ 1s /dev/input
Take note of any jsX devices (where X is a number). Next, connect your joystick to
the computer and retype the previous command. The new jsX device that appears
is your controller.

Now that you’ve identified the controller, to test that the installation is successful

run

$ sudo chmod a+r /dev/input/jsX

$ jstest /dev/input/jsX

A.2 ROBOT INITIALIZATION

Now that the required software is all installed and compiled, the robots can be ini-
tialized. Because this project heavily depends on the network connection between
the two robots, initializing the networking will be discussed first, followed by a brief

explanation of initializing the Bebop and TurtleBot.
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A.2.1 NETWORKING

The Bird’s Eye View project requires two PCs, a Ground Control Station (GCS) and
a TurtleBot PC. The TurtleBot PC is placed on the TurtleBot and is connected to
the TurtleBot and Hokuyo laser scanner via Ethernet. A portable router and power
source (for the router) are also placed on the TurtleBot. The specific router used in
this project is the TP-Link 150Mbps Wireless-N Nano Pocket Router. The TurtleBot
PC should be connected to this router using an Ethernet cable. The Ground Control
Station should then connect wirelessly via WiFi to the router. These two connections
allow the TurtleBot PC and GCS to communicate with each other.

Next the TurtleBot PC should connect to the Bebop’s on-board network via WikFi.
This connection allows the TurtleBot PC to communicate with the drone. Since the
TurtleBot PC can be controlled wirelessly using the GCS, the GCS can now be used
to control both the Bebop and the TurtleBot. The GCS must be kept within range
of the portable router in order for both robots to operate correctly. All components
of the Bird’s Eye View network are shown in the diagram below [??]. The joystick
controller should be connected to the TurtleBot PC.

To control both robots from the Ground Control Station,
$ ssh user@ipaddress

must be run on the GCS, where user is your username on the TurtleBot PC, and
ipaddress is the IP address of the TurtleBot PC’s wireless adapter. This can be

found by running the command
$ ifconfig

and locating the IP address associated with the WiFi adapter.
Currently the GUI graphics provided by bebop_autonomy cannot be forwarded
via SSH, so will only appear on the TurtleBot laptop. As a result, before initializing

the Bebop, the command
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$ export DISPLAY=:0

must be run.

A.2.2 BEBOP AND TURTLEBOT

To initialize the TurtleBot, first power the robot up using the power switch on the
bottom right of the robot. Next plug the Hokuyo Ethernet and TurtleBot USB into
ports on the TurtleBot laptop. Move the TurtleBot to its starting position. Then
from the Ground Control station, which should be connected to the TurtleBot PC

through SSH, run the following command:
$ roslaunch afrl driver turtlebot —20—hokuyo.launch

This will initialize the TurtleBot and the Hokuyo laser.
To initialize the Bebop, first insert a battery and secure it in place. Then, if flying

indoors, the robot’s rotors can be protected with a guard. From the GCS, run
$ roslaunch ar_tag_ following bebop.launch

after ensuring that the TurtleBot PC is connected to the Bebop’s WiFi. This com-
mand initializes the joystick controller, the ar_track_alvar fiducial tag tracking,

and the bebop_autonomy package. Alternatively,

$ roslaunch bebop tools bebop nodelet iv.launch

$ roslaunch bebop_tools joy_teleop.launch

can be run. If it is not done automatically by the code controlling the drone, you must
make sure the emergency lights are set to green, and that flat trim has been called.
This can be done by using the joystick controller. To properly initialize ORB-SLAM,
after first taking off the robot should fly up a meter and then back down a meter to
allow ORB-SLAM to take keyframes. Both robots are now ready to begin exploring

the surrounding area.
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A.3 CONTROLLING THE ROBOTS

The goal of this project is for the TurtleBot and the Bebop to work together au-
tonomously. As a result, the two robots are primarily controlled through code which
instructs the TurtleBot to explore and the Bebop to follow the TurtleBot around.

This code can be run by typing

$ roslaunch afrl driver driver.launch

$ rosrun ar_tag tracking controller

The first line starts the exploration code on the TurtleBot, and the second starts
tag following on the Bebop. Note that these commands must be run on the GCS in
terminal with an open SSH session to the TurtleBot PC.

However, in order to get the Bebop into position above the TurtleBot, it can be
controlled using the joystick controller. These controller layout is specified in the
bebop_tools/config/log710.launch file (or a similar file). The code listed below

can be modified to assign the buttons to their functions.

teleop:
piloting:

type: topic

message_type: "geometry_ msgs/Twist'

topic_name: cmd_vel

deadman__buttons: [7]

axis_mappings:
axis: 3 # Right thumb stick (up/down)
target: linear.x
scale: 1.0

offset: 0.0
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axis: 2 # Right thumb stick (left/right)
target: linear.y

scale: 1.0

offset: 0.0

axis: 1 # Left thumb stick (up/down)
target: linear .z

scale: 1.0

offset: 0.0

axis: 0 # Left thumb stick (left/right)
target: angular.z

scale: 1.0

offset: 0.0

A deadman’s switch can be set, preventing any velocity commands from being sent
unless the button is held. By default this is the right trigger. To identify which

button is which, run the command
$ sudo jstest /dev/input/jsX

where jsX is the device ID of the joystick identified previously [A.1.4].
Further details on controlling the TurtleBot can be found in the paper by Adem
Coskun or on the ROS TurtleBot wiki at http://wiki.ros.org/Robots/TurtleBot#

turtlebot.2BAC8-Tutorials.2BAC8-indigo—-1.Navigation
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J/bebop/fimage_raw

Figure A.1 Front camera view of the Parrot Bebop 2.

A.4 SENSORS AND ACTUATORS

The TurtleBot 2 sensors and how to operate them are described in detail in the
paper by Adem Coskun. The sensors and actuators of the Bebop and the Hokuyo

laser scanner are described below.

A.4.1 BEBOP SENSORS

The drone comes with one camera installed. A 1080p front camera sensor with

a recording up to 30fps; The drone also comes with a 3-axis gyroscope, a 3-axis

accelerometer, and an ultrasound altimeter enhanced with an air pressure sensor.
The cameras first need to be calibrated. In order to do this, the ROS camera

calibration package must be installed. If it is not, run

$ rosdep install camera calibration

$ rosmake camera calibration
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The camera calibration files for all of the AFRL drones are available on the Bird’s
Eye View GitHub. The available rostopic for camera data published by the drone is

bebop/image_raw To begin calibrating, run

$ rosrun camera_calibration cameracalibrator.py
—size 8x6 —square 0.108 image:=/bebop/image raw

Camera::/camera

To get a good calibration, move the checkerboard around in the camera frame. More
detailed calibration instructions are available at the following web page: http://
wiki.ros.org/camera_calibration/Tutorials/MonocularCalibration.

The bebop_autonomy package calculates and publishes Odometry data based on
velocity estimates reported by the drone. The data is published to the bebop/odom
rostopic as standard nav_msgs/0dometry messages. The corresponding TF transform
is also published as odom -> base transformation in /tf.

IMU data including linear acceleration, angular velocity, and the orientation of
the drone is published as a standard ROS sensor_msgs/Imu message. The necessary

TFs are also published by bebop_autonomy.

A.4.2 HOKUYO LASER SCANNER

The Hokuyo laser scanner on-board the TurtleBot currently has a maximum range of
20 meters. Before launching, the network must be configured to allow communication
between the Hokuyo and the UGV. This can be done using the provided script file or
set permanently using the Network Manager. The script file, hokuyo_20.sh is shown

below

sudo ip addr flush dev ethl

$

$ sudo ip link set ethl up

$ sudo ip addr add 192.168.1.253/24 dev ethl
$

sudo route del —net 192.168.1.0 gw 0.0.0.0 netmask
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255.255.255.0 dev ethl
$ sudo route add —host 192.168.1.20 dev ethl

$ route —n
To launch the Hokuyo laser scanner, place the following code in a launch file.

<node name="hokuyo" pkg="urg node' type="urg node' >
<param name="frame_ id" value="base_ link" />
<param name="ip_address' value="192.168.1.20" />
<remap from="scan"' to="base_ scan' />
<param name="angle min"' value="-1.57"/>
<param name="angle max" value="1.57"/>

</node>

The data collected by the scanner can then be viewed in rviz, or can be used with
gmapping. Both the Hokuyo node and gmapping are launched by the

afrl_driver/turtlebot-20-hokuyo.launch file.

A.5 SHUTTING DOWN

To shut down the project, close all commands currently running in the terminal of
the Ground Control Station either by typing exit or by pressing CTRL+C. Also make
sure to end all SSH sessions. Shut down both the GCS and the TurtleBot PC. To
turn off the Bebop, remove the guard (if applicable) and unplug the battery. The
battery should then be charged for later. To shut down the TurtleBot, unplug the
Hokuyo Ethernet and the TurtleBot USB from the TurtleBot laptop. Then flick the
switch located at the bottom right side of the TurtleBot. The TurtleBot should also
be charged for later use. Unplug the power bank from the portable router, and if

needed, charge the power bank.
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APPENDIX B

COOPERATIVE LOCALIZATION CODE

void tagCallback (const ar_ track alvar msgs:: AlvarMarkers::

ConstPtr& msg) {

// Get tf from base_link to map

listener . waitForTransform ( "'map", "base link", ros::Time(0),

ros :: Duration (7.0));

try {

listener .lookupTransform ("'map", "base_ link",

ros ::Time(0), tfTransform);

} catch(tf:: TransformException &exception) {

ROS_ERROR( "%s ", exception.what())

}

turtlePose . header.stamp

// Get TurtleBot position

turtlePose.
turtlePose
turtlePose
turtlePose
turtlePose
turtlePose

turtlePose

pose

. pose.

. pose.

. pose.

. pose.

. pose.

. pose.

.position .x
position.y
position .z
orientation
orientation
orientation

orientation

w=tf{Transform
.x=tfTransform
.y=tfTransform .

.z=tf{Transform .

tfTransform.getOrigin ().x
tfTransform . getOrigin ().y

tfTransform.getOrigin (). z
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getRotation (). w();
getRotation ().x();
getRotation ().y();
getRotation ().z();



// Add the Turtlebot’s current position to its path

turtlePath.poses.push_back(turtlePose);

// If this is the first data recieved about the TurtleBot
// save the header stamp, and publish the path
if (!turtlePath.poses.empty()){

turtlePath .header.stamp=turtlePath.poses[0]. header.stamp;

}
turtlePathPub . publish (turtlePath );

// If the UAV’s tag is within view of the TurtleBot,
// calculate the pose of the UAV wusing CL
if (!msg—>markers.empty()) {

tagPose = msg—>markers [0]. pose;

dronePose = getDronePose(turtlePose );

dronePath . poses.push_ back(dronePose);

J// If this is the first data recieved about the drone
// save the header stamp, and publish the path
if (! dronePath.poses.empty()){

dronePath . header.stamp=dronePath.poses [0]. header.stamp;

}
dronePathPub. publish (dronePath );

// Method for computing the UAV’s pose
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geometry_msgs :: PoseStamped getDronePose (geometry msgs:

PoseStamped turtlePose) {

//Set the drome’s pose equal to that of the TurtleBot'’s

geometry msgs:: PoseStamped dronePose;

dronePose = turtlePose;

//Add the pose relation between the TurtleBot and the

// fiducial tag,

dronePose . pose. position .x 4=
dronePose.

dronePose.

dronePose

dronePose.
dronePose.

dronePose.

pose.

pose.

. pose.

pose.

pose.

pose.

position.y 4=

position .z 4=

orientation
orientation
orientation

orientation

return dronePose;

WA=

X A=

Ly =
.7 t=
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tagPose.

tagPose
tagPose

tagPose

accounting for the height of the

pose.
. pose.
. pose.

. pose.

tagPose.pose. position .x;
tagPose.pose.position.y;

tagPose.pose. position.z

+ TURTLEBOT HEIGHT;

orientation.
orientation .
orientation.

orientation.

TurtleBot



