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Abstract

This paper proposes a solution to the problem of cooperative exploration using an

Unmanned Ground Vehicle (UGV) and an Unmanned Aerial Vehicle (UAV). More

specifically, the UGV navigates through the free space, and the UAV provides en-

hanced situational awareness via its higher vantage point. The motivating applica-

tion is search and rescue in a damaged building. A camera atop the UGV is used to

track a fiducial tag on the underside of the UAV, allowing the UAV to maintain a

fixed pose relative to the UGV. Furthermore, the UAV uses its front facing camera

to provide a birds-eye-view to the remote operator, allowing for observation beyond

obstacles that obscure the UGV’s sensors. The proposed approach has been tested

using a TurtleBot 2 equipped with a Hokuyo laser ranger finder and a Parrot Bebop 2.

Experimental results demonstrate the feasibility of this approach. This work is based

on several open source packages and the generated code will be available online.
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Chapter 1

Introduction

With the proliferation of unmanned air vehicles (UAVs) a new viewpoint, a birds-

eye-view, has become available in many domains, allowing structure inspection, envi-

ronmental monitoring, virtual tourism, and search and rescue. The majority of aerial

vehicles are severely limited in the sensing payload they can carry due to weight

constraints. As such, simple tasks such as obstacle avoidance and localization in an

unknown environment become rather challenging. On the other hand, ground robots,

while extremely capable in navigating safely inside an unknown environment, are re-

stricted to a limited field of view. Deploying a robot team comprised of a ground

and an aerial vehicle enables an enhanced field of view while maintaining safe navi-

gation and localization. Recent advances in robotics have made collaboration among

a heterogeneous team of robots possible [39]. At the same time, many interesting

problems associated with multi-robot collaborative exploration are being discussed,

such as coordination, communication protocols, bandwidth constraints, etc. [24, 42].

One motivating application is search and rescue in a damaged building, where the

UGV navigates on the ground while the UAV maintains a fixed pose above the UGV

employing a robot-tracker sensor consisting of a camera and fiducial marker. The

robot team could search and map dangerous areas, monitored by a remote operator

at a safe distance. 1

The goal of this thesis is to present a collaborative exploration approach utiliz-

1Early parts of this work have been submitted jointly with Kelly Benson, Daniel Madison, Patrick
Hamod, Jason O’Kane, and Ioannis Rekleitis to the 2017 International Conference on Unmanned
Aircraft Systems.
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ing a UGV and a UAV. The UGV, a Kobuki TurtleBot 2 equipped with a Hokuyo

laser range finder and an upwards-facing camera, is responsible for guiding the UAV

through the corridors of a building; see Fig. 1.1. The UAV, a Parrot Bebop 2 equipped

with a forward facing camera, provides enhanced situational awareness to a remote

expert; see Fig. 1.2. The UAV does not process all data and commands on-board.

Instead, utilizing a WiFi connection, the sensor data are transmitted to a ground

station where all the processing takes place. Currently we utilize two computers: one

on the UGV and a separate one as a ground control station (GCS). A unique fiducial

tag placed on the bottom of the UAV is tracked by a wide angle camera on top of

the UGV, and the relative pose between the two vehicles is estimated.

Using cooperative localization, the pose of the UAV is calculated using the Turtle-

Bot’s pose and the relative pose of the two robots. This calculated pose is compared

to the pose provided by ORB-SLAM2 [29], a monocular SLAM package run using

data provided by the UAV’s camera. These two localization techniques improve the

accuracy of UAV’s estimated pose, allowing for easier path planning and tracking of

the tag.

Related work is discussed next. Chapter 3 outlines the proposed methodology.

Experimental results and factors affecting the performance are discussed in Chapter

4. The thesis concludes with a discussion of lessons learned and future directions.
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Figure 1.1 The Kobuki TurtleBot 2 used in this thesis. Also seen are the Hokuyo
laser, TurtleBot camera, and router used.
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Figure 1.2 The Parrot Bebop 2 used in this thesis.
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Figure 1.3 A fiducial tag attached to the bottom of a Parrot Bebop 2.
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Chapter 2

Related Works

Cooperative robotics has been explored as early as the 90’s, such as when Cao et

al. [4] discussed possible future applications and the open problem of collaboration

between autonomous robots. Yuta and Premvuti [43] discussed how to organize

multiple autonomous robots. Several previous experiments have examined the best

software for tag tracking, autonomous communication between robots, or have used

similar setups involving both a ground and an aerial based robot. Collaboration

between UGVs and UAVs has been proposed for a variety of fields. For example, in

the detection and fighting of wildfires [32], in measuring the amount of nitrogen in

the soil for agricultural applications [41], for surveillance [17], and for detecting and

disposing of mines [10]. UAVs have also been used to monitor traffic [20].

2.1 Robot Collaboration

Chaimowicz and Kumar [5] discussed ground robot and aerial robot localization in

their 2007 paper. Their research focused on environments with limited GPS access,

and on using GPS in conjunction with other sensors. Similar concerns also drove

the work of Frietsch, Meister, Schlaile, and Trommer [15]. However, unlike these

two previous works, the approach proposed by this thesis assumes no GPS access,

instead relying on cooperative localization [36] between the two vehicles as well as

pose estimates calculated from the laser scan and cameras.

Another area of interest is collaboration between sea-based robots and aerial

robots; see Murphy et al. [30] and Shkurti et. al. [39]. In their paper titled "Multi-
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domain monitoring of marine environments using a heterogeneous robot team," Shkurti

et. al. used underwater vehicles, airboats, and aerial vehicles to autonomously col-

lect footage of underwater scenes. In Murphy’s experiment, the robots were used

to survey storm damage from Hurricane Wilma. It was also "the first known use of

unmanned sea surface vehicles (USVs) for emergency response" [30].

MacArthur and Crane [25] investigated using a UAV in the state estimation of a

UGV. In their paper, they discuss camera calibration and extracting pose from camera

data, as well as the coordinate transforms needed. Unlike with this project, GPS was

integrated with pose information. MacArthur and Crane found that localization of a

UGV using a passive UAV was successful in both simulated and experimental runs.

Cooperation between UAVs and UGVs for target detection and formation holding

was proposed by Tanner [40]. Duan and Liu [9] discuss an overview of multiple vehi-

cles collaborating with a focus on military applications. Papachristos and Tzes [31]

proposed a tethered solution to address the limited battery time for longer opera-

tions. Autonomous landing on a UGV charging station was proposed by Rezelj and

Skocaj [37].

2.2 Tag Tracking

Other projects on similar topics have focused more on landing the drone on a target

rather than following the target for cooperative exploration with a ground vehicle.

One example is the research by Minhua and Jiangtao, which involved landing an

AR.Drone 2.0 on an augmented reality tag that designated a landing pad [28]. Minhua

and Jiangtao tried two different methods of tracking the landing pad. The first was a

QR code, which they found gave the UAV more information about the landing area,

but at the cost of more processing time [28]. This caused delays and inaccuracy while

tracking the QR code. The second method they tried was tracking augmented reality

tags through a package called ar_track_alvar, which they found processed the tag
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faster. This faster computation is possible because ar_track_alvar is initialized

with the size of the tag to help it better determine the position of the tag relative

to the frame given. In this experiment, Minhua and Jiantao modified the front

camera of the drone to point towards the ground for better tag tracking because

the front camera has a higher resolution [28]. They also experimented with using

ar_track_alvar in conjunction with tum_ardrone, a wrapper for PTAM (Parallel

Tracking and Mapping) and PID controller for the drone, when they were landing

the AR.Drone on a tag. They found that using ar_track_alvar to find the tag and

tum_ardrone for the PID controller to move the UAV into position of the tag landing

zone worked fairly well [28].

Figure 2.1 An example of a QR code is shown to the left, while two fiducial tags
generated by ar_track_alvar are shown on the right.

Another example of previous work related to autonomous flight is the experiment

by Rezelj and Skocaj focused on landing a modified AR.Drone on a TurtleBot with

an augmented reality tag, so that the drone could charge and then take off again by

making use of the ground vehicle’s longer battery life [37].

Although a fiducial tag will be used as a marker for the UGV in this project, it is

important to point out that other methods of tracking are available, such as tracking

a colored object or a 3-D moving target, such as in Chakrabarty’s experiment with

an AR.Drone [6].
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Lawrence and Turchina [23] evaluated different approaches to fiducial tag track-

ing. In their experiments on pose estimating software packages, they found that

ar_track_alvar was the best package for estimating the pose of a tag from the frame

of a camera. Packages they tried include: ar_sys, ar_pose, visp_auto_tracker,

and ar_track_alvar. However, not all of them work with ROS and some require a

wrapper. Due to time constraints, and the fact that ar_pose was not available in

ROS, they did not test it extensively. It is also important to note that the camera

they used to test the packages had a resolution of 640x480, while our tracking camera

has a resolution of 1920x1080. The higher resolution of the Bird’s Eye View cam-

era allows for better tag tracking, since the tag can move farther distances and still

remain within view of the camera. The next tested package, ar_sys, gave a range

of 30cm to 120cm at 30hz. Unfortunately, with our camera’s resolution, this would

require the UAV to fly too close to the UGV. The next package, visp_auto_tracker,

had a range of 60cm to 300cm at 30hz. One major drawback of this package was that

if the UAV lost sight of the tag, it needed to re-establish at the minimum distance to

continue tracking. Thus with this package, any time the tag was lost the UAV would

have to maneuver to a precise location to reinitialize the tracking. Lastly, Lawrence

and Turchina tested ar_track_alvar, which ran from 30cm to 300cm at 10hz. This

package had the best range for establishing tracking and is what this project will use.

One problem of tag tracking software, in addition to range limitations and reinitial-

izing the package when the tag is lost, is blurring of the tag due to motion. This

makes detecting the tag more difficult, and is discussed in detail in "A motion blur

resilient fiducial for quad-copter imaging" by Meghshyam Prasad et al. [33].

One problem with ar_track_alvar is determining what to do if the tag moves

out of view of the camera. If the tag is not visible, the package has no way of

tracking the UGV. Huang et al. proposed a solution to this in their paper "An

Object Following Method Based on Computational Geometry and PTAM for UAV
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in Unknown Environments" [18]. Their solution was to use a Kalman filter in order

to predict the velocity of the tag, so the tag can be found and tracking reinitialized.

2.3 Monocular SLAM

Monocular Simultaneous Localization and Mapping relies on computer vision tech-

niques to calculate the pose of the robot and map the environment. In this thesis,

monocular SLAM is performed on the UAV’s front camera for state estimation. Real-

time monocular SLAM was once thought impossible due to high computational costs

and was first implemented in the Parallel Tracking and Mapping (PTAM) pack-

age. Now, there exists a great variety of monocular SLAM packages, including LSD-

SLAM [11], SVO [13], and RatSLAM [27]. Many open-source vision-based SLAM

packages were compared in the 2016 paper by Li et. al. [12]. ORB-SLAM was found

to be one of the better performing packages, and is used in this project.

PTAM was originally made by Klein and Murray in 2007 [21]. Using the infor-

mation of the UAV’s camera combined with the IMU, it is able to find "features," or

the edges of detected obstacles, in order to estimate distance traveled as well as scale

of distances of objects from the UAV. PTAM has also been used in the collaboration

of multiple UAVs. Bazen et al.’s 2016 experiment [2] involved coordinating a fleet

of quad-rotors using ardrone_autonomy and tum_ardrone. They found that, while

the completed missions were more accurate when PTAM was used, the missions were

successful less frequently. They theorized this was due to delay "between acquisition

of information by the drones and their actual displacement based on this information"

[2].

Another later monocular SLAM package, ORB-SLAM [29], improves upon the

work by Klein and Murray. ORB-SLAM uses ORB features, which are binary fea-

tures that are invariant to rotation and scale. Unlike PTAM, ORB-SLAM is able to

initialize with no user input, which is necessary for autonomous robot systems. ORB-

10



SLAM allows for more accurate mapping by performing loop closure, where loops are

detected and the ends merged to remove drift over time. Additionally, the number of

keyframes used by ORB-SLAM when matching features increases depending on the

complexity of the image, unlike in PTAM where keyframes increase over time. This

is done by "culling" keyframes that are no longer used, and allows for ORB-SLAM to

run for longer periods of time.

2.4 Cooperative Localization

Cooperative localization (CL) deals with estimating the pose of teams of mobile robots

using sensor data. This is done in order to provide enhanced localization compared

to the robots’ localization capabilities without cooperation. In order for this to be

done, a transformation matrix between two robots must be calculated. Cooperative

localization was first introduced by Kurazume et. al. [22] in 1994. At the time it

was known as "cooperative positioning." In this experiment, robots were separated

into two different teams: one team moving, while the other team remains a stationary

landmark for the other team. The teams then switch roles until all robots reach their

target position.

The term "cooperative localization" first appeared in 1998 in works by Bison et.

al. and Rekleitis et. al. [3, 36]. Since its conception, CL has been applied to

many different problem types in both 2- and 3-D, including vision-based [26, 14],

sonar-based [38, 34], and range-based [35, 16]. Two types of cooperative localization

techniques especially relevant to this thesis are those dealing with vision-based and

3-D problems. In 2009, Bahr et. al. used cooperative localization for the localization

of autonomous underwater vehicles. The goal of this work was to "create a fully

mobile network of AUVs [Autonomous Underwater Vehicles] that perform acoustic

ranging and data exchange with one another to achieve cooperative positioning for

extended duration missions over large areas" [1].
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Early work was done on vision-based CL by Jennings, Murray, and Little [19]. In

this work, two stereo vision-based mobile robots explore and map their environment.

One robot finds landmarks in the environment that the second robot then uses to

localize itself relative to the first robot’s reference frame. This allows the robots to

collaborate on tasks using a common local reference frame without a complete map

of the environment. In 2011, Chang et. al. [7] worked with humanoid robots in

the RoboCup environment to localize and track moving objects using vision-based

cooperative localization. First, they estimated the robot pose by modeling the uncer-

tainty of motion commands and measurements. Then when other robots were within

the field of view, state estimates were refined using the estimated pose and distances

calculated based on the image.

12



Chapter 3

Approach

This chapter describes the necessary parts of the Bird’s Eye View system and how

they must act together in order to achieve the goals set out above. The robots must

be able to communicate with each other and with a Ground Control Station. One

of the robots must detect the fiducial tag on the other and extract the coordinate

transformation between the UAV and the UGV. The UAV has to be able to hover

above the UGV while tag-tracking is maintained. The UGV must autonomously

explore a hallway, and finally, the UAV must be able to detect the pose of the UGV

and move accordingly while maintaining tag tracking.

In the development of the UAV/UGV system, several open source ROS packages

were used: bebop_autonomy, as a driver for the Bebop and joystick; usb_cam, a

driver for the Logitech HD Pro Webcam C910; and ORB-SLAM 2, a monocular

SLAM package. Package documentation such as the setup and use of these packages

is described in more detail in Appendix A.

3.1 Robot Team Network

Communication between the UAV, UGV, and a Ground Control Station is enabled by

a network connecting the 3 systems. The Bird’s Eye View project requires two PCs: a

Ground Control Station (GCS) and a TurtleBot PC. The TurtleBot PC is connected

to the TurtleBot and the Hokuyo laser scanner via USB. A portable router and power

source (for the router) are also placed on the TurtleBot. The specific router used in

this project is the TP-Link 150Mbps Wireless-N Nano Pocket Router. The TurtleBot
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PC was connected to this router using an Ethernet cable. The Ground Control Station

was then connected wirelessly via WiFi to the router. These two connections allow

the TurtleBot PC and GCS to communicate with each other. Since the TurtleBot PC

can be controlled wirelessly using the GCS, the GCS can now be used to control both

the Bebop and the TurtleBot. The GCS must be kept within range of the portable

router in order for both robots to operate correctly. However, the TurtleBot PC will

always be within range of the router. All components of the Bird’s Eye View network

are shown in the diagram below; see Fig 3.1.

Figure 3.1 Shows the network connections between the ground Control Station
(GCS), the TurtleBot, and the Bebop. Connections are shown in blue.
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3.2 Movement of the UGV

Two different motion strategies were used for the UGV. First, in order to challenge

the tracking capabilities of the UAV, the UGV is placed inside an enclosed area and a

random walk is executed. The UGV moves forward until it reaches near an obstacle,

then performs an in-place rotation of 180 degrees plus a small random value, then

moves again in a straight line. An example of random walk motion can be seen in

Figure 3.2. The UAV was able to follow the UGV throughout these movements, even

though in place rotations are more challenging.

Figure 3.2 An example of a random walk motion algorithm showing laser scans
and odometry data in rviz.

Second, the UGV uses a center-of-the corridor following algorithm employing a

PID controller to navigate hallways. This algorithm compares the distances read by
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the laser scanner 60 degrees off the center of the UGV. As the UGV moves forward,

it also turns slightly favoring the side with the longer distance. This is the core

behavior of the generalized Voronoi graph algorithm [8]. Under the GVG algorithm,

the UGV begins by moving away from the closest obstacle, and then moves following

the equidistant from two obstacles loci. Once the UGV is equidistant to more than

two obstacles, its location is defined as a meetpoint. The GVG is defined as the graph

where edges represent equidistant to two obstacles points, and vertices represent

points where three or more edges meet. Every new meetpoint has at least three

edges. If all the edges of a meetpoint are explored then the meetpoint is marked as

explored. The algorithm follows edges until all meetpoints are marked as explored.

Communication between the two robots improves the UGV’s movement algorithm.

The UGV does not start moving until the UAV is able to see the fiducial tag. This

allows for a much simpler initialization process. Furthermore, should the UAV lose

sight of the tag for more than two seconds, the UGV halts its motion and waits for

the UGV to find the tag again. Should the UGV be unable to find the tag again, it

is possible for an operator to step in and move the UAV back into position using the

joystick controller.

3.3 Tag Detection & Movement of the UAV

When first launched by a trained operator, the UAV must be moved into position so

the fiducial tag is above the TurtleBot’s camera using a Logitech F710 joystick and

the bebop_autonomy package. The joystick allows for precise control in moving the

UAV to a position where it is able to recognize the tag. The joystick also provides

a safety feature to control the UAV should loss of control occur during the flight.

Once in position, the UAV then autonomously follows the UGV utilizing the fiducial

tag. Early work employed the Parrot AR.Drone 2.0 and the tag was mounted on the

UGV; see Fig. 3.3. This previous approach is discussed further in Section 3.6.
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Figure 3.3 Early UAV camera feeds: In the left image, the bottom camera
observes the tag placed on top of the UGV. The right image shows the front camera
view with PTAM detected features overlayed.

The Bird’s Eye View system uses tags generated by the ar_track_alvar ROS

package. When a tag is within view of the UGV’s upward-facing camera, the esti-

mated pose of the tag is published to the ar_pose_marker ROS topic; see Fig. 3.4.

Figure 3.4 Bebop 2 flying over the UGV with a tag.
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The drone then moves so that the tag remains directly over the camera. This is done

by transforming the tag’s pose to x, y, z, and yaw values relative to the UAV’s frame

of reference. To maintain tracking, the tag must remain within the camera’s field of

view. A 4.6 cm tag was found to be most visible from a height of 0.65 to 0.95 meters.

As a result, a constant height value of 0.8 is added to the negative z dimension. Next,

the x- and y-velocities of the tag are calculated using the current state of the tag, the

previous state, and the time difference between the two states. The current pose of

the tag and the tag velocities are used to calculate the speed that UAV should fly in

order to maintain sight of the tag. The UAV’s velocities are calculated as follows:

UAV.angular.z = tag.yaw ∗ c

UAV.linear.z = tag.z ∗ c

UAV.linear.x = tag.x ∗ d + tag.vx

UAV.linear.y = tag.y ∗ d + tag.vy

In these equations, c and d are constant scaling factors. These factors are necessary

because the bebop_autonomy driver expects velocities between -1 and 1 inclusive.

Best results were obtained using c = 0.4 and d = 0.07. The velocities do not take

into account any information generated by ORB-SLAM, as it is much less reliable

than cooperative localization.

3.4 Cooperative Localization

The Bird’s Eye View package performs the cooperative localization of the UAV using

the pose of the UGV provided by the ROS topic odom and pose of the tag provided

by ar_pose_marker. First, the odometry data is transformed from the base_link

frame to the map frame. This transform converts the local pose at the rotational

center of the robot to the fixed world frame. The map frame should not drift over
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time and is generated by the gmapping package using odometry data. This transform

is necessary to ensure that cooperative localization done with respect to the UGV’s

pose can be shown in the world map frame. The relationship between the camera’s

pose and the robot’s base_link is always fixed. The camera is located approximately

0.45 meters above the TurtleBot’s base. This distance is taken into account when

calculating the UAV’s pose. Next, the relationship between the fiducial tag’s position

Figure 3.5 Shows the relationships between different odometry and localization
methods used.

and the TurtleBot’s camera is obtained using the data provided by ar_track_alvar.

This pose along with the difference between the height of the camera and height of

the base_link is added to the UGV’s pose. The resulting pose is the UAV’s current

position in the world frame as estimated using cooperative localization. Since the

UAV’s and UGV’s poses are both with respect to the world frame, they are easily
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plotted in rviz alongside the laser scan data. The two principal methods used in the

cooperative localization package are available in Appendix B. Figure 3.5 shows how

the different odometry and SLAM data relate to one another.

3.5 UAV Localization Using ORB-SLAM

Figure 3.6 Shows the Bebop’s front camera view with ORB-SLAM features
overlayed in green.

In addition to being calculated through cooperative localization, the UAV’s pose is

also computed by ORB-SLAM 2. ORB-SLAM detects features in the UAV’s camera

feed and uses the change in location of these features to determine the pose of the

camera. These features can be seen in Fig. 3.6; new features are added every time

a new keyframe is taken. Because monocular ORB-SLAM does not use odometry

data from the UAV or have a baseline for the size of its surroundings, it has no way

of knowing how to scale the poses it calculates. As a result, it uses an arbitrary
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scale. In order to compare ORB-SLAM poses to the poses calculated by gmapping

and cooperative localization, the scale of the ORB-SLAM data must be adjusted to

match. The data is translated to the start position in the world frame and then

multiplied by a scaling factor.

In order for ORB-SLAM to be used during the experimental runs, ORB-SLAM 2

must be modified to publish the calculated camera pose to a rostopic. This is done by

getting the matrix returned by the ORB-SLAM method TrackMonocular, converting

it to an odometry message by separating out the rotation and translation values, and

then publishing this odometry message.

3.6 Rejected Approach

Originally this project was attempted using an AR.Drone 2.0 rather than a Bebop.

The ROS package tum_ardrone was used as a PID controller and monocular SLAM

(Simultaneous Localization and Mapping) package. In this iteration, the tag was

placed on the UGV while the UAV used its bottom-facing camera to track the tag’s

motion. However, this UAV was unable to use the front and bottom cameras si-

multaneously. To deal with this issue, a workaround using a camera switching node

to toggle between the front and bottom cameras approximately once a second was

implemented. If the cameras swapped too fast, the topics would become corrupted;

too slow and the UAV would be unable to track the UGV. The ROS package joy

was used for joystick control.

However, this approach did not succeed. PTAM was not able to accurately es-

timate the UAV’s pose with such limited camera frames, resulting in large amounts

of drift. Additionally, the bottom-facing camera on the AR.Drone had a lower res-

olution, meaning if the UGV moved at a rate greater than 0.2 meters per second,

the UGV could move out of view of the UAV in the time it took the cameras to

switch. This would lead to a loss of tracking. Furthermore, the switching delay oc-
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casionally caused corrupted images. The Parrot AR.Drone 2.0 was very unstable in

position keeping, and it drifted easily away from the target due to a less advanced

ROS driver. In particular, the AR.Drone had difficulty rotating while maintaining

its position. This drift was compounded with a loss of feature tracking by PTAM,

which does not perform well during rotations because all known features are lost if

rotation occurs too quickly.

Another problem encountered was that the PID controller used by tum_ardrone

was not intended to be used with a moving target such as a TurtleBot. The controller

would not advance to new target destinations until the previous destination had been

reached. When combined with the constant drift of the AR.Drone, this meant that the

target destination could not be updated quickly enough. By the time the AR.Drone

accounted for it’s drift and made it to the first target, the TurtleBot would have

moved out of the field of view of the AR.Drone’s downward-facing camera.
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Chapter 4

Results

In order to evaluate the system’s performance, several criteria must be taken into

account: how well the UGV navigates the environment; how well the UAV tracks and

follows the UGV; and whether the above tasks are able to be completed autonomously.

Experimental data was collected by having the robots explore the hallways of the

Swearingen Engineering Center and a bounded arena in multiple trials. After the

UAV is positioned within the camera’s view, no other assistance is provided by the

operator except in the case of an emergency.

The Bird’s Eye View project can be evaluated by comparing the poses of the

UAV and UGV to determine how well the UAV succeeds in following the UGV. The

pose of both the UAV and UGV are visualized in rviz, and the pose provided by

cooperative localization is compared to the pose calculated by ORB-SLAM. Finally,

the video from the TurtleBot’s camera is be examined to determine if any issues in

tag detection or following are present.

Figure 4.1 presents the paths of the two robots for an early experiment using the

Parrot Ar.Drone 2.0 UAV. While the UGV moves smoothly along the corridor, the

UAV has a much less direct trajectory as it drifts away repeatedly, and the controller

brings it back above the UGV. Additionally, the ending position of the UAV was

several meters before the end position of the UGV. This is because PTAM would

lose feature detection frequently because of the low frame rate. Whenever feature

detection and tracking was lost, the pose of the UAV could not be updated. When

feature detection resumed, all of the motion that occurred while tracking was down

23



Figure 4.1 Early Experiments with the AR.Drone 2.0. Shows a 2-dimensional map
of the environment and path taken by the robots.

was lost.

Figure 4.2 shows the more stable performance of the Parrot Bebop 2. Similarly

to Fig. 4.1, in this trial run the UGV traveled along the corridor on Swearingen’s

first floor. This trial used the center-of-the-corridor algorithm. As can be seen in

Fig.4.2, the UAV very closely followed the UGV as it navigated the hallway. The

tag remained within view as the robots rotated, and tracking was maintained. No

operator assistance was provided during this run. This experiment ended when the

Bebop’s battery died. Since the Bebop is only capable of 25-30 minutes of flight, care

must be taken to recharge the battery after every flight. One solution to extending the
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life of the Bird’s Eye View system can be seen in the work of Rezelj and Skocaj [37].

The UAV could land on the UGV when the battery was low and recharge before

resuming its exploration.

Figure 4.2 Traversing down the corridor with the walls mapped. The UGV
trajectory is shown in blue and the UAV trajectory, above, in pink.

Figure 4.3 presents a more challenging scenario where the UGV performed a ran-

dom walk inside a bounded arena. The UAV followed along even when the UGV

performed a 180 degree rotation. Since the Bebop is prone to drift when rotating,

maintaining track of the tag is more difficult during pure rotation than translation

with rotation. As result, more noise can be seen in the path of the UAV than in the

previous center-of-the-corridor experiment. In addition, the rotations must be done

slowly in order for ORB-SLAM to be able to maintain feature detection. Despite

this, the UAV was still capable of following the UGV as it performed these rotations.

Figure 4.4(a) shows the Pangolin GUI generated by ORB-SLAM. It shows the

feature points and keyframes used in calculating the pose of the UAV. This pose is

given in a world reference frame. However, since ORB-SLAM does not have any

knowledge of the scale of the system, it is not the same world coordinate frame used
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Figure 4.3 Random walk experiment with the walls mapped. The UGV trajectory
is shown in blue and the UAV trajectory, above, in pink.

by the UGV and cooperative localization. In order to be compared directly to those

poses, the ORB-SLAM data must be scaled accordingly. Figure 4.4(b) shows this

data scaled and plotted next to the CL data and UGV’s trajectory. As can be seen in

this figure, the ORB-SLAM data is not as accurate as the CL data. The trajectory

drifts upward over time and is not corrected. However, the x- and y-dimensions of the

ORB-SLAM trajectory are very similar to those found using cooperative localization.

This scaled pose could be used as an estimate for the UAV’s world frame pose when

the tag is not visible by the system. Using the UGV’s global pose and ORB-SLAM,

the UAV could attempt to find the UGV without the help of a trained operator if

tracking is lost.

Figure 4.5 shows a long trial run down the 3rd floor of Swearingen. This ex-

periment ran for 808 seconds, or 13 minutes. At a speed of .15 meters/second, the

UAV and UGV covered 120 meters. For increased distance, the speed of the UGV

could be increased. However, if the speed is too high, the UAV will be unable to

follow the tag. This is because at high speeds the UAV will move out of view of the
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Figure 4.4 Center-of-the-corridor ORB-SLAM experiments: (a) The left image
shows a map of features and keyframes generated by ORB-SLAM. (b) In the right
image, the UGV trajectory is shown in blue, the UAV trajectory as calculated by
CL in pink, and the UAV trajectory according to ORB-SLAM in green.

UGV’s camera. During this experiment, the operator intervened one time when the

UAV flew directly under an A/C vent and was blown off course. The length of this

experiment shows that the UAV is able to follow the UGV for long distances without

drifting off course. In all of the experimental data collected, the pose of the UAV

Figure 4.5 Traversing Swearingen’s 3rd floor with the walls mapped. The UGV
trajectory is shown in blue and the UAV trajectory, above, in pink.
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and UGV are very similar, excluding the difference in height above the ground. The

UGV successfully navigates the corridors of the Swearingen building, staying in the

center of the hallway, and the maps produced by rviz and ORB-SLAM accurately

show the robots’ paths through the hallways. As all of these objectives are met, one

can say the two robots are able to co-operatively and autonomously explore and map

an unfamiliar environment.
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Chapter 5

Conclusion

This thesis aims to determine the abilities of a UAV and UGV team to autonomously

search, map, and explore an indoor environment. The two vehicles remain in contact

with each other visually and over a WiFi network. Cooperative localization of the

UAV using the UGV’s pose and relative pose between the two is combined with

the UAV’s pose as calculated by ORB-SLAM for more accurate localization. The

framework developed in this thesis is for application in search and rescue.

The results show that the UGV is able to autonomously navigate the environment

and that the UAV is able to follow the UGV using vision-based techniques for long

periods of time. The pose of the UAV is calculated both using cooperative localization

and the monocular SLAM package ORB-SLAM for enhanced localization. These

poses are plotted in rviz alongside the TurtleBot’s pose as calculated from the laser

data to show the viability of this approach.

Future work not covered in this thesis could include more robust communication

over the WiFi network. For example, if the UAV loses track of the tag, once the

UGV has stopped moving due to the lost tag signal it receives, the UGV could send

its current pose data to the UAV. Once this data has been transformed to the UAV’s

coordinate frame, the UAV could then fly to the location of the UGV using ORB-

SLAM to localize. Once the tag is back within sight, the UAV would notify the UGV

and the UGV would continue on navigating the environment.

Another way to improve upon this project would be expanding ORB-SLAM to

perform 3-D mapping of an area using both the UAV’s front camera and UGV’s laser
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scanner. Currently the maps provided by the laser rangefinder and ORB-SLAM are

kept separate, but could be combined for increased accuracy.
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Appendix A

Platform Documentation

A.1 Software Installation

The Bird’s Eye View project depends upon a functioning Kobuki TurtleBot 2 with a

Hokuyo laser scanner, a Parrot Bebop 2, a portable router, and a Logitech joystick

controller. A functioning ROS installation is also needed. The software needed in

order for all these parts to work together is specified below, along with installation

instructions.

A.1.1 ROS

A complete guide to installing and using ROS, the robot operating system, can be

found in the ROS wiki at http://wiki.ros.org/ROS/Installation. This project

uses ROS Indigo on an Ubuntu 14.04 machine.

A.1.2 Kobuki TurtleBot 2

The software needed for the TurtleBot 2 and its installation is described in detail in

the platform documentation by Adem Coskun. Instructions are also available in the

ROS wiki at http://wiki.ros.org/Robots/TurtleBot. These instructions assume

a Microsoft Kinect is used as a sensor; however, the TurtleBot used for this project

instead uses a Hokuyo 20m laser scanner.

This laser scanner requires the ROS package urg_node to be installed. This can

be done by running the command
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$ sudo apt−get i n s t a l l ros−ind igo−urg−node

on an Ubuntu machine. Before running this node, ROS must be granted access to

the laser scanner. To do this, run

$ sudo chmod a+rw /dev/ttyACM0

This package is used instead of hokyo_node because this model laser scanner connects

using an Ethernet port, which is not supported by hokuyo_node. If using a Hokuyo

laser that connects via USB, run

$ sudo apt−get i n s t a l l ros−ind igo−hokuyo−node

A.1.3 Parrot Bebop 2

The Bebop requires multiple packages in order to navigate, to map its surroundings

and track the position of the robot, to track a fiducial tag, and to switch between the

front and bottom cameras. The packages required in order for the robot to perform all

tasks necessary for this project are: bebop_autonomy; orb_slam; ar_track_alvar;

usb_cam; and the ar_tag_following package, which will later be available on the

official Bird’s Eye View GitHub. These packages depend upon OpenCV, which comes

preinstalled with Ubuntu 14.04. However, it should be noted that OpenCV 3.0 will

give compilation errors; instead, version 2.4.10 should be used. To check which version

you have, run

$ dpkg − l | grep l ibopencv

Installation instructions for OpenCV 2.4.10 can be found at http://docs.opencv.

org/2.4/doc/tutorials/introduction/linux_install/linux_install.html.

Bebop Autonomy

The bebop_autonomy package should be installed first, as the packages described

below depend upon it. bebop_autonomy is an open-source ROS driver for the Parrot
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Bebop quad-copter (both 1 and 2). It can be installed by first running

$ sudo apt−get i n s t a l l bui ld−e s s e n t i a l python−rosdep

python−catkin−t o o l s

to insure these necessary packages are installed. Next, in the catkin workspace direc-

tory,

$ g i t c l one https : // github . com/AutonomyLab/bebop_autonomy . g i t

s r c /bebop_autonomy

# Update rosdep database and i n s t a l l dependencies ( i n c l u d i n g

# parrot_arsdk )

$ rosdep update

$ rosdep i n s t a l l −−from−paths s r c − i

# Bui ld the workspace

$ catk in bu i ld −DCMAKE_BUILD_TYPE=RelWithDebInfo

should be run to install bebop_autonomy and to insure that all dependencies are

installed. Documentation for the Bebop is available at http://bebop-autonomy.

readthedocs.io/en/latest/installation.html.

ORB-SLAM 2

The ORB-SLAM 2 package is made up of three different threads: tracking, local

mapping, and loop closure [29]. The package is available on GitHub. To begin, first

make sure to install OpenCV, Eigen 3, and Pangolin, as ORB-SLAM depends on

these packages.

After installing the above, ORB-SLAM 2 can be installed by running the following

commands

$ g i t c l one https : // github . com/raulmur/ORB_SLAM2. g i t

ORB_SLAM2
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$ cd ORB_SLAM2

$ chmod +x bu i ld . sh

$ . / bu i ld . sh

in order to install this package. Then run

$ export ROS_PACKAGE_PATH=${ROS_PACKAGE_PATH} :PATH/

ORB_SLAM2/Examples/ROS

$ chmod +x bui ld_ros . sh

$ . / bui ld_ros . sh

to add ORB-SLAM to the ROS_PACKAGE_PATH environment variable and

build the package. Further documentation is available at https://github.com/

raulmur/ORB_SLAM2. Sample data sets are available at http://vision.in.tum.de/

data/datasets/rgbd-dataset/download.

Before using ORB-SLAM, a settings .yaml file must be created. This file contains

camera parameters and ORB-SLAM parameters. An example .yaml file is provided

in the ORB-SLAM source.

AR Track Alvar

The ar_track_alvar package is an open source AR tag tracking library. This package

is capable of generating AR tags, as well as identifying and tracking the pose of

individual AR tags. To install this package, tun

$ sudo apt−get i n s t a l l ros−ind igo−ar−track−a lva r

Pre-made fiducial tags can be downloaded from the ar_track_alvar ROS wiki page

at http://wiki.ros.org/ar_track_alvar. Alternately, a tag with custom ID num-

bers, border widths, or sizes can be generated by running

$ rosrun ar_track_alvar createMarker
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The size of the tag must then be updated in the launch file of your choice (e.g.

launch/pr2_indiv_no_kinect.launch) by changing 4.4 in the line shown below to

the size of the tag in cm.

<arg name=" marker_size " default=" 4 .4 " />

A.1.4 Logitech F710 Joystick

This project requires the use of a joystick controller to move the Bebop into an initial

position above the TurtleBot. To get the joystick up and running, first install the

ROS joy package.

$ sudo apt−get i n s t a l l ros−ind igo−joy

To identify your joystick, run

$ l s /dev/ input

Take note of any jsX devices (where X is a number). Next, connect your joystick to

the computer and retype the previous command. The new jsX device that appears

is your controller.

Now that you’ve identified the controller, to test that the installation is successful

run

$ sudo chmod a+r /dev/ input / jsX

$ j s t e s t /dev/ input / jsX

A.2 Robot Initialization

Now that the required software is all installed and compiled, the robots can be ini-

tialized. Because this project heavily depends on the network connection between

the two robots, initializing the networking will be discussed first, followed by a brief

explanation of initializing the Bebop and TurtleBot.
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A.2.1 Networking

The Bird’s Eye View project requires two PCs, a Ground Control Station (GCS) and

a TurtleBot PC. The TurtleBot PC is placed on the TurtleBot and is connected to

the TurtleBot and Hokuyo laser scanner via Ethernet. A portable router and power

source (for the router) are also placed on the TurtleBot. The specific router used in

this project is the TP-Link 150Mbps Wireless-N Nano Pocket Router. The TurtleBot

PC should be connected to this router using an Ethernet cable. The Ground Control

Station should then connect wirelessly via WiFi to the router. These two connections

allow the TurtleBot PC and GCS to communicate with each other.

Next the TurtleBot PC should connect to the Bebop’s on-board network via WiFi.

This connection allows the TurtleBot PC to communicate with the drone. Since the

TurtleBot PC can be controlled wirelessly using the GCS, the GCS can now be used

to control both the Bebop and the TurtleBot. The GCS must be kept within range

of the portable router in order for both robots to operate correctly. All components

of the Bird’s Eye View network are shown in the diagram below [??]. The joystick

controller should be connected to the TurtleBot PC.

To control both robots from the Ground Control Station,

$ ssh user@ipaddress

must be run on the GCS, where user is your username on the TurtleBot PC, and

ipaddress is the IP address of the TurtleBot PC’s wireless adapter. This can be

found by running the command

$ i f c o n f i g

and locating the IP address associated with the WiFi adapter.

Currently the GUI graphics provided by bebop_autonomy cannot be forwarded

via SSH, so will only appear on the TurtleBot laptop. As a result, before initializing

the Bebop, the command
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$ export DISPLAY=:0

must be run.

A.2.2 Bebop and TurtleBot

To initialize the TurtleBot, first power the robot up using the power switch on the

bottom right of the robot. Next plug the Hokuyo Ethernet and TurtleBot USB into

ports on the TurtleBot laptop. Move the TurtleBot to its starting position. Then

from the Ground Control station, which should be connected to the TurtleBot PC

through SSH, run the following command:

$ ros launch a f r l_d r i v e r tu r t l ebo t −20−hokuyo . launch

This will initialize the TurtleBot and the Hokuyo laser.

To initialize the Bebop, first insert a battery and secure it in place. Then, if flying

indoors, the robot’s rotors can be protected with a guard. From the GCS, run

$ ros launch ar_tag_fol lowing bebop . launch

after ensuring that the TurtleBot PC is connected to the Bebop’s WiFi. This com-

mand initializes the joystick controller, the ar_track_alvar fiducial tag tracking,

and the bebop_autonomy package. Alternatively,

$ ros launch bebop_tools bebop_nodelet_iv . launch

$ ros launch bebop_tools joy_te leop . launch

can be run. If it is not done automatically by the code controlling the drone, you must

make sure the emergency lights are set to green, and that flat trim has been called.

This can be done by using the joystick controller. To properly initialize ORB-SLAM,

after first taking off the robot should fly up a meter and then back down a meter to

allow ORB-SLAM to take keyframes. Both robots are now ready to begin exploring

the surrounding area.
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A.3 Controlling the Robots

The goal of this project is for the TurtleBot and the Bebop to work together au-

tonomously. As a result, the two robots are primarily controlled through code which

instructs the TurtleBot to explore and the Bebop to follow the TurtleBot around.

This code can be run by typing

$ ros launch a f r l_d r i v e r d r i v e r . launch

$ rosrun ar_tag_tracking c o n t r o l l e r

The first line starts the exploration code on the TurtleBot, and the second starts

tag following on the Bebop. Note that these commands must be run on the GCS in

terminal with an open SSH session to the TurtleBot PC.

However, in order to get the Bebop into position above the TurtleBot, it can be

controlled using the joystick controller. These controller layout is specified in the

bebop_tools/config/log710.launch file (or a similar file). The code listed below

can be modified to assign the buttons to their functions.

t e l e o p :

p i l o t i n g :

type : t op i c

message_type: " geometry_msgs/Twist "

topic_name: cmd_vel

deadman_buttons: [ 7 ]

axis_mappings:

−

a x i s : 3 # Right thumb s t i c k (up/down)

t a r g e t : l i n e a r . x

s c a l e : 1 . 0

o f f s e t : 0 . 0
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−

a x i s : 2 # Right thumb s t i c k ( l e f t / r i g h t )

t a r g e t : l i n e a r . y

s c a l e : 1 . 0

o f f s e t : 0 . 0

−

a x i s : 1 # Le f t thumb s t i c k (up/down)

t a r g e t : l i n e a r . z

s c a l e : 1 . 0

o f f s e t : 0 . 0

−

a x i s : 0 # Le f t thumb s t i c k ( l e f t / r i g h t )

t a r g e t : angular . z

s c a l e : 1 . 0

o f f s e t : 0 . 0

A deadman’s switch can be set, preventing any velocity commands from being sent

unless the button is held. By default this is the right trigger. To identify which

button is which, run the command

$ sudo j s t e s t /dev/ input / jsX

where jsX is the device ID of the joystick identified previously [A.1.4].

Further details on controlling the TurtleBot can be found in the paper by Adem

Coskun or on the ROS TurtleBot wiki at http://wiki.ros.org/Robots/TurtleBot#

turtlebot.2BAC8-Tutorials.2BAC8-indigo-1.Navigation
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Figure A.1 Front camera view of the Parrot Bebop 2.

A.4 Sensors and Actuators

The TurtleBot 2 sensors and how to operate them are described in detail in the

paper by Adem Coskun. The sensors and actuators of the Bebop and the Hokuyo

laser scanner are described below.

A.4.1 Bebop Sensors

The drone comes with one camera installed. A 1080p front camera sensor with

a recording up to 30fps; The drone also comes with a 3-axis gyroscope, a 3-axis

accelerometer, and an ultrasound altimeter enhanced with an air pressure sensor.

The cameras first need to be calibrated. In order to do this, the ROS camera

calibration package must be installed. If it is not, run

$ rosdep i n s t a l l camera_ca l ibrat ion

$ rosmake camera_ca l ibrat ion
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The camera calibration files for all of the AFRL drones are available on the Bird’s

Eye View GitHub. The available rostopic for camera data published by the drone is

bebop/image_raw To begin calibrating, run

$ rosrun camera_ca l ibrat ion cameraca l i b ra to r . py

−−s i z e 8x6 −−square 0 .108 image :=/bebop/image_raw

camera :=/camera

To get a good calibration, move the checkerboard around in the camera frame. More

detailed calibration instructions are available at the following web page: http://

wiki.ros.org/camera_calibration/Tutorials/MonocularCalibration.

The bebop_autonomy package calculates and publishes Odometry data based on

velocity estimates reported by the drone. The data is published to the bebop/odom

rostopic as standard nav_msgs/Odometry messages. The corresponding TF transform

is also published as odom -> base transformation in /tf.

IMU data including linear acceleration, angular velocity, and the orientation of

the drone is published as a standard ROS sensor_msgs/Imu message. The necessary

TFs are also published by bebop_autonomy.

A.4.2 Hokuyo Laser Scanner

The Hokuyo laser scanner on-board the TurtleBot currently has a maximum range of

20 meters. Before launching, the network must be configured to allow communication

between the Hokuyo and the UGV. This can be done using the provided script file or

set permanently using the Network Manager. The script file, hokuyo_20.sh is shown

below

$ sudo ip addr f l u s h dev eth1

$ sudo ip l i n k set eth1 up

$ sudo ip addr add 192 . 168 . 1 . 253/24 dev eth1

$ sudo route de l −net 1 92 . 1 6 8 . 1 . 0 gw 0 . 0 . 0 . 0 netmask
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255 . 255 . 255 . 0 dev eth1

$ sudo route add −host 192 . 1 68 . 1 . 2 0 dev eth1

$ route −n

To launch the Hokuyo laser scanner, place the following code in a launch file.

<node name=" hokuyo " pkg=" urg_node " type=" urg_node " >

<param name=" frame_id " va lue=" base_l ink " />

<param name=" ip_address " va lue=" 192 . 1 68 . 1 . 2 0 " />

<remap from=" scan " to=" base_scan " />

<param name=" angle_min " value=" −1.57 " />

<param name=" angle_max " value=" 1 .57 " />

</node>

The data collected by the scanner can then be viewed in rviz, or can be used with

gmapping. Both the Hokuyo node and gmapping are launched by the

afrl_driver/turtlebot-20-hokuyo.launch file.

A.5 Shutting Down

To shut down the project, close all commands currently running in the terminal of

the Ground Control Station either by typing exit or by pressing CTRL+C. Also make

sure to end all SSH sessions. Shut down both the GCS and the TurtleBot PC. To

turn off the Bebop, remove the guard (if applicable) and unplug the battery. The

battery should then be charged for later. To shut down the TurtleBot, unplug the

Hokuyo Ethernet and the TurtleBot USB from the TurtleBot laptop. Then flick the

switch located at the bottom right side of the TurtleBot. The TurtleBot should also

be charged for later use. Unplug the power bank from the portable router, and if

needed, charge the power bank.
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Appendix B

Cooperative Localization Code

void tagCal lback ( const ar_track_alvar_msgs : : AlvarMarkers : :

ConstPtr& msg) {

// Get t f from base_l ink to map

l i s t e n e r . waitForTransform ( "map" , " base_l ink " , ro s : : Time (0 ) ,

ro s : : Duration ( 7 . 0 ) ) ;

try {

l i s t e n e r . lookupTransform ( "map" , " base_l ink " ,

ro s : : Time (0 ) , t fTransform ) ;

} catch ( t f : : TransformException &except ion ) {

ROS_ERROR( "%s " , except ion . what ( ) ) ;

}

tu r t l ePo s e . header . stamp = ros : : Time : : now ( ) ;

// Get Turt leBot p o s i t i o n

tu r t l ePo s e . pose . p o s i t i o n . x = tfTransform . ge tOr ig in ( ) . x ( ) ;

t u r t l ePo s e . pose . p o s i t i o n . y = tfTransform . ge tOr ig in ( ) . y ( ) ;

t u r t l ePo s e . pose . p o s i t i o n . z = tfTransform . ge tOr ig in ( ) . z ( ) ;

t u r t l ePo s e . pose . o r i e n t a t i o n .w=tfTransform . getRotat ion ( ) .w( ) ;

t u r t l ePo s e . pose . o r i e n t a t i o n . x=tfTransform . getRotat ion ( ) . x ( ) ;

t u r t l ePo s e . pose . o r i e n t a t i o n . y=tfTransform . getRotat ion ( ) . y ( ) ;

t u r t l ePo s e . pose . o r i e n t a t i o n . z=tfTransform . getRotat ion ( ) . z ( ) ;
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// Add the Tur t l e bo t ’ s curren t p o s i t i o n to i t s path

tu r t l ePath . poses . push_back ( tu r t l ePo s e ) ;

// I f t h i s i s the f i r s t data r e c i e v ed about the Turt leBot

// save the header stamp , and pu b l i s h the path

i f ( ! tu r t l ePath . poses . empty ( ) ) {

tur t l ePath . header . stamp=tur t l ePath . poses [ 0 ] . header . stamp ;

}

turtlePathPub . pub l i sh ( tur t l ePath ) ;

// I f the UAV’ s tag i s w i th in view o f the Turt leBot ,

// c a l c u l a t e the pose o f the UAV using CL

i f ( ! msg−>markers . empty ( ) ) {

tagPose = msg−>markers [ 0 ] . pose ;

dronePose = getDronePose ( tu r t l ePo s e ) ;

dronePath . poses . push_back ( dronePose ) ;

// I f t h i s i s the f i r s t data r e c i e v ed about the drone

// save the header stamp , and pu b l i s h the path

i f ( ! dronePath . poses . empty ( ) ) {

dronePath . header . stamp=dronePath . poses [ 0 ] . header . stamp ;

}

dronePathPub . pub l i sh ( dronePath ) ;

}

}

// Method f o r computing the UAV’ s pose
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geometry_msgs : : PoseStamped getDronePose ( geometry_msgs : :

PoseStamped tu r t l ePo s e ) {

// Set the drone ’ s pose equa l to t ha t o f the Turt leBot ’ s

geometry_msgs : : PoseStamped dronePose ;

dronePose = tu r t l ePo s e ;

//Add the pose r e l a t i o n between the Turt leBot and the

// f i d u c i a l tag , account ing f o r the h e i g h t o f the Turt leBot

dronePose . pose . p o s i t i o n . x += tagPose . pose . p o s i t i o n . x ;

dronePose . pose . p o s i t i o n . y += tagPose . pose . p o s i t i o n . y ;

dronePose . pose . p o s i t i o n . z += tagPose . pose . p o s i t i o n . z

+ TURTLEBOT_HEIGHT;

dronePose . pose . o r i e n t a t i o n .w += tagPose . pose . o r i e n t a t i o n .w;

dronePose . pose . o r i e n t a t i o n . x += tagPose . pose . o r i e n t a t i o n . x ;

dronePose . pose . o r i e n t a t i o n . y += tagPose . pose . o r i e n t a t i o n . y ;

dronePose . pose . o r i e n t a t i o n . z += tagPose . pose . o r i e n t a t i o n . z ;

return dronePose ;

}
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