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In this paper we consider the problem of constructing a 3D environment model for the 
tele-operation of a planetary rover. We presented our approach to 3D environment 
reconstruction from large sparse range data sets. In space robotics applications, an accurate 
and up-to-date model of the environment is very important for a variety of reasons. In 
particular, the model can be used for safe tele-operation, path planning and mapping points 
of interest. We propose an on-line reconstruction of the environment using data provided by 
an on-board high resolution and accurate 3D range sensor (LIDAR). Our approach is based 
on on-line acquisition of range scans from different view-points with overlapping regions, 
merge them together into a single point cloud, and then fit an irregular triangular mesh on 
the merged data. The experimental results demonstrate the effectiveness of our approach in 
localization, path planning and execution scenario on the Mars Yard located at the 
Canadian Space Agency. 

I. Introduction 
HE recent success of the Mars Exploration Rovers “Spirit”  and “Opportunity”  has demonstrated the important 
benefits that mobility adds to landed planetary exploration missions. The recent announcement by NASA to 

increase its activities in planetary exploration (via Moon and Mars missions) and the ESA Aurora program will 
certainly result in an increase in the number of robotic vehicles roaming on the surface of other planets. The current 
state-of-the-art in control of planetary rovers requires intensive human involvement throughout the planning portion 
of the operations. Unless the terrain is relatively easy to navigate, rovers are typically limited to traverses on the 
order of a few tens of meters. Recently, the Mars Exploration Rovers “Spirit”  and “Opportunity”  have managed to 
conduct traverses on the order of 100 meters per day.  

To increase the science return, future planetary missions will undoubtedly require the ability to traverse even 
longer distances. Given the long communication delays and narrow communication windows of opportunity, it is 
impossible for Earth-based operators to drive Mars rovers in an interactive manner. Furthermore, over long 
traverses, the detailed geometry of the environment cannot be known a priori. In this context, planetary rovers will 
require the ability to navigate autonomously over long distances. 

One of the key technologies that will be required is the ability to sense and model the 3D environment in which 
the rover has to navigate. For long-range navigation, the ability to register maps and stitch them together is also 
required. Some of the challenges specific to our application include the fact that most terrain scans are taken from a 
shallow grazing angle, giving point clouds of variable resolution and containing sparse data as a result of occlusions. 
In addition, the global localization may require the registration of maps with different resolutions taken from 
different viewpoints.  

Several methods already exist to reconstruct surfaces from sets of points. Of particular interest are free-form 
surfaces, which have well defined normal vectors everywhere (with a few exceptions). A common approach is using 
NURBS (Non-Uniform Rational B-Spline), but sometimes NURBS-surfaces are impossible to accurately fit on 
point clouds. Polygonal meshes continue today to be the most popular choices; for a more extensive review please 
refer to Campbell and Flynn [4]. Hoppe et. al. [10] proposed an algorithm that is robust to undersampling and can 
handle large volumes of data. The main idea is to divide the space into cubes and retrieve the crossing points of the 
surface with the cubes. By collecting these intersection points one can rebuild the mesh. Following that, a mesh 
simplification is applied. Finally, a subdivision surface is generated. The drawback of those approaches is the fact 
that the original surface's points do not represent the final surface. 

Another approach to free-form surface generation is based on the Delaunay triangulation [8]. The original 
approach was appropriate for small data sets and uniform sampling. Dey et al. [12] have extended the previous 
method to deal with undersampling. Further variations of these algorithms has been developed in order to address 
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the problem of large data set using a Delaunay based method; e.g. SUPERCOCONE by Dey et. al. [13]. Nebot et al. 
[11] partitioned the surface into a set of connected local triangular regions combined with occupancy grid maps. 
Torres and Dudek [9] combine information from intensity and range images in order to compensate for sparse data, 
and fill in any gaps. 

The next section describes our approach to 3D surface reconstruction from large sparse range data sets and 
discusses how constructing a reliable model can significantly increase the on-board autonomy. Our approach is 
based on acquiring range scans from different view-points with overlapping regions, merging them together into a 
single data set, and fitting a triangular mesh on the merged data points. The triangulation data structure selected for 
the terrain representation provides valuable information in the form of the connectivity graph that allows for 
efficient retrieval of the adjacent triangles from the current triangle. Section 3 presents how this valuable 
information is enhanced to generate a safe-trajectory from a given 
start position to the goal position. Section 4, describes the rover 
guidance that can keep the robot precisely on the planned trajectory.  
Finally, we provide experimental results performed in a challenging 
terrain of the Mars Yard located at the Canadian Space Agency. This 
Mars Yard simulates the topography found in typical Mars 
landscapes. 

II. Environment Modeling 
Complete 3D reconstruction of a free-form surface requires 

acquisition of data from multiple viewpoints in order to compensate 
for the limitations of the field of view and for self-occlusions. We 
used an ILRIS-3D LIght Detection And Ranging (LIDAR) sensor (see 
Figure 1) for scanning views of a 3D surface to obtain 2.5D point 
clouds. The reconstruction of the environment is performed in two steps. The first step consists of the assembly of 
the different views by estimating the rigid transformation between the poses from where each view was taken. The 
second step is the environment reconstruction, achieved by fitting an irregular triangular mesh on the point cloud 
that combines the data from all views 

Two problems have to be mentioned in this 
application. First, is the challenge of dealing 
with large data sets, as each LIDAR scan has 
about 500K 3D points, and the combination of 
multiple scans is required. Therefore, the data 
sets can easily grow to millions of points. Any 
approach used has to be robust for high volume 
of data. The second challenge is the sparsity of 
the point cloud and the non-uniform density of 
scans as it can be seen in Figure 2.  

A. Assembly of the Different Scans 
In this step, different scans are registered in 

a common coordinate system. Since the 
coordinates of the viewpoint may not be 
available or may be inaccurate, the original 
Iterative Closest Points (ICP) by Besl and 
McKay [1] may not converge to the global 
minimum. Thus, to assemble all views in the 
same coordinate frame, we used a variant of 
ICP [7], which differs from the original ICP by 
searching for the closest point under a constraint of similarity in geometric primitives. The geometric primitives 
used in [7] are the normal vector and the change of geometric curvature. The change of geometric curvature 
represents how much the surface formed by a point and its neighbors deviates from the tangential plane [2], and is 
invariant to the 3D rigid motion. 

 
Figure 1. LIDAR Sensor from Optech  

 
2 1 3 

Figure 2. The three scans (scan 1, scan 2, scan 3) to be 
assembled. 
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To illustrate the performance of different view 
assemblies, we have taken several views of the Mars Yard 
from different viewpoints. Figure 2. illustrates three 
different views to be assembled and figure 3. gives the 
result of the assembled views in a single data set using our 
variant of ICP algorithm. 

B. Irregular Triangular Meshing 
Since a point cloud is not an appropriate structure to 

plan navigation, a different representation has to be 
chosen. One of the requirements of the selected 
representation is that it must be compatible with navigation 
algorithms and that it must preserve the scientific data 
contained in the terrain topography. In addition, the 
resulting model must be compact in terms of memory 
usage since the model must reside on-board the rover. 

To fulfil these requirements, an irregular triangle mesh 
terrain representation was chosen. One of the main 
advantages of the triangular irregular mesh over classical 
digital elevation maps (DEM) is that it inherently supports 
variable resolution. This allows modelling details of uneven areas with high precision while simplifying flat areas to 
just a few triangles, therefore minimising the overall memory requirements. 

The irregular triangular mesh (ITM) representation also has advantages compared to other variable resolution 
representation such as quad-trees. Indeed, the usage of traversability maps such as quad-trees removes all science 
content from the topography data. Moreover, a small change in the data (a small shift in an area) could result in the 
addition of a non-traversable area in an empty cell thus requiring reprocessing of a significant portion of the data set, 
an operation which is rather computation-intensive. Finally, both DEM and quad-trees are 2.5D representations. 
Therefore, they do not support concave geological structures 
like overhangs and caverns, which pose no problem to 
irregular triangular meshes. 

After scans have been registered and assembled together 
in one data set, we applied the Delaunay filter of the 
Visualization Toolkit [17] to build an irregular triangulated 
mesh. The figure 4 illustrates the irregular mesh 
reconstructed from the data set in figure 3. It is worth noting 
that areas with rapid changes of elevation are covered by 
many small triangles, almost solid black in the image, while 
in the flat areas large triangle are clearly visible. 

III. Path Planning 
In the context of long-range navigation, the path planners 

used on the CSA’s Mobile Robotics Testbed concentrate on 
finding a global solution to travel between two points in 
natural settings while optimizing some cost function. The 
emphasis is on global path planning rather than local path 
planning and obstacle avoidance. The basic assumption is 
that a priori knowledge of the environment is available at a 
coarse resolution from orbital imagery/altimetry and is 
refined using local range sensing of the environment (thus 
the need for assembling multiple local scan of the 
environment). The composite environmental model (coarse 
with refined portions) is then used to plan a path that will be generally safe and that will be updated periodically as 
new environment data is available. 

Previous CSA work used a DEM from which a separate traversability map was created based on the local slope. 
The traversability map was itself represented in a quad-tree structure on which a graph search algorithm was applied 

  

 
Figure 3. The Assembled results 

 

 
Figure 4. Reconstruction of assembled scan 
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to find a safe path. While this approach worked, it required a separate structure for the terrain data and traversability 
map, which forced the update of the traversability map and the quad-tree structure when the DEM was modified. 

An other advantage of ITM is their built-in ability to support non-uniform resolution within the same data set as 
well as zones of missing data. Both of these features are useful when dealing with point clouds generated with a 
rover mounted LIDAR that provides data resolution that varies with distance and that contains zones missing data in 
shadowed areas. 

The use of ITM to represent terrain data allows us to integrate the terrain representation with the path planning 
easily. This is done using an undirected weighted graph representing the triangles connectivity. The graph is created 
where the triangles are the vertices of the graph and a triangle's connectivity to its neighbours are represented as 
edges.  The JGraphT Java Library [18] has been used to implement the graph structure and functions. 

The edge weight or cost is defined by providing a function that yields a cost based on the distance between the 
vertices, slope of the edge, slope of the triangles, mean altitude, or a combination of these to yield the cost 
associated with moving from one triangle to another.  The cost function is associated to the edges at the graph 
creation, but the actual cost is computed only upon request, when the graph is searched. 

Once the graph is constructed, a path between the current rover location and a destination can be planned. The 
process involves four steps: 

 
1. Finding the two triangles where the current location and the destination lie. 
2. Applying the Dijkstra's shortest path search algorithm [18] to find the "cheapest" path. 
3. Creating a list of waypoints based on the path found. 
4. Generating a simplified trajectory from the list of waypoints. 
 
Applying the Dijkstra's shortest path algorithm on the triangle connectivity graph from the current location to the 

destination triangles produces a list of edges along the path. This list is used to create a list of the triangles to be 
traversed. Finding the center of each of the triangles making the path yields a list of waypoints. 

Figure 6. Trajectory after simplification 
 

Figure 5. Trajectory generated using waypoint list 

 
Figure 7. Trajectory minimizing slope and distance 

 
Figure 8. Trajectory favoring high ground 
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The trajectory defined by the waypoints list has often a "saw tooth" look, which makes it difficult to follow for 
the robot guidance. In order to alleviate this problem, the waypoint list is processed in order to remove unnecessary 
waypoints while maintaining the resulting trajectory on safe ground. Figure 5 and Figure 6 show the effect of the 
trajectory simplification.  

Various cost functions have been tested with the path planner. For example, Figure 7 shows the result for 
planning a path from location (15.0, 5.0) to (80.0, 100.0) (in meters) using a cost function that takes into account 
distance and slope. Figure 8 shows a trajectory generated using a variation on the previous cost function. This 
function favours high grounds over low grounds and could be used to improve a robot's view of the terrain 

IV. Guidance 
The usage of a scanning lidar for terrain sensing results in a concept of operation slightly different from the more 

common schemes using stereo pairs. Indeed the scanning lidar used on the CSA’s Mobile Robotics Test-bed 
typically takes on the order of one or two minutes to perform a terrain scan but it has a sensing range of over a 
kilometer. As a result, the terrain is not sensed continuously. It is rather imaged using snapshots taken at discrete 
intervals. Obviously, since the lidar is located near ground level, the effective range of the measurements is typically 
not on the order of kilometers but of a few tens of meters. Consequently, the rover has the ability to plan path 
segments on the order of 20 to 30 meters and does not rely on environment sensing while moving along these path 
segments. It has, therefore, been necessary to develop a guidance algorithm that can keep the robot precisely on the 
planned trajectory. The proposed rover guidance has two mains parts: localization and autonomous motion control. 

A. Localization 
The first step to ensure that the robot does not deviate from the planned trajectory is to provide accurate 

knowledge of its position. In our system, this task is accomplished by two localization methods. The first method, 
3D odometry, continuously estimates the pose of the rover while the second method, scans/maps matching, is used 
to estimate the initial global pose of the rover and also to periodically correct the 3D accumulated error.  

  
1. 3D Odometry based Localization 

Our 3D odometry is a Kalman filter based fusion of odometry from the rover encoders with the orientation in 
SO(3) from an Inertial Measurement Unit (IMU), and the absolute heading from a digital compass TCM2. The 
compass is activated only when the robot stops (e.g. for taking new scan) because the compass data is not reliable 
when the robot motors are running due to the electromagnetic 
interference. In Mars, a sun sensor would replace this sensor. 
More details on the performances and the experimental 
evaluation of our 3D odometry can be find in Dupuis et 
al.[6]. 

 
2. Scans/Maps Matching based 3D Localization 

Two cases can be considered: with and without 
knowledge of the a priori estimation of the viewpoint. In the 
first case (in our system, the viewpoint is provided by the 3D 
odometry), the variant of ICP presented in section 2.1 is good 
enough to register scans and provides a more accurate 
viewpoint estimation, as illustrated in Figure 9.  In this 
figure, scan 1 and scan 2 (from Figure 2) are registered.  

 
In the second case, without any knowledge of a priori of the 
viewpoint, features that are independent to rigid motion need 
to be extracted. Those features are for example, geometric 
histogram, harmonic shape image, surface signature, 
footprint point signature, point fingerprint, spherical attribute 
image, and spin-image. More exhaustive list and details of 
invariant features is given in [3]. Feature-based approaches 
drawbacks are mainly that they cannot solve the problem in which the 3D data sets doest not contain salient local 
features and high computation time for extracting and organizing those invariant features. Their advantage is that 
they do not require an initial estimate of the viewpoint. 

 
Figure 9. Registration of scans: scan 1 (left) and 

scan 2 (right). 
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CSA is currently investigating three approaches for scan matching with no initial estimate of the viewpoint: 
harmonic shape image [15], point fingerprint [21] and spin-image [5] matching. The results presented in this paper 
are based on Point fingerprint matching enhanced with Random Sample Consensus Algorithm based Data-Aligned 
Rigidity-Constrained (POINT-FINGERPRINT_RANSAC_DARCES) [20]. 

B. Point Fingerprint matching 
Matching takes place by having four separate steps: first step is to select points of interest in the scene and the 

model.  Scene being the scan taken from the sensor and model being the global map of the environment.  Interest 
points are extracted using the curvature change method [2]. Once the points of interest are selected, a fingerprint 
representation is generated for each of them.  To generate a fingerprint representation of a point, one has to define a 
fixed number of geodesic circles.  The radius of a circle is the geodesic distance from the interest points.  Geodesic 
distance is an appropriate choice because it is less sensitive to mesh resolution and configuration since it is 
following the mesh's surface instead of the edge of the triangles (figure 10). 

Once the geodesic circles generated, each point of the circles is projected on the tangent plane of the surface at 

the interest points, i.e. the center.  After projecting the circles' points on the tangent plane, a constant re-sampling of 
circles' points is performed.  The result of the projection is 
presented in figure 11. 

The fingerprints are compared using cross-correlation 
radius of the circles at each point of every circle in the 
fingerprint. More detailed information of this procedure is 
presented in [21].   

Once the fingerprint matching is completed, many 
outliers are present but the size of data to be treated has 
been significantly reduced.  Another method based on the 
RANSAC BASED DARCES [20] is then used as a final 
step.  This method has been modified to use the reduced 
information set obtained from the fingerprint matching, 
which allows it to complete in acceptable time. It has 
proven to be a key element in the algorithm since it is 
filtering the outliers, thus providing the initial estimate of 
the rigid body transformation. The initial estimate is then 
passed to an ICP algorithm that results in a very precise 
registration. Figure 12 shows the final result of the global 
localization without a priori knowledge of the rigid-motion 
parameters. 

 
Figure 10. Geodesic circles surrounding the 

feature point. 

 
Figure 11. Resulting fingerprint 

Figure 12. Global localization: a scan of a 
resolution of 20cm is successfully registered in a 

model of a resolution of 1m. 
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C. Motion controller 
The developed motion control is based on a discontinuous state feedback control law initially proposed by 

Astolfi [19]. Experimental results in an outdoor 3D environment (Figure 15) demonstrate the robustness and the 
stability of the developed path-following approach. The Figure 13 and the Figure 14 illustrate an 8m by 8m square-
shaped reference path following result. A part on the path was on a slope. The dashed line represents the planned 
trajectory that covers an 8m by 8m region. The solid line represents the actual robot positions in 3D. In the far edge 
along the x-axis the vertical difference between the solid line and the dashed line is due to the fact that the 
commanded trajectory does not take into account a rise in the physical terrain. During the autonomous motion 

execution, artificial perturbations were induced twice as show in Figure 14. This figure shows that the rover can 
robustly, quickly and smoothly recover the path. 

During our tests with and without perturbations, physical error at the end of the motion was always negligible 
(about few centimeters in position and few degrees in 
orientation) and it is essentially due to the wheels slippage 
and the gyroscope drift. For example, the errors of the test 
in Figure 13 were on the order of 15 centimeters in 
position and 3.3 degree in orientation for 32 meters 
trajectory. The physical error in position was measured by 
putting marks on the ground, while an onboard compass 
(in rest state) provided the orientation error. 

Those results illustrate the precision and the 
performance of the proposed autonomous motion 
controller and the 3D odometry based localization. 

V. EXPERIMENTAL RESULTS 
To evaluate the efficiency of the proposed 3D 

reconstruction of the environment approach, a global localization and path-planning scenario using the reconstructed 
model is tested in the Mars Yard (Figure 15). The mobile robot is placed some-where in the Mars Yard (at unknown 
position A) and asked to find a safe path up to a given global position of point B(see Figure 16). The unique a priori 
known information is a low (one meter) resolution map of the Mars Yard. The experimental results are shown in 
Figure 12 for the global localization illustration and in Figure 16 for the path planning. In Figure 12, first the rover 
takes a high-resolution scan and then uses the POINT-FINGER-PRINT-RANSAC Based DARCES algorithm to 
match it with a low-resolution model of Mars Yard without any knowledge of the position of the rover in the Mars 
Yard. The obtained result is the global position and orientation of the rover in Mars yard. This process takes 
approximately from 30 seconds to 2 minutes (Pentium 4, 1.8 GHz, which is acceptable for Mars exploration 
application since the rover has to do it only once to initialize the 3D odometry). In Figure 12, the registration results 
are:  position of the rover (x=59.259, y=18.973, z=0.371) in meters and orientation of the rover (roll= -0.311, pitch= 
-0.633, yaw=-176.192) in degrees.  
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Figure 13. Square-shaped path following with 

artificially induced perturbations: 3D view. 
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Figure 15. A view of the Mars Yard located at 

Canadian Space Agency. 
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VI. Conclusion 
This article has presented and discussed the 

advantages of map building via triangulation and path 
planning through an irregular triangulated mesh, and the 
algorithms used for rover guidance in outdoor terrain. 
Experimental results demonstrate that the terrain-
modelling scheme can be used to model natural terrains 
efficiently and is directly usable for path planning using 
a variety of cost functions. The robustness and stability 
of the rover guidance in rough 3D terrain is 
demonstrated. Closed trajectories of up to 50 meters 
have been executed successfully in natural terrain even 
in the presence of external disturbances. Position errors 
on the order of less than 1% of the total distance 
travelled have been observed in many cases.  

Future work will focus on simultaneous localization and mapping, increased autonomy and longer-range 
navigation, and decreased the computation time of global localization.  
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