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Abstract: This paper discusses a novel approach for the exploration of an underwater structure.
A team of robots splits into two roles: certain robots approach the structure collecting detailed
information (proximal observers) while the rest (distal observers) keep a distance providing an
overview of the mission and assist in the localization of the proximal observers via a Cooperative
Localization framework. Proximal observers utilize a novel robust switching model-based /visual-
inertial odometry to overcome vision-based localization failures. Exploration strategies for the

proximal and the distal observer are discussed.
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1. INTRODUCTION

Mapping and inspection of underwater structures is es-
sential for a variety of fields such as marine archaeology,
resource utilization, environmental monitoring, marine in-
frastructure maintenance, and public safety. Especially
climate change, which potentially threatens many marine
infrastructure and ecosystems, is expected to emphasize
the need for scalable solutions for mapping and inspection
in many of these domains. Currently, such underwater
operations are performed by human operators, either as
divers or Remotely Operated Vehicle (ROV) operators.
Aside of the constant health risks and limitations asso-
ciated with commercial divers, utilizing human operators
requires significant logistics where scalability remains a
major challenge. On the other hand, Autonomous Un-
derwater Vechicles (AUVs) could assist such operations
and not be bounded by the above-mentioned limitations,
scaling better and being able to support the increased
needs for such operation in the future.

The two major challenges for effective and safe operation
of AUVs in the underwater domain are robust state es-
timation and motion planning with limited information.
Regarding state estimation, previous work has shown the
unique challenges that the underwater domain imposes
on state-of-the-art SLAM (Joshi et al., 2019; Quattrini
Li et al., 2016) approaches, and SLAM techniques such
as SVIn2 (Rahman et al., 2018, 2019) improved the es-
timation accuracy. While minor state estimation errors
might not affect significantly underwater operations lo-
cally, accumulated minor errors, especially while mapping
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Fig. 1. Aqua2 AUV navigating towards the Stavronikita
shipwreck, Barbados.

large structures, can significantly degrade the quality of
the data collected from the target underwater structure,
resulting in distorted maps. A novel approach is outlined
in this paper utilizing a switching estimator employing an
accurate VIO estimator (Rahman et al., 2019) and a model
based estimator (Meger et al., 2015). Especially during
navigation around underwater structures, when the AUV
reaches the boundaries of the structure the cameras see
only “blue water” and visual tracking is lost. The proposed
switching estimator utilizes the model-based estimator to
track the robot’s pose until VIO re-establishes tracking.

Regarding motion planning, underwater navigation poses
significant challenges due to the noisy and limited sensing
in the underwater domain, the external forces due to
currents, the presence of many dynamic obstacles, and
the often complex hydrodynamics experienced by many
AUVs. Recent prior work has provided a robust vision-
based real time 3D underwater navigation package called
AquaNav (Xanthidis et al., 2020) that enabled an AUV



with complex dynamics to navigate efficiently towards a
desired goal and avoid obstacles safely in very challenging
environments. Moreover, an extension of AquaNav called
AquaVis (Xanthidis et al., 2021) was able to move the
robot safely while it was also maximizing visibility of
certain features in large structures such as shipwrecks,
showing strong potential for mapping larger underwater
structures.

The contribution of this paper is a novel framework where
a team of robots collaborates to map large underwater
structures such as shipwrecks in order to improve map
quality and reduce uncertainty at post-processing stage.
The main idea, that utilizes the previously introduced
techniques, is to separate the robots into two teams, the
proximal observers that greedily attempt to map the tar-
get structure in close proximity emphasizing the collection
of detailed measurements, and the distal observers that
will maintain a global view of the situation by observing
the proximal observers along with its relative position to
the general structure of the shipwreck. A deep learning
framework (Joshi et al., 2020) for estimating the relative
pose between the two kinds of robots is also outlined.

Specifically, this paper presents technologies towards ac-
complishing the proposed framework, such as the coop-
erative localization module, the robust underwater state
estimation method, along with the safe and efficient un-
derwater navigation and active perception techniques for
the two different behaviors developed.

2. RELATED WORK

Mapping shipwrecks is a problem that has been addressed
using a variety of methodologies all around the globe,
with the two most famous wreck explorations of the An-
tikythera (Williams et al., 2016) and the Titanic (Eustice
et al., 2006) shipwrecks. Photogrammetry of manually
collected images resulted in mosaics (Demesticha et al.,
2014), or from an ROV, (Nornes et al., 2015). Comprehen-
sive overviews of relevant robotic technologies is provided
in works such as Menna et al. (2018), and the Arrows EU
project (Allotta et al., 2015).

Kurazume et al. (1994); Kurazume and Hirose (2000)
first conceptualized the concept of utilizing mutual sensor
reading to localize two robots, and named it as cooper-
ative positioning system, though in the literature, it is
most often called Cooperative Localization (CL) (Rekleitis
et al., 1998). Dieudonné et al. (2010) proved the NP-
hardness for an arbitrary set of sensors, and theoretical
analysis factors affecting error growth were studied in
Roumeliotis and Rekleitis (2004). Additional research has
examined the performance (Mourikis and Roumeliotis,
2006), the consistency (Huang et al., 2009), the sensing
modalities (Zhou and Roumeliotis, 2012), proposed decen-
tralized solutions (Leung et al., 2010) and introduced the
integration with inertial sensors (Martinelli and Renzaglia,
2017).

Another approach to mapping underwater is to cast it as
a coverage problem. Frolov et al. (2014) presented a mo-
tion planning approach for map uncertainty reduction by
returning to regions with high uncertainty, while Chaves
et al. (2016) proposed the use of loop closures for reducing

uncertainty. Recent work by Karapetyan et al. (2021)
employed deep learning (DL) for vision-based navigation
to cover underwater structures, such as shipwrecks, with-
out dependence to state estimation. Other groups have
recently showcased the potential of the Aqua2 (Sattar
et al., 2008) AUV by presenting autonomous underwater
navigation. DL-based approach was provided by Man-
derson et al. (2018) for obstacle avoidance by training
using the decisions of a human pilot. Hong et al. (2021)
used deep learning to classify objects into static and dy-
namic in conjunction with a potential field-based planner.
Perception-aware underwater navigation by Manderson
et al. (2020) provided an extension to their early work.
Similarly to Manderson et al. (2018), this DL approach
utilizes data produced by human operators driving the
robot, which learns to avoid collisions with obstacles and
to stay close to corals.

3. OVERVIEW

The key goal of the mapping framework is the ability
to map the target structure in high resolution while at
the same time maintaining an accurate overall situational
awareness at all times. In order to achieve this goal the
distal observer AUV(s) monitor the pose of the proximal
observers together with the overall structure. The proximal
observer explores near the structure and produces a dense
3D map. Key to the success of the mapping is to maintain
an accurate estimate of the proximal observer’s pose even
when vision fails.

3.1 Cooperative Localization

Firstly, cooperative localization (Kurazume and Hirose,
2000; Rekleitis et al., 1998) needs to be solved for esti-
mating the relative pose of Proximal Observer from Distal
Observer. Previous work (Joshi et al., 2020), developed
a deep learning framework to obtain the relative pose
between the two AUVs from a single image and produced
promising results for cooperative localization.

As motion capture systems used to obtain ground truth
poses are difficult to set up underwater, we simulated a
robot swimming by projecting the robot’s 3D model over
underwater images using Unreal Engine 4. Unfortunately,
the produced images differed from the actual underwater
images because of poor visibility and color loss underwater.
We utilized CycleGAN (Zhu et al., 2017) to generate
synthetic images that look like actual underwater footage
in effect bridging the gap between simulation and actual
underwater images. Then, we train the Convolutional
Neural Network on the synthetic dataset and then evaluate
on actual underwater footage.

We augmented the YOLOv3 (Redmon and Farhadi, 2018)
network by passing the output of the standard backbone
encoder to the object detection stream and the pose
regression stream. The pose regression stream predicts the
2D projections of 8 corners of the robot’s 3D model and
the confidence score for each 2D keypoint prediction. The
network architecture can be viewed as dividing an image
into grids, and each grid votes for 2D keypoint projections
and bounding box predictions. To focus on image areas
belonging to the robot, predictions pertaining to grid cells



Fig. 2. An Aqua2 AUV detected from another Aqua2 while
traveling over a coral reef, Barbados.

that fall outside the object detection box were discarded.
For each 3D keypoint, 2D keypoint predictions with high
confidence scores were selected to produce a set of 2D-to-
3D correspondences. Then, RANSAC-based PnP (Lepetit
et al., 2009) is used for robust relative pose estimation.

The deep learning framework has been evaluated in dif-
ferent types of environments — pool, ocean — and with
multiple cameras, including several GoPro cameras, and
an Aqua2 robot. The tests demonstrated its robustness to
camera intrinsics changes, variations in underwater envi-
ronment, and color calibration, Fig. 2. In addition, com-
pared with state-of-the-art algorithms (Koreitem et al.,
2018), the framework performed better in terms of trans-
lation and orientation accuracy on the pool dataset.

The discussed pose estimation network sometimes fails
to predict the accurate pose when there is inaccurate
detection of the bounding box. Thus, the robot’s correct
relative pose with respect to the observer can only be
obtained in case of accurate object detection and then
interpolated for failed frames. In the future, we aim to fuse
information from pressure-based depth sensor and IMU to
detect disparities in the estimated pose across multiple
frames and improve robustness and accuracy.

3.2 Robust State Estimation Underwater

Vision provides rich semantic information and through
place recognition results in loop closures. Unfortunately,
as demonstrated in recent work on comparing numerous
open-source packages of visual and visual/inertial state
estimation (Quattrini Li et al., 2016; Joshi et al., 2019),
in an underwater environment there are frequent failures
due to a variety of reasons. In contrast to above water sce-
narios, GPS based localization is impossible. In addition
to the traditional difficulties of vision based localization,
the underwater environment is prone to rapid changes in
lighting conditions, limited visibility, low contrast, and
color saturation with depth.

One important characteristic of vision underwater is that
the range of the camera is limited to a few meters.
Especially during operations around structures, AUVs
often move in a way that sets the camera facing past the
structure into open water. Even if there are obstacles more
often than not they are not visible after a few meters. In
contrast, aerial vehicles even if they look past a building,
they would see the next building over or the ground.
Figure 3 presents the view of the camera as an Aqua2

Fig. 3. Image acquired by an Aqua2 AUV during navi-
gation over the Stavronikita shipwreck in Barbados.
Features are detected only at the lower part of the
image.

AUV explored over the bow of the Stavronikita shipwreck
in Barbados. While the railing of the deck is visible at the
bottom, most of the image is dominated by blue water, the
sunlight penetrating from the surface makes the top part
much brighter. Brisk features are marked on the bottom
part of the image.

A robust switching estimator is utilized to ensure continu-
ous pose estimates despite the loss of visual features. When
the AUV is facing the structure, the SVIn2 (Rahman et al.,
2019) VIO package is used. A health monitor checks the
quality of the visual data based on the number and quality
of features detected. When vision becomes unreliable, a
model based estimator, termed primitive estimator (PE),
is utilized. PE uses the water-depth, IMU, and the motion
commands to estimate the motion of the AUV. When the
PE starts, it is initialized at the last good pose produced
by SVIn2. When the VIO recovers, the estimator switching
back to SVIn2 which is initialized in the corresponding
pose of the PE. Loop closure is applied to the combined
trajectory ensuring that when an area is revisited the
correction propagates back through both SVIn2 and the
PE portions of the trajectory.

8.8 Prozimal Observer FExploration

Different exploration and coverage patterns can be utilized
to guide the proximal observer. Regardless the motion
pattern, the proximal observer has to avoid obstacles and
to keep the target structure in the field of view. The
AquaVis framework, (Xanthidis et al., 2021), is utilized
to produced an efficient trajectory selecting poses prefer-
entially for keeping the prominent features of the structure
in the camera’s view.

AquaVis is an active perception framework that extracts
visual objectives online, moves towards a target position,
and maximizes visibility of nearby visual objectives from
a desired distance. For the purposes of this work, visual
objectives were extracted by utilizing the centroids of areas
with high density of features. This was achieved by cluster-
ing the 3D point-cloud, provided by state estimation, with
DBSCAN (Ester et al., 1996) to drive the robot towards
the shipwreck. In the future third-party object detection
methods could be utilized to provide a more cognitive
behavior. With the visual objectives as input, AquaVis



Fig. 4. A robust switching estimator utilized for an Aqua2 AUV navigating over the Stavronikita shipwreck (a). The
Trajectory according to the primitive estimator; using the same algorithm as the robot controller PE believes the
AUV performed a near perfect lawnmower pattern (blue dashed line); the trajectory according to SVIn2 (Rahman
et al., 2019); due to tracking loss the VIO is way off the actual wreck (red dashed line); the trajectory from the
switching estimator which utilized the robust parts of VIO (in red) switching to PE when tracking was lost (in
blue) (b). Dense reconstruction utilizing the global optimization package COLMAP (c).

provides the waypoints to be traversed by the robot from
a path-optimization process that combines constraints for
minimizing path length, guarantying clearance, encourag-
ing the robot to observe the extracted visual objectives,
and enforcing the robot’s kinematics, within a modified
version of Trajopt (Schulman et al., 2014) for mobile
robots moving in 3D.

3.4 Distal Observer Oversight

Visual servoing of the proximal observer is a fundamental
strategy for the distal observer. Although, the presented
technique does not take into consideration the visibility of
the explored structure yet, future work will address this
problem soon. To achieve the desired behavior the distal
observer has to extract in real-time the position of the
proximal observer, along with its future positions within
an acceptable horizon. Please note that either minimal
underwater communication between the robots, or a third-
party tracking and motion prediction technique could
satisfy such assumption. The proposed methodology for
enabling cooperative localization presented in section 3.1
is exploring possibilities towards the latter direction.

Similarly to the proximal observer, this is also an instance
of active perception, thus we proposed to utilize Aqua-
Vis (Xanthidis et al., 2021) too, with few fundamental
changes. Firstly, the visual objectives are not extracted
automatically by the point cloud, but they are commu-
nicated by the proximal observer, who shares its planned
trajectory with the distal observer. Secondly, instead of
using a collection of nearby visual objectives for each state
during optimization, only a single one corresponding to
a future position of the proximal observer was picked.
Assuming known constant speeds for both the proximal
and the distal observers, we pick only the visual objective
that corresponds to the same time frame for each future
state of the distal observer.

4. EXPERIMENTAL RESULTS

During an early deployment of the Aqua2 AUV over the
bow of the Stavronikita shipwreck, Barbados, the AUV
performed a fixed boustrophedon (Choset and Pignon,
1998) coverage pattern; see Fig. 4(a) for the AUV traveling

over the wreck. The open loop controller used a model
based estimator fusing motion commands, IMU, and water
depth sensor data resulting in a evenly spaced lawn-
mower patter; see the dashed-blue line in Fig. 4(b). The
estimates of SVIn2 (Rahman et al., 2019) drifted off when
the AUV was facing blue water; see the red dashed-
line in Fig. 4(b). However, current pushed the AUV off
the trajectory, utilizing a switching estimator resulted in
accurate pose estimates; see the continues line, the color
signifying which estimator was used, in Fig. 4(b). The
collected images were then processed using the global
optimization package COLMAP (Schonberger and Frahm,
2016) the resulting reconstruction can be seen in Fig. 4(c).
Finally, Fig. 5 shows a instance of a simulated distal
and proximal observer mapping a shipwreck utilizing the
proposed technique in Gazebo (Koenig and Howard, 2004).
For simulation purposes, odometry was provided by the
simulator, while cameras were represented by simulated
lidar sensors with the same field of view. The proximal
observer (red) moves closer to the wreck while the distal
observer (brown) follows keeping the proximal observer in
view.

5. CONCLUSIONS

This paper presented a novel approach for the mapping
and monitoring of underwater structures. The key concept
is the utilization of two behaviours for AUVs, close inspec-
tion of the structure, enabling high definition observations,
and distal observations that maintain an overall picture of
the situation, including the rough shape of the structure
and the pose of the proximal AUV with respect to the
structure. In pursuit of this goal, a deep learning approach
for estimating the relative pose between the two robots was
presented together with a robust switching estimator using
model based and VIO pose estimation. Motion strategies
for the two AUVs are also discussed.

Extensions of this work include the distal observer be-
ing also the illumination carrier in environment without
natural illumination, i.e. caves; see Fig. 6 where a diver
with a VIO setup and a light plays the role of the distal
observer. While traveling to and from the structure, the
two vehicles will convoy (Shkurti et al., 2017) with the
distal observer keeping the proximal in its field of view. For



(a)

(b)

Fig. 5. Side and top view of a pair of robots exploring over the USS YP-389 shipwreck (NOAA Monitor National Marine

Sanctuary, 1972).

reduced visibility environments, equipping the proximal
observer with a light pattern will facilitate the relative
pose estimate.

Fig. 6. Aqua2 AUV navigating inside the Ginnie Ballroom,
FL. A diver plays the role of the distal observer
with a GoPro camera (Joshi et al., 2022) and a light
illuminating the AUV and the surroundings.

An additional advantage of the proposed approach is the
capability of the distal observer to record the behaviour
of the proximal observer over time, providing valuable
insights on the exploration process. Deployments over
shipwrecks and around aquaculture farms will provide
historical records and information about maintenance and
repair needs.
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