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Abstract. Freshwater resources including lakes and reservoirs are increasingly threatened by harmful
cyanobacterial blooms (HCBs). The scarcity of high spatial and temporal resolution data presents challenges
for monitoring, predicting, and managing these blooms. Autonomous surface vehicles (ASVs) equipped
with water quality sensors represent a powerful tool to obtain high-resolution spatial data at Lake Wateree
(LW), South Carolina (SC). LW is a hydroelectric reservoir commonly covered with extensive blooms of the
benthic cyanobacteria Microseira (Lyngbya) wollei and Phormium sp., with the thickest mats in shallow coves.
The main objective of this study was to determine the best speed and duration of loiter (i.e., pauses) required to
collect accurate quantitative data on a mobile platform. We present a low-cost motorized kayak (<8000 USD) designed
to run autonomously equipped with a YSI EXO2 sonde measuring depth, temperature, conductivity, dissolved oxygen,
pH, turbidity, and phycocyanin. The sonde was positioned horizontally on a rigid mount at 0.5 m below the surface
to efficiently reduce the effect of turbulence. The data were compared to another YSI EXO2 sonde installed on the
same ASV design, maintained stationary midway along the moving ASV’s path to assess the data accuracy obtained at
different speeds and loiter periods. No statistically significant differences were observed for measurements collected
on the stationary and moving ASVs for all water-quality sensors at a speed of up to 2.7 m/s (6 mph). Differences
observed between the moving and stationary sondes for phycocyanin and turbidity sensors were within the reported
factory accuracy at speeds up to 1.8 m/s (4 mph) and outside the expected factory accuracy at higher speed (2.7 m/s),
showing the effects of motion and mixing on the collected data. Dissolved oxygen was outside of the reported factory
accuracy for all tests. It is recommended to loiter periodically when moving at a faster speed to obtain more accurate
data, as the differences between the sondes were alleviated during the loiter period. Overall, our ASV design has the
potential to be employed to obtain robust spatial data at LW when deployed at optimal operating conditions.
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INTRODUCTION

Harmful cyanobacterial blooms (HCBs) are becoming more
common with increasing temperatures and storm events, and
anthropogenic demand for freshwater (Paerl 2016). HCBs
put human, animal, and ecosystem health at risk by releasing
toxins, impairing water quality, and reducing biodiversity
(Paerl et al. 2016; Wurtsbaugh et al. 2019). The main factors
controlling HCB proliferation include the presence of
stagnant waters, warm temperatures, high light intensity and
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duration, and nutrient input (Paerl 2008). New technology
and tools to monitor HCBs have been employed in the last
decade to better identify controlling factors (Catherine et al.
2013; Wood et al. 2020).

Lake Wateree (LW) is in the Catawba-Wateree River
Basin, downstream of Charlotte, North Carolina (NC), and
the rapidly growing suburbs in York, SC (Baumann 2020).
LW is a hydroelectric reservoir that has been subjected to
increased non-point and point source nutrient loading from

Volume 9, Issue 2 (2024) <=



Venkatachari et al.

changing land-use patterns for decades such as increased
timber felling and sewage discharges, contributing to
increased eutrophication (Tufford et al. 1999, 2012). Over
the last decade benthic HCBs of Microseira (Lyngbya) wollei
and Phormidium sp. have increased in frequency at LW, with
the potential of releasing lyngbyatoxins and saxitoxins under
different nutrient (e.g., dissolved nitrogen) and environmen-
tal (e.g., temperature) conditions (Yin et al. 1997; Hudon et
al. 2014; Heath et al. 2016; Smith et al. 2019; Aziz et al. 2022).
Current monitoring efforts by the SC Department of Health
and Environmental Control (DHEC) and the Lake Wateree
Association only involve discrete bimonthly sampling, which
provides insufficient spatial and temporal data resolution to
inform prediction and remediation of blooms.

Autonomous Surface Vehicles (ASVs) offer a potential
platform for high resolution spatial data, which is otherwise
limited by the lack of satellite coverage and discrete manual
sampling (Low et al. 2007; Jeong et al. 2020). ASV’s, developed
for marine monitoring (Low et al. 2007; Das et al. 2011, 2015;
Valada et al. 2013) have been recently adapted for freshwater
lakes (Hitz et al. 2014, 2017; Manjanna et al. 2018). Robust
data, with a high spatial resolution obtained from ASVs,
could allow refinement of numerical models used to predict
freshwater HCBs. However, the ASV first needs to be tested
to determine best practices (e.g., desirable speed and loiter)
to obtain accurate data. HCB types (i.e., planktonic versus
benthic) as well as lake size and regime are other important
considerations affecting ASV design and data collection. The
ASV engine causes turbulence during motion which could
potentially affect sensor readings, especially during periods
of stratification in surface waters. We present a new relatively
low-cost (<8,000 USD) ASV equipped with multiple sensors
in LW. Several speeds and loiter periods are considered to
inform best practices to obtain accurate water-quality data
from an ASV.

METHODS

The ASV (Moulton etal. 2018) (Figure 1) is a Mokai kayak that
is fitted with a gas-powered engine (Subaru EX21 engine) and
jet drive system capable of propelling up to 2.7 m/s (6 mph).
The maximum deployment time is 4 hours, limited by the
capacity of the gas tank to run the engine at speeds up to 2.7
m/s. The ASV is outfitted with a Pixhawk (Meier et al. 2011)
flight controller and an on-board computer, enabling it to
operate autonomously and collect time-stamped, geospatial
water quality data. The data is stored in ROS bagfiles (O'Kane
2016). During the experiments, the ASV was programmed
to autonomously traverse the pre-determined trajectory
(Osborne 2019) (Figure 2).

A YSI EXO2 multiparameter sonde was equipped with
a suite of EXO sensors to measure depth, temperature, con-
ductivity (contacting/toroidal), dissolved oxygen (optical),
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Figure 1. ASV design used in this study.

pH (membrane), turbidity (optical), and phycocyanin
(optical). The sonde was positioned horizontally on a fixed
mount, facing backwards at about 0.5 m below the waterline,
near the base of the mixed layer (Figure 3), on the side and
near the back end of the ASV. The sonde readings were
recorded in the rapid mode, every two readings (2-sec
intervals). Rapid mode is prescribed by the manufacturer for
fast moving deployments. In this mode, the instantaneous
sensor reading is internally programmed to filter through data
collected during the last 2-30 seconds and records the data
as a rolling average. The data that were outside of the internal
accuracy tolerance were omitted. The data obtained in this
mode were treated as continuous data points for the purpose
of this study. The ASV was programmed to travel a 483 m
transect (Start: 34.42495N, 80.86427W; End: 34.42092N,
80.86608W) at LW and a second stationary ASV was
stationed close to the midpoint, approximately 241 m from
either end of the transect (34.42295N, 80.86452W) (Figure
2). Water quality data obtained using three different speeds
(0.9 m/s, 1.8 m/s & 2.7 m/s) comprised within the lower (0.9
m/s) and upper (2.7 m/s) speed limits of the ASV and two
loiter times (20 & 40 seconds) based on observed response
times for the sensors in the laboratory (Table 1) were used
to determine best practices using this ASV. During the loiter
tests the ASV came to a complete halt at three locations along
the transect (start, mid-point, and end of the transect), and
traveled at a speed of 2.7 m/s when in motion. The motion
model controlling the speed of the kayak initiated the stop
before reaching the loiter location, so the inertia carried the
kayak to the loiter location. Each speed and loiter test was
repeated three times.

Response times were recorded in the laboratory by using
test solutions encompassing the range of values typically
observed at in-situ conditions at LW for each sensor (Table
1). Each sensor was tested (five times) separately to evaluate
response times for the two sondes (i.e., moving and station-
ary) that were used during the deployment. The response

-
-_—

Volume 9, Issue 2 (2024)



Use of an Autonomous Surface Vehicle to Collect High Spatial Resolution Water Quality Data

Dutchman’s creek landing;”
/. Lake Wateree, South Carolina’;

A.:’“

Figure 2. Test transect at Dutchman’s Creek Arm of Lake
Wateree, SC.

A Shapiro-Wilk test was used to test the normality of data.
A paired T-test was used to compare the data between the
stationary and moving sondes. The differences between the
data recorded using the stationary and moving ASVs during
the speed and loiter tests were also compared to the reported
manufacturer accuracies (Table 1).

RESULTS

The sensors on the YSI EXO2 (temperature, conductivity,
dissolved oxygen, pH, turbidity, and phycocyanin) required
a minimum of <1 sec (temperature) and a maximum of 18

Table 1. YSI EXO2 factory information and laboratory T100 response times for different sensors

o Factory reported Laboratory
Observed variability Sensor . i
Sensor type Sensor accuracy ] response time response time
atILw resolution
(T63) (T100)
-5°Cto 35°C: = 0.01°C
Temperature 21°C-26°C 0.001 °C <1 sec <1 sec
35°C to 50°C: + 0.05°C
. 0-100 mS/cm: + 0.5% of reading or ~ 0.0001 mS/cm

Conductivity 0.1 mS/cm-0.15mS/cm . . <2 sec <2 sec

0.001 mS/cm, whichever is greater  to 0.01 mS/cm

+ 0.1 pH units within + 10°C of
pH 7-10 calibration temperature; + 0.2 pH 0.01 <3 sec 8sect2
units for entire temp range
0-200%: * 1% reading or 1% air
) sat., whichever is greater; 200- )

Dissolved 1 mg/L- . 0.1% air sat,

500%: + 5% reading 0-20 mg/L: + <5sec 12sec+3
Oxygen 11 mg/L . 0.01 mg/L

1% of reading or 0.1 mg/L; 20-50

mg/L: + 5% reading
. 2 RFU-
Phycocyanin 0-100 RFU 0.01 RFU <2 sec 18 sec+4
9 RFU
o 1 FNU- 0-999 + 0.3 FNU or + 2% of
Turbidity . . . 0.01 FNU <2 sec 12sec+3
40 FNU reading, whichever is greater

time, defined as the time it takes for the sonde to stabilize
to the expected value (referred here as T100), was noted.
The response time was compared to the factory reported
response times (T63) which is the response time needed
for the sensor to reach 63% of the expected value. The sen-
sors were calibrated the day prior to field tests following YSI
EXO?2 factory recommendations. The sensors were kept in
the same bucket of water to allow comparing values recorded
by the two sondes just before the deployment.

Water quality data from the YSI EXO2 sonde mounted
on both the moving and stationary ASVs were compared
using GPS locations. The data from the moving ASV recorded
within 3 m of the stationary ASV for each test was compared.
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seconds (phycocyanin) to read 100% (T100) of the expected
test solution value in the laboratory (Table 1). Phycocyanin
required the longest time, followed by turbidity, dissolved
oxygen, and pH (Table 1). There was a significant difference
between T63 and T100 response times (paired T-test; p<0.05).

No significant differences (paired T-test; p>0.05) were
identified for water quality data collected using the moving
and stationary ASVs at all tested speeds and loiter times. Dif-
ferences between moving and stationary ASVs for conduc-
tivity, temperature, and pH sensors were within the expected
accuracy at speeds up to 2.7 m/s and loiter time as short as
20 seconds (Figure 4). However, the differences between the
moving and stationary sondes were outside the expected
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Table 2. Weather conditions at Lake Wateree in October 2022 (CLIMOD2 Station: 388979; Duke Energy).

Date Maximum Temperature (°C) Minimum Temperature (°C) Rainfall (mm) Lake Depth (m)
04th October, 2022 21.1 6.7 0 29.5
21st October, 2022 18.9 0.6 0 29.3
Average (04th-21st October 2022) 239+3.7 8.3+4.5 0 29.5+0.1
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Figure 3. Depth profile of dissolved oxygen, phycocyanin, temperature, turbidity
and pH collected at the same location as a stationary sonde on a ASV on
October 21, 2022. The horizontal gray line indicates the position of the sonde
mounted on the ASV.
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Figure 4. Sensor data plotted as means with standard deviation for different speed and loiter tests at LW for
both the moving and stationary sondes. The experiments were done at the same location through the course
of the day on October 4, 2022.
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accuracy at 2.7 m/s for turbidity and phycocyanin (Figure 4).
These sensors also had higher T63 and T100 (Table 1). The
difference between the moving and stationary sondes for dis-
solved oxygen were consistently outside the expected accu-
racy for all tests (Figure 4, Table 1). The stationary sonde data
were considered to be more accurate due to the longer equil-
ibration time with the surrounding water. Vertical profiles
collected two weeks after the experiment showed that surface
waters were stratified during our test period, with dissolved
oxygen maximum around 0.5 m depth and variable phycocy-
anin within the first two meters of the water column (Figure
3). A change in the stratification between these two sampling
times is unlikely since weather conditions in October were
relatively stable (Table 2; also see Lewis et al. 2011).

DISCUSSION

We present a new, relatively low-cost (<8,000 USD) ASV
that can be used to collect high quality spatio-temporal data
at LW at speeds up to 1.8 m/s. These results corroborate
previous use of similar ASV designs, mainly in coastal
marine environments, used to obtain high spatial resolution
data to monitor HCBs (Leong et al, 2012; Beckler et al. 2019).

Our data (Figure 4) showed that turbidity, phycocyanin,
and dissolved oxygen readings are affected by motion (i.e.,
turbulence), especially at a speed of 2.7 m/s. Notably, dis-
solved oxygen measurements from the stationary sonde were
1.2 + 0.4 mg/L higher than the moving sonde at all tested
speeds. These differences are much higher than the factory
reported accuracy of the oxygen sensor (Table 1). This dis-
crepancy was not due to drift because the difference between
readings of the two sondes were within 0.3 mg/L at the start
of the tests. We posit that the lower oxygen values from the
moving sonde were likely due to greater mixing with waters
above or below the oxygen maximum around 0.5 m depth, for
the moving sonde (Figure 3). Another possibility for observ-
ing dissolved oxygen readings outside the manufacturer
reported accuracy is sensor malfunction. However, no evi-
dence for malfunction was observed as the sondes were thor-
oughly tested before the experiment. In addition, response
time may be longer than 40 seconds under field conditions.
Mixing could also explain the difference observed at a speed
of 2.7 m/s for the phycocyanin sensor as this parameter was
also highly variable within the first meter of the water col-
umn (Figure 3). Motion is also expected to similarly affect
turbidity measurements as it is based on scattering of light in
the water (Merten et al. 2014).

Although there were no significant differences (paired
T-test; p>0.05) between the data from the stationary sonde
and moving sonde at all speeds and loiter times, we rec-
ommend to carefully evaluate the optimal speed for ASVs
equipped with water quality sensors based on the manufac-
turer reported accuracies for the different sensors (Table 1)
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to minimize the effects of motion. Our results showed that
1.8 m/s was the preferred speed to obtain reliable data at
LW for our ASV based on the manufacturer expected sensor
accuracy. Further, the observed deviation from the expected
accuracy between the moving and stationary sondes for the
turbidity and phycocyanin sensors were alleviated during loi-
ter periods. We thus recommend periodic loiters of at least 20
seconds to obtain more accurate data, especially for sensors
with longer response times and during stratified conditions.
Discrete sampling should be used to evaluate the frequency
of loitering based on the level and depth of stratification and
spatial heterogeneity of the surface waters and to validate the
data collected by the ASV.

Opverall, this study demonstrated the potential to use
water-quality sensors on ASV in freshwater environments.
Future work will involve using this ASV along a trajectory
path around LW (Salman et al. 2022) which delineates the
shore since benthic HCBs, that are only present in shallow
waters, are the focus of interest. We plan to loiter every 500
m for 20 seconds at 1.8 m/s and cover 24 kms (7% of the
shoreline) in approximately 4 hours. This should enable
time-effective large spatial coverage to capture minute spatial
heterogeneity in water quality at LW.
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