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INTRODUCTION

Harmful cyanobacterial blooms (HCBs) are becoming more 
common with increasing temperatures and storm events, and 
anthropogenic demand for freshwater (Paerl 2016). HCBs 
put human, animal, and ecosystem health at risk by releasing 
toxins, impairing water quality, and reducing biodiversity 
(Paerl et al. 2016; Wurtsbaugh et al. 2019). The main factors 
controlling HCB proliferation include the presence of 
stagnant waters, warm temperatures, high light intensity and 
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Abstract. Freshwater resources including lakes and reservoirs are increasingly threatened by harmful 
cyanobacterial blooms (HCBs). The scarcity of high spatial and temporal resolution data presents challenges 
for monitoring, predicting, and managing these blooms. Autonomous surface vehicles (ASVs) equipped 
with water quality sensors represent a powerful tool to obtain high-resolution spatial data at Lake Wateree 
(LW), South Carolina (SC). LW is a hydroelectric reservoir commonly covered with extensive blooms of the 
benthic cyanobacteria Microseira (Lyngbya) wollei and Phormium sp., with the thickest mats in shallow coves. 
     The main objective of this study was to determine the best speed and duration of loiter (i.e., pauses) required to 
collect accurate quantitative data on a mobile platform. We present a low-cost motorized kayak (<8000 USD) designed 
to run autonomously equipped with a YSI EXO2 sonde measuring depth, temperature, conductivity, dissolved oxygen, 
pH, turbidity, and phycocyanin. The sonde was positioned horizontally on a rigid mount at 0.5 m below the surface 
to efficiently reduce the effect of turbulence. The data were compared to another YSI EXO2 sonde installed on the 
same ASV design, maintained stationary midway along the moving ASV’s path to assess the data accuracy obtained at 
different speeds and loiter periods. No statistically significant differences were observed for measurements collected 
on the stationary and moving ASVs for all water-quality sensors at a speed of up to 2.7 m/s (6 mph). Differences 
observed between the moving and stationary sondes for phycocyanin and turbidity sensors were within the reported 
factory accuracy at speeds up to 1.8 m/s (4 mph) and outside the expected factory accuracy at higher speed (2.7 m/s), 
showing the effects of motion and mixing on the collected data. Dissolved oxygen was outside of the reported factory 
accuracy for all tests. It is recommended to loiter periodically when moving at a faster speed to obtain more accurate 
data, as the differences between the sondes were alleviated during the loiter period. Overall, our ASV design has the 
potential to be employed to obtain robust spatial data at LW when deployed at optimal operating conditions.

duration, and nutrient input (Paerl 2008). New technology 
and tools to monitor HCBs have been employed in the last 
decade to better identify controlling factors (Catherine et al. 
2013; Wood et al. 2020).

Lake Wateree (LW) is in the Catawba-Wateree River 
Basin, downstream of Charlotte, North Carolina (NC), and 
the rapidly growing suburbs in York, SC (Baumann 2020). 
LW is a hydroelectric reservoir that has been subjected to 
increased non-point and point source nutrient loading from 
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changing land-use patterns for decades such as increased 
timber felling and sewage discharges, contributing to 
increased eutrophication (Tufford et al. 1999, 2012). Over 
the last decade benthic HCBs of Microseira (Lyngbya) wollei 
and Phormidium sp. have increased in frequency at LW, with 
the potential of releasing lyngbyatoxins and saxitoxins under 
different nutrient (e.g., dissolved nitrogen) and environmen-
tal (e.g., temperature) conditions (Yin et al. 1997; Hudon et 
al. 2014; Heath et al. 2016; Smith et al. 2019; Aziz et al. 2022). 
Current monitoring efforts by the SC Department of Health 
and Environmental Control (DHEC) and the Lake Wateree 
Association only involve discrete bimonthly sampling, which 
provides insufficient spatial and temporal data resolution to 
inform prediction and remediation of blooms.

Autonomous Surface Vehicles (ASVs) offer a potential 
platform for high resolution spatial data, which is otherwise 
limited by the lack of satellite coverage and discrete manual 
sampling (Low et al. 2007; Jeong et al. 2020). ASVs, developed 
for marine monitoring (Low et al. 2007; Das et al. 2011, 2015; 
Valada et al. 2013) have been recently adapted for freshwater 
lakes (Hitz et al. 2014, 2017; Manjanna et al. 2018). Robust 
data, with a high spatial resolution obtained from ASVs, 
could allow refinement of numerical models used to predict 
freshwater HCBs. However, the ASV first needs to be tested 
to determine best practices (e.g., desirable speed and loiter) 
to obtain accurate data. HCB types (i.e., planktonic versus 
benthic) as well as lake size and regime are other important 
considerations affecting ASV design and data collection. The 
ASV engine causes turbulence during motion which could 
potentially affect sensor readings, especially during periods 
of stratification in surface waters. We present a new relatively 
low-cost (<8,000 USD) ASV equipped with multiple sensors 
in LW. Several speeds and loiter periods are considered to 
inform best practices to obtain accurate water-quality data 
from an ASV.

METHODS

The ASV (Moulton et al. 2018) (Figure 1) is a Mokai kayak that 
is fitted with a gas-powered engine (Subaru EX21 engine) and 
jet drive system capable of propelling up to 2.7 m/s (6 mph). 
The maximum deployment time is 4 hours, limited by the 
capacity of the gas tank to run the engine at speeds up to 2.7 
m/s. The ASV is outfitted with a Pixhawk (Meier et al. 2011) 
flight controller and an on-board computer, enabling it to 
operate autonomously and collect time-stamped, geospatial 
water quality data. The data is stored in ROS bagfiles (O'Kane 
2016). During the experiments, the ASV was programmed 
to autonomously traverse the pre-determined trajectory 
(Osborne 2019) (Figure 2).

A YSI EXO2 multiparameter sonde was equipped with 
a suite of EXO sensors to measure depth, temperature, con-
ductivity (contacting/toroidal), dissolved oxygen (optical), 

Figure 1. ASV design used in this study.

pH (membrane), turbidity (optical), and phycocyanin 
(optical). The sonde was positioned horizontally on a fixed 
mount, facing backwards at about 0.5 m below the waterline, 
near the base of the mixed layer (Figure 3), on the side and 
near the back end of the ASV. The sonde readings were 
recorded in the rapid mode, every two readings (2-sec 
intervals). Rapid mode is prescribed by the manufacturer for 
fast moving deployments. In this mode, the instantaneous 
sensor reading is internally programmed to filter through data 
collected during the last 2–30 seconds and records the data 
as a rolling average. The data that were outside of the internal 
accuracy tolerance were omitted. The data obtained in this 
mode were treated as continuous data points for the purpose 
of this study. The ASV was programmed to travel a 483 m 
transect (Start: 34.42495N, 80.86427W; End: 34.42092N, 
80.86608W) at LW and a second stationary ASV was 
stationed close to the midpoint, approximately 241 m from 
either end of the transect (34.42295N, 80.86452W) (Figure 
2). Water quality data obtained using three different speeds 
(0.9 m/s, 1.8 m/s & 2.7 m/s) comprised within the lower (0.9 
m/s) and upper (2.7 m/s) speed limits of the ASV and two 
loiter times (20 & 40 seconds) based on observed response 
times for the sensors in the laboratory (Table 1) were used 
to determine best practices using this ASV. During the loiter 
tests the ASV came to a complete halt at three locations along 
the transect (start, mid-point, and end of the transect), and 
traveled at a speed of 2.7 m/s when in motion. The motion 
model controlling the speed of the kayak initiated the stop 
before reaching the loiter location, so the inertia carried the 
kayak to the loiter location. Each speed and loiter test was 
repeated three times.

Response times were recorded in the laboratory by using 
test solutions encompassing the range of values typically 
observed at in-situ conditions at LW for each sensor (Table 
1). Each sensor was tested (five times) separately to evaluate 
response times for the two sondes (i.e., moving and station-
ary) that were used during the deployment. The response 
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time, defined as the time it takes for the sonde to stabilize 
to the expected value (referred here as T100), was noted. 
The response time was compared to the factory reported 
response times (T63) which is the response time needed 
for the sensor to reach 63% of the expected value. The sen-
sors were calibrated the day prior to field tests following YSI 
EXO2 factory recommendations. The sensors were kept in 
the same bucket of water to allow comparing values recorded 
by the two sondes just before the deployment.

Water quality data from the YSI EXO2 sonde mounted 
on both the moving and stationary ASVs were compared 
using GPS locations. The data from the moving ASV recorded 
within 3 m of the stationary ASV for each test was compared. 

Sensor type
Observed variability 

at LW
Sensor accuracy

Sensor 
resolution

Factory reported 
response time 

(T63) 

Laboratory 
response time 

(T100)

Temperature 21°C–26°C
-5°C to 35°C: ± 0.01°C
35°C to 50°C: ± 0.05°C

0.001 °C <1 sec <1 sec

Conductivity 0.1 mS/cm–0.15mS/cm
0-100 mS/cm: ± 0.5% of reading or 
0.001 mS/cm, whichever is greater

0.0001 mS/cm 
to 0.01 mS/cm

<2 sec <2 sec

pH 7–10
± 0.1 pH units within ± 10°C of 

calibration temperature; ± 0.2 pH 
units for entire temp range

0.01 <3 sec 8 sec ± 2

Dissolved 
Oxygen

1 mg/L–
11 mg/L

0-200%: ± 1% reading or 1% air 
sat., whichever is greater; 200-

500%: ± 5% reading 0-20 mg/L: ± 
1% of reading or 0.1 mg/L; 20-50 

mg/L: ± 5% reading

0.1% air sat, 
0.01 mg/L

<5sec 12 sec ± 3

Phycocyanin
2 RFU–
9 RFU

0-100 RFU 0.01 RFU <2 sec 18 sec ± 4

Turbidity
1 FNU–
40 FNU

0-999 ± 0.3 FNU or ± 2% of 
reading, whichever is greater

0.01 FNU <2 sec 12 sec ± 3

Table 1. YSI EXO2 factory information and laboratory T100 response times for different sensors

Figure 2. Test transect at Dutchman’s Creek Arm of Lake 
Wateree, SC.

A Shapiro-Wilk test was used to test the normality of data. 
A paired T-test was used to compare the data between the 
stationary and moving sondes. The differences between the 
data recorded using the stationary and moving ASVs during 
the speed and loiter tests were also compared to the reported 
manufacturer accuracies (Table 1).

RESULTS

The sensors on the YSI EXO2 (temperature, conductivity, 
dissolved oxygen, pH, turbidity, and phycocyanin) required 
a minimum of <1 sec (temperature) and a maximum of 18 

seconds (phycocyanin) to read 100% (T100) of the expected 
test solution value in the laboratory (Table 1). Phycocyanin 
required the longest time, followed by turbidity, dissolved 
oxygen, and pH (Table 1). There was a significant difference 
between T63 and T100 response times (paired T-test; p<0.05).

No significant differences (paired T-test; p>0.05) were 
identified for water quality data collected using the moving 
and stationary ASVs at all tested speeds and loiter times. Dif-
ferences between moving and stationary ASVs for conduc-
tivity, temperature, and pH sensors were within the expected 
accuracy at speeds up to 2.7 m/s and loiter time as short as 
20 seconds (Figure 4). However, the differences between the 
moving and stationary sondes were outside the expected 
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Date Maximum Temperature (°C) Minimum Temperature (°C) Rainfall (mm) Lake Depth (m)

04th October, 2022 21.1 6.7 0 29.5

21st October, 2022 18.9 0.6 0 29.3

Average (04th-21st October 2022) 23.9 ± 3.7 8.3 ± 4.5 0 29.5 ± 0.1

Table 2. Weather conditions at Lake Wateree in October 2022 (CLIMOD2 Station: 388979; Duke Energy).

Figure 3. Depth profile of dissolved oxygen, phycocyanin, temperature, turbidity 
and pH collected at the same location as a stationary sonde on a ASV on 
October 21, 2022. The horizontal gray line indicates the position of the sonde 
mounted on the ASV.

Figure 4. Sensor data plotted as means with standard deviation for different speed and loiter tests at LW for 
both the moving and stationary sondes. The experiments were done at the same location through the course 
of the day on October 4, 2022.
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accuracy at 2.7 m/s for turbidity and phycocyanin (Figure 4). 
These sensors also had higher T63 and T100 (Table 1). The 
difference between the moving and stationary sondes for dis-
solved oxygen were consistently outside the expected accu-
racy for all tests (Figure 4, Table 1). The stationary sonde data 
were considered to be more accurate due to the longer equil-
ibration time with the surrounding water. Vertical profiles 
collected two weeks after the experiment showed that surface 
waters were stratified during our test period, with dissolved 
oxygen maximum around 0.5 m depth and variable phycocy-
anin within the first two meters of the water column (Figure 
3). A change in the stratification between these two sampling 
times is unlikely since weather conditions in October were 
relatively stable (Table 2; also see Lewis et al. 2011).

DISCUSSION

We present a new, relatively low-cost (<8,000 USD) ASV 
that can be used to collect high quality spatio-temporal data 
at LW at speeds up to 1.8 m/s. These results corroborate 
previous use of similar ASV designs, mainly in coastal 
marine environments, used to obtain high spatial resolution 
data to monitor HCBs (Leong et al, 2012; Beckler et al. 2019).

Our data (Figure 4) showed that turbidity, phycocyanin, 
and dissolved oxygen readings are affected by motion (i.e., 
turbulence), especially at a speed of 2.7 m/s. Notably, dis-
solved oxygen measurements from the stationary sonde were 
1.2 ± 0.4 mg/L higher than the moving sonde at all tested 
speeds. These differences are much higher than the factory 
reported accuracy of the oxygen sensor (Table 1). This dis-
crepancy was not due to drift because the difference between 
readings of the two sondes were within 0.3 mg/L at the start 
of the tests. We posit that the lower oxygen values from the 
moving sonde were likely due to greater mixing with waters 
above or below the oxygen maximum around 0.5 m depth, for 
the moving sonde (Figure 3). Another possibility for observ-
ing dissolved oxygen readings outside the manufacturer 
reported accuracy is sensor malfunction. However, no evi-
dence for malfunction was observed as the sondes were thor-
oughly tested before the experiment. In addition, response 
time may be longer than 40 seconds under field conditions. 
Mixing could also explain the difference observed at a speed 
of 2.7 m/s for the phycocyanin sensor as this parameter was 
also highly variable within the first meter of the water col-
umn (Figure 3). Motion is also expected to similarly affect 
turbidity measurements as it is based on scattering of light in 
the water (Merten et al. 2014).

Although there were no significant differences (paired 
T-test; p>0.05) between the data from the stationary sonde 
and moving sonde at all speeds and loiter times, we rec-
ommend to carefully evaluate the optimal speed for ASVs 
equipped with water quality sensors based on the manufac-
turer reported accuracies for the different sensors (Table 1) 

to minimize the effects of motion. Our results showed that 
1.8 m/s was the preferred speed to obtain reliable data at 
LW for our ASV based on the manufacturer expected sensor 
accuracy. Further, the observed deviation from the expected 
accuracy between the moving and stationary sondes for the 
turbidity and phycocyanin sensors were alleviated during loi-
ter periods. We thus recommend periodic loiters of at least 20 
seconds to obtain more accurate data, especially for sensors 
with longer response times and during stratified conditions. 
Discrete sampling should be used to evaluate the frequency 
of loitering based on the level and depth of stratification and 
spatial heterogeneity of the surface waters and to validate the 
data collected by the ASV.

Overall, this study demonstrated the potential to use 
water-quality sensors on ASV in freshwater environments. 
Future work will involve using this ASV along a trajectory 
path around LW (Salman et al. 2022) which delineates the 
shore since benthic HCBs, that are only present in shallow 
waters, are the focus of interest. We plan to loiter every 500 
m for 20 seconds at 1.8 m/s and cover 24 kms (7% of the 
shoreline) in approximately 4 hours. This should enable 
time-effective large spatial coverage to capture minute spatial 
heterogeneity in water quality at LW.
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