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ABSTRACT

Exploration of underwater environments with autonomous robots could assist us
in a variety of scenarios, ranging from historical studies to health monitoring of coral
reef; underwater infrastructure inspection e.g., bridges, hydroelectric dams, water
supply systems and oil rigs. Mapping underwater structures is important in several
fields, such as, marine archaeology, Search and Rescue (SaR), resource management,
hydrogeology, and speleology. However, due to the highly unstructured nature of such
environments, navigation by human divers could be extremely dangerous, tedious and
labor intensive. Hence, employing an underwater robot is an excellent fit to build the
map of the environment while simultaneously localizing itself in the map.

The contribution of this thesis is the design and development of a real-time robust
Simultaneous Localization and Mapping (SLAM) algorithm for underwater domain.
A novel tightly-coupled keyframe-based non-linear optimization framework with loop-
closing and relocalization capabilities fusing Sonar, Visual, Inertial and Depth infor-
mation has been presented. Introducing acoustic range information to aid the visual
data in underwater, shows improved reconstruction. The availability of depth infor-
mation from water pressure enables a robust initialization and refines the scale; as
well as assists to reduce the drift due to the tightly-coupled formulation. In addition,
we propose to augment the pipeline with magnetometer for a more accurate orienta-
tion estimation from the dead reckoning sensor. To address the denser reconstruction
of the surroundings in a low lighting conditions, a contour-based reconstruction ap-
proach utilizing the well defined edges between the well lit areas and darkness has

been developed. Furthermore, we propose a semi-direct sparse approach of recon-



struction by jointly minimizing the photometric and reprojection error from direct
method and indirect method respectively where indirect method is used for accurate
tracking while high-gradient pixels help in reconstruction. Experimental results on
datasets collected with a custom-made underwater sensor suite and an autonomous
underwater vehicle (AUV) Aqua2 from challenging underwater environments with
poor visibility demonstrate performance never achieved before in terms of accuracy

and robustness.
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CHAPTER 1

INTRODUCTION

Exploring and mapping underwater environments such as caves, bridges, dams, and
shipwrecks, are extremely important tasks for the economy, conservation, and scien-
tific discoveries. Currently, most of the efforts are performed by divers that need to
take measurements manually using a grid and measuring tape, or using hand-held
sensors Henderson et al. 2013, and data is post-processed afterwards. Autonomous
Underwater Vehicles (AUVs) present unique opportunities to automate this process;
however, there are several open problems that still need to be addressed for reli-
able deployments, including real-time robust Simultaneous Localization and Mapping

(SLAM), the focus of this thesis.

Figure 1.1: Typical scene from an underwater cave.



1.1 MOTIVATION

The underwater environment presents unique challenges to vision-based state estima-
tion. In particular, suspended particulates, blurriness, and light and color attenuation
result in features that are not as clearly defined as above water. Consequently re-
sults from different vision-based state estimation packages show a significant number
of outliers resulting in inaccurate estimate or even complete tracking loss. Here we
present a comprehensive study of the performances of state-of-the-art open-source Vi-
sual and Visual-Inertial state estimation algorithms in underwater domain and draw

out the scope of improvements by introducing acoustic and pressure sensor.

1.1.1 PERFORMANCES OF STATE-OF-THE-ART VISUAL AND VISUAL-INERTIAL STATE

ESTIMATION ALGORITHMS IN UNDERWATER

We have considered ten state estimation packages which are characterised by the

following;:
e number of cameras, e.g., monocular, stereo, or more rarely multiple cameras;
e the presence of an IMU;
e direct vs. indirect (feature-based) methods;

e loosely vs. tightly-coupled optimization when multiple sensors are used — e.g.,

camera and IMU;
e the presence of a loop closing mechanism.

Table 1.1 lists the methods evaluated and their properties.

DATASETS

Most of the standard benchmark datasets represent only a single scenario, such as a

lab space (e.g. [Sturm et al. 2012; Burri et al. 2016]), or a urban environment (e.g.



Kitti in [Geiger et al. 2013]), and with good visual quality. The limited nature of
the public datasets is one of the primary motivations to evaluate these packages with
datasets collected by our lab over the years in more challenging environments, such
as underwater.

In particular, the datasets used can be categorized according to the robotic plat-

form used:

e Underwater sensor suite operated by a diver around a sunken bus (Fantasy
Lake, North Carolina) — see Fig. 1.2(a),(b) — and inside an underwater cave
(Ginnie Springs, Florida); see Fig. 1.2(c). The custom-made underwater sensor
suite is equipped with an IMU operating at 100 Hz (MicroStrain 3DM-GX15)

and a stereo camera running at 15 fps, 1600 x 1200 (IDS UI-3251LE).

e Underwater sensor suite mounted on an Diver Propulsion Vehicle (DPV). Data

collected over the coral reefs of Barbados; see Fig. 1.2(d).

e Aqua2 Autonomous Underwater Vehicle (AUV) over a coral reef (Fig. 1.2(e))
and an underwater structure (Lake Jocassee, South Carolina) (Fig. 1.2(f)), with

the same setup as the underwater sensor suite.

The overall performance of the tested packages is discussed next. LSD-SLAM
in [Engel, Schops, and Cremers 2014], REBiVO in [Tarrio and Pedre 2017], and

Table 1.1: Summary of characteristics for evaluated methods.

Method Camera IMU  Indirect/ (L)oosely/ Loop
Direct (T)ightly Closure

LSD-SLAM Engel, Schops, and Cremers 2014 mono no direct N/A yes
DSO Engel, Koltun, and Cremers 2018 mono no direct N/A no
SVO Forster et al. 2017b multi optional semi-direct N/A no
ORB-SLAM?2 Mur-Artal, Montiel, and Juan D. Tardés 2015a  mono, stereo no indirect N/A yes
REBiVO Tarrio and Pedre 2017 mono optional  indirect L no
Mono-MSCKF  Research group of Prof. Kostas Daniilidis 2018 mono yes indirect T no
Stereo-MSCKF Sun et al. 2018 stereo yes indirect T no
ROVIO Bloesch et al. 2017 multi yes direct T no
OKVIS Leutenegger et al. 2015 multi yes indirect T no
VINS-Mono Qin, Li, and Shen 2018 mono yes indirect T yes



(f)

Figure 1.2: Sample images from the evaluated datasets. (a) UW sensor suite outside
a sunken bus (NC); (b) UW sensor suite inside a sunken bus (NC); (¢) UW sensor
suite inside a cave (FL); (d) UW sensor suite mounted on a Diver Propulsion Vehicle
(DPV) over a coral reef; (e¢) Aqua2 AUV over a coral reef; (f) AUV over a fake
cemetery (SC).

Monocular SVO were unable to produce any consistent results, as such, they were
excluded from Table 1.2.

DSO in [Engel, Koltun, and Cremers 2018] requires full photometric calibration
accounting for the exposure time, lens vignetting and non-linear gamma response

function for best performance. Even without photometric calibration, it worked well
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Table 1.2: Performance of the different open source packages. Datasets: UW sensor
suite outside a sunken bus (Bus/Out); UW sensor suite inside a cave (Cave); Aqua2
(AUV) over a fake cemetery (Aqua2Lake) at Lake Jocassee; UW sensor suite inside a
sunken bus (Bus/In); UW sensor suite mounted on a Diver Propulsion Vehicle over a
coral reef (DPV); Aqua2 AUV over a coral reef (Aqua2Reef). Qualitative analysis:
the color chart legend is: red—failure; orange—partial failure; yellow—partial success;
green-success.

on areas having high intensity gradients and when subjected to large rotation. In
addition, it provided excellent reconstructions; however, in the areas with low gradient
images, it was able to spatially track the motion only for a few seconds. Some scale
change was also observed due to being monocular. DSO requires more computational
power and memory usage compared to the other packages, which is justifiable since
it uses direct method for visual odometry.

SVO 2.0 in [Forster et al. 2017b] was able to track the camera pose over long
trajectories, even in parts with few features. It tracks features using the direct method
by creating a depth scene. In case of low gradient images, it was subject to depth
scale changes, which was predominant in mono camera where tracking failed. SVO
in stereo mode without inertial measurements was able to track most of the time but
was subject to rotation errors. SVO stereo with IMU was able to keep track most of
the time generating a good trajectory estimate.

ORB-SLAM2 in [Mur-Artal, Montiel, and Juan D. Tardés 2015a] mono could not



initialize in both datasets collected of the sunken bus (Bus/In, Bus/Out). ORB-
SLAM?2 works fine in the other datasets, but loses track in some cases when running
it without loop closure. With loop closure, even if the track is lost, loops can be
detected and the robot can relocalize. This makes ORB-SLAM2 more robust to
track loss.

Mono-MSCKF in [Research group of Prof. Kostas Daniilidis 2018] performed well
when the AUV or sensor suite were standing still so that the IMU could properly
initialize, otherwise it did not track. Moreover, it was among the most efficient in
terms of CPU and memory usage.

ROVIO in [Bloesch et al. 2017] is one of the most efficient packages tested. Its
overall performance was robust on most datasets even when just a few good features
were tracked. On the Aqua2Reef dataset though, not enough features were visible
and thus it could not track the trajectory.

OKVIS in [Leutenegger et al. 2015] provided good results for both monocular and
stereo. In Bus/Out, despite the haze and low-contrast, OKVIS was able to detect
good features and track them successfully. Also in Cave, it kept track successfully
and produced accurate trajectory even in the presence of low illumination.

VINS-Mono in [Qin, Li, and Shen 2018] works well in good illumination where
there are good features to track. It was one of the few packages that worked success-
fully in the underwater domain. In the case of Aqua2Reef, it cannot detect and track
enough features and diverges. With the loop-closure module enabled, VINS-Mono
reduces the drift accumulated over time in the pose estimate and produces a globally
consistent trajectory.

Stereo-MSCKF in [Sun et al. 2018] uses the Observability Constrained EKF (OC-
EKF) in [Hesch et al. 2012], which does not heavily depend on an accurate initial
estimation. Also, the camera poses in the state vector can be represented with respect

to the inertial frame instead of the latest IMU frame so that the uncertainty of



the existing camera states in the state vector is not affected by the uncertainty of
the latest IMU state during the propagation step. As a result, Stereo-MSCKF can
initialize well enough even without a perfect stand still period. It uses the first 200
IMU measurements for initialization and is recommended to not have fast motion
during this period. Stereo-MSCKF worked acceptably well in most datasets except
Aqua2Reef and DPV. The Stereo-MSCKF cannot initialize well over the coral reef
due to the fast motion from the start and the low number of feature points. On the

DPV dataset, it diverges after one-fourth time is completed.

1.1.2 DISCUSSION

Underwater state estimation has many open challenges, including visibility, color at-
tenuation Skaff, Clark, and Rekleitis 2008, floating particulates, blurriness, varying
illumination, and lack of features Oliver, Hou, and Wang 2010. Indeed, in some un-
derwater environments, there is a very low visibility that prevents seeing objects that
are only a few meters away. This can be observed for example in Bus/Out, where
the back of the submerged bus is not clearly visible. Such challenges make underwa-
ter localization very challenging, leaving an interesting gap to be investigated in the
current state of the art. In addition, light attenuates with depth, with different wave-
lengths of the ambient light being absorbed very quickly — e.g., the red wavelength
is almost completely absorbed at 5m. This results in a change in appearance of the
image, which will affect feature tracking, even in grayscale.

The appearance of color underwater is different than above, including the color
loss with depth. There is a concern when most color shifts to blue, there is a loss
of sharpness, which further degrades performance. This will be a venue for further
research in the future, in order to investigate the effect of any color restoration to the
state estimation process.

From the experimental results it was clear that direct VO approaches are not



robust as there are often no discernible features. As such DSO and SVO, quite often
fail to track the complete trajectory, however, they had the best reconstructions for
the tracked parts. Similar approaches that depend on the existence of a specific
feature, such as edges, are not appropriate in underwater environments in general.
Overall, as expected, stereo performed better than monocular, the introduction to
loop closure enabled the VO/VIO packages to track for longer periods of time, and

the introduction of inertial data improved the scale estimations.

1.2 CHALLENGES IN UNDERWATER

Underwater environments suffer from poor visibility, light and color attenuation. In
addition to that, floating particulates, haze, and varying illumination make vision-
based state estimation almost impossible to work.

Navigation and mapping around underwater structures is very challenging; target
domains include wrecks (ships, planes, and buses); underwater structures such as
bridges and dams; and underwater caves. One of the primary motivations of this
work is the mapping of underwater caves where exploration by human divers is an
extremely dangerous operation due to the harsh environment. Figure 1.1 shows a
typical cave segment. In addition to underwater vision constraints—e.g., light and
color attenuation—cave environments suffer from the absence of natural illumination.
Currently, for surveying of newly explored area, divers manually measure distances,
using a cave-line with knots every 3 m between attachment points. Simultaneously,
the divers also measure the water depth at each attachment point, as well as the
azimuth of the line leading to the next attachment point. This process is error-prone
and time consuming, and at greater depths results in significant decompression times,
where total dive time can reach between 15 to 28 hours per dive. Therefore, employing
robotic technology to map the cave would reduce the cognitive load of divers.

The importance of underwater cave mapping spans several fields. First, it is crucial



in monitoring and tracking groundwater flows in karstic aquifers. According to Ford
and Williams [Ford and P. W. Williams 1994] 25% of the world’s population relies on
karst water resources. Our work is motivated by the Woodville Karst Plain (WKP)
which is a geomorphic region that extends from Central Leon County around the “Big
Bend” of Florida [Lane 2001]. Due to the significance of WKP, the Woodville Karst
Plain Project (WKPP) has explored more than 34 miles of cave systems in Florida
since 1987 [C. McKinlay 2015], proving the cave system to be the longest in USA
[Gulden 2015]. This region is an important source of drinking water and is also a sen-
sitive and vulnerable ecosystem. There is much to learn from studying the dynamics
of the water flowing through these caves. Volumetric modeling of these caves will give
researchers a better perspective about their size, structure, and connectivity. These
models have even greater importance than simply enhancing the mapping. Under-
standing the volume of the conduits and how that volume increases and decreases
over space is a critical component to characterizing the volume of flow through the
conduit system. Current measurements are limited to point-flow velocities of the
cave metering system and a cross-sectional volume at that particular point. The pro-
posed approach results in 3-D reconstructions which will give researchers the above
described capabilities. Furthermore, volumetric models, will be incredibly helpful for
those involved with environmental and agricultural studies throughout the area, and
once perfected this technology could help map other subterranean water systems, as
well as any 3-D environment that is difficult to map. The Woodyville Karst Plain area
is sensitive to seawater intrusions which threaten the agriculture and the availability
of drinking water; for more details see the recent work by Zexuan et al. [Xu et al.
2016]. Second, detailed 3-D representations of underwater caves will provide insights
to the hydrogeological processes that formed the caves. Finally, because several cave
systems contain historical records dating to the prehistoric times, producing accurate

maps will be valuable to underwater archaeologists.



1.3 CONTRIBUTIONS

The focus of this thesis is the robust tightly-coupled formulation of an underwater
SLAM system combining acoustic data from Sonar; stereo vision; angular velocity
and linear acceleration from IMU; and depth data from water pressure measurement.

A robust SLAM system combining Sonar, Visual, Inertial and Depth
information. We propose a tightly-coupled keyframe based SLAM system fusing
Sonar, Visual, Inertial and Depth information in a non-linear optimization-based
framework for underwater domain. The underwater domain presents unique chal-
lenges in the quality of the visual data available; as such, augmenting the exterocep-
tive sensing with acoustic range data results in improved reconstructions of the un-
derwater structures. Depth data from water pressure measurement enables to bound
the localization error. To address drift and loss of localization — one of the main prob-
lems affecting other packages in underwater domain — a robust initialization method
to refine scale using depth measurements, a fast preprocessing step to enhance the
image quality, and a real-time loop-closing and relocalization method using bag of
words (BoW) have been provided. Lastly we propose to augment our SVIn2 pipeline
with magnetometer which would provide accurate heading information and thus assist
in achieving robust dead-reckoning pose estimation from IMU. An ablation study to
understand the contribution of each sensor in state estimation will also be reported.
To validate the robustness and accuracy of our approach, we deployed an autonomous
underwater vehicle (AUV) Aqua2 running our method on-board. Further datasets
were collected with a custom-made underwater sensor suite both on hand-held mode
while diving and deploying with a Diver Propulsion Vehicle (DPV). Experimental
results from underwater wrecks, an underwater cave, fake underwater cemetery, over
coral reef, and a submerged bus demonstrate the performance of our approach.

A contour-based reconstruction of underwater environment. Another

contribution is contour-based real-time reconstruction of an underwater environment

10



using Sonar, Visual, Inertial, and Depth data. In particular, low lighting conditions,
or even complete absence of natural light inside caves, results in strong lighting varia-
tions, e.g., the cone of the artificial video light intersecting underwater structures, and
the shadow contours. The proposed method utilizes the well defined edges between
well lit areas and darkness to provide additional features, resulting into a denser 3D
point cloud than the usual point clouds from a Visual SLAM system. Experimental
results in an underwater cave at Ginnie Springs, FL, with a custom-made underwa-
ter sensor suite demonstrate the performance of our system. This will enable more
robust navigation of AUVs using the denser 3D point cloud to detect obstacles and
achieve higher resolution reconstructions.

A semi-direct sparse reconstruction. Lastly, to take another step ahead from
contour based reconstruction, we propose a semi-dense reconstruction to achieve a
denser map of the environment along with robust odometry in real-time. Direct
methods provide promising reconstruction, but due to the brightness consistency
assumption, they often fail to track in challenging low-contrast environment. Hence,
combining direct method and feature-based method could benefit each other — i.e.,
achieving a denser reconstruction from the gradient-rich pixels on the contour using
direct method and tracking based on the feature based method — by jointly minimizing

the photometric error and reprojection error.
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2.1 ACOUSTIC SENSOR BASED UNDERWATER NAVIGATION

Sonar based underwater SLAM and navigation systems have been exploited for many
years. Folkesson et al. in [Folkesson et al. 2007] used a blazed array sonar for real-time
feature tracking. A feature reacquisition system with a low-cost sonar and navigation
sensors was described in in [Fallon et al. 2013]. More recently, Sunfish in [Richmond
et al. 2018] — an underwater SLAM system using a multibeam sonar, an underwater
dead-reckoning system based on a fiber-optic gyroscope (FOG) IMU, acoustic DVL,
and pressure-depth sensors — has been developed for autonomous cave exploration.
Vision and visual-inertial based SLAM systems also developed in in [Salvi et al. 2008;
Beall et al. 2011; Shkurti et al. 2011] for underwater reconstruction and navigation.

Most of the underwater navigation algorithms in [Leonard and Durrant-Whyte
2012], in [Lee et al. 2005], in [Snyder 2010], in [Johannsson et al. 2010], in [Rigby,
Pizarro, and S. B. Williams 2006 are based on acoustic sensors such as DVL, USBL,
and sonar. Nevertheless, collecting data using DVL, sonar, and USBL while diving
is expensive and sometimes not suitable in challenging underwater environment, e.g.,
cave. Corke et al. in [Corke et al. 2007] compared acoustic and visual methods for
underwater localization showing the viability of using visual methods underwater in

some scenarios.

2.1.1 UNDERWATER CAVE EXPLORATION

Visual odometry in underwater cave environment is a challenging problem due to the
lack of natural light illumination and dynamic obstacles in addition to the underwater
vision constraints i.e. light and color attenuation. There are not many works for
mapping and localization in an underwater cave.

Robotic exploration of underwater caves is at its infancy. One of the first attempts
was to explore a Cenote, a vertical shaft filled with water in [Gary et al. 2008], by
the vehicle DEPTHX (DEep Phreatic THermal eXplorer) in [Stone 2007] designed
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by Stone Aerospace in [Stone Aerospace 2015], equipped with LIDAR and sonar.
More recently, Mallios demonstrated the first results of an Autonomous Underwater
Vehicle (AUV) performing limited penetration, inside a cave [Mallios et al. 2016].
The main sensor used for SLAM is a horizontally mounted scanning sonar. A robotic
fish was proposed for discovering underwater cave entrances based on vision and
perform visual servoing, with experiments restricted to a swimming pool in [Chen
and Yu 2014]. More recently, Sunfish in [Richmond et al. 2018] — an underwater
SLAM system using a multibeam sonar, an underwater dead-reckoning system based
on a fiber-optic gyroscope (FOG) IMU, acoustic DVL, and pressure-depth sensors —
has been developed for autonomous cave exploration. The design of the sensor suite
we use is driven by portability requirements that divers have in [Rahman, Quattrini
Li, and Rekleitis 2018a], not permitting the use of some sensors, such as multibeam

sonar or DVL.

2.2  PURE VISUAL ODOMETRY (VO)

The literature presents many vision-based state estimation techniques, which use
either monocular or stereo cameras and that are indirect (feature-based), direct, or
semi-direct methods. For example, MonoSLAM in [Davison et al. 2007], PTAM
in [Klein and Murray 2007], and ORB-SLAM in [Mur-Artal, Montiel, and Juan D.
Tardés 2015b] are feature-based, LSD-SLAM in [Engel, Schéps, and Cremers 2014],
and DSO in [Engel, Koltun, and Cremers 2018] are direct, and SVO in [Forster et al.

2017b] is semi-direct.

2.2.1 DIREcT METHOD

Direct methods compare the intensity values in the image and optimize the photo-
metric error

Recently, direct methods (e.g., LSD-SLAM in [Engel, Schops, and Cremers 2014],
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DSO in [Engel, Koltun, and Cremers 2018]) and semi-direct method (SVO in [Forster
et al. 2017b]) based SLAM systems show promising performance in 3-D reconstruc-
tion of large-scale map in real time, as well as accurate pose estimation based on
direct image alignment. However, theses methods are sensitive to brightness consis-
tency assumption which limits the baseline of the matches and in low visibility with
small contrast environment like underwater, often result into tracking loss in [Joshi
et al. 2019]. In addition, direct method suffers in presence of strong geometric noise,
such as rolling shutter. For good reconstruction, they require perfect photometric
calibration for modeling gain and exposure. DSO in [Engel, Koltun, and Cremers
2018] shows an improvement in performance providing a full photometric calibration
that accounts for lens attenuation, gamma correction, and known exposure times. In
purely monocular vision based direct SLAM, like DSO, the initialization is slow and

requires very small rotational change.

2.2.2 SEMI-DIRECT METHOD

Semi-Direct Visual Odometry, e.g., SVO [Forster et al. 2017b] relies on direct method
for tracking and triangulating pixels with high image gradients and a feature-based
method for jointly optimizing structure and motion. It uses the IMU prior for image

alignment and can be generalized to multi-camera systems.

2.2.3 INDIRECT METHOD

Feature-based methods pre-process images to find corners and establish correspon-
dences, then optimize the geometric error.

PTAM [Klein and Murray 2007] is one of the early SLAM approaches which pro-
posed to split the tracking and mapping process for a small AR workspace without
any prior knowledge of the scene. MonoSLAM [Davison et al. 2007] is a monoc-

ular vision based real-time SLAM approach which includes an active approach to
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mapping and measurement, a general motion model for smooth camera movement,
and solutions for monocular feature initialization and feature orientation estimation.
Currently ORB-SLAM [Mur-Artal, Montiel, and Juan D. Tardés 2015b] is one of
the most reliable vision-based SLAM systems with loop-closing and relocalization

capabilities.

2.3 VISION COMBINED WITH OTHER SENSORS

2.3.1 VISUAL-INERTIAL ODOMETRY (VIO)

In the following, we highlight some of the state estimation systems which use visual-
inertial measurements and feature-based method.

To improve the pose estimate, vision-based state estimation techniques have been
augmented with IMU sensors, whose data is fused together with visual information.
A class of approaches is based on the Kalman Filter, e.g., Multi-State Constraint
Kalman Filter (MSCKF) in [Mourikis and Roumeliotis 2007] and its stereo exten-
sion in [Sun et al. 2018]; ROVIO in [Bloesch et al. 2017]; REBiVO in [Tarrio and
Pedre 2017]. The other spectrum of methods optimizes the sensor states, possibly
within a window, formulating the problem as a graph optimization problem. For
feature-based visual-inertial systems, as in OKVIS in [Leutenegger et al. 2015] and
Visual-Inertial ORB-SLAM in [Mur-Artal and Juan D Tardds 2017], the optimiza-
tion function includes the IMU error term and the reprojection error. The frontend
tracking mechanism maintains a local map of features in a marginalization window
which are never used again once out of the window. VINS-Mono in [Qin, Li, and
Shen 2018] uses a similar approach and maintains a minimum number of features for
each image and existing features are tracked by Kanade-Lucas-Tomasi (KLT') sparse
optical flow algorithm in local window. Delmerico and Scaramuzza in [Delmerico and
Scaramuzza 2018] did a comprehensive comparison specifically monitoring resource

usage by the different methods. While KLT sparse features allows VINS-Mono run-
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ning in real-time on low-cost embedded systems, often results into tracking failure
in challenging environments, e.g., underwater environments with low visibility. In
addition, for loop detection additional features and their descriptors are needed to be
computed for keyframes.

To avoid scale ambiguity in monocular system, stereo camera pairs are used. Os-
kiper et al. in [Oskiper et al. 2007] proposed a real-time VO using two pairs of
backward and forward looking stereo cameras and an IMU in GPS denied environ-
ments. Howard in [Howard 2008] presented a real-time stereo VO for autonomous
ground vehicles. This approach is based on inlier detection— i.e., using a rigid-
ity constraint on the 3D location of features before computing the motion estimate
between frames. Konolige et al. in [Konolige, Agrawal, and Sola 2010] presented a
real-time large scale VO on rough outdoor terrain integrating stereo images with IMU
measurements. Kitt et al. in [Kitt, Geiger, and Lategahn 2010] presented a visual
odometry based only on stereo images using the trifocal geometry between image
triples and a RANSAC based outlier rejection scheme. Their method requires only a
known camera geometry where no rectification is needed for the images. Badino et
al. in [Badino, Yamamoto, and Kanade 2013] proposed a new technique for improved

motion estimation by using the whole history of tracked features for real-time stereo

VO.

2.4  VISUAL OR VISUAL-INERTIAL SLAM wITH LOOP-CLOSING

Loop closure — the capability of recognizing a place that was seen before — is an impor-
tant component to mitigate the drift of the state estimate. FAB-MAP in [Cummins
and Newman 2008; Cummins and Newman 2011] is an appearance-based method to
recognize places in a probabilistic framework. ORB-SLAM in [Mur-Artal, Montiel,
and Juan D. Tardés 2015b] and its extension with IMU in [Mur-Artal and Juan D

Tardds 2017] use bag-of-words (BoW) for loop closure and relocalization. VINS-Mono
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also uses a BoW approach.

Note that all visual-inertial state estimation systems require a proper initializa-
tion. VINS-Mono uses a loosely-coupled sensor fusion method to align monocular
vision with inertial measurement for estimator initialization. ORB-SLAM with IMU
in [Mur-Artal and Juan D Tardés 2017] performs initialization by first running a
monocular SLAM to observe the pose first and then, IMU biases are also estimated.

Given the modularity of OKVIS for adding new sensors and robustness in track-
ing in underwater environment — we fused sonar data in previous work in [Rahman,
Quattrini Li, and Rekleitis 2018b] — we extend OKVIS to include also depth esti-
mate, loop closure capabilities, and a more robust initialization to specifically target

underwater environments.

2.5  STRUCTURE-FROM-MOTION (SFM)

Structure-from-Motion (SfM) from unstructured collections of photographs to build
the 3-D model of the scene has been addressed in different solutions, Bundler in
[Snavely, Seitz, and Szeliski 2006] and VisualSFM in [C. Wu 2013]. They provided
algorithmic analysis to improve computational complexity and performance accuracy.
COLMAP in [Schonberger and Frahm 2016] proposes a SfM algorithm to improve on
the state-of-the-art incremental SfM methods for 3D reconstruction from unordered
image collections. They provide scene graph augmentation, a next best view selection
mechanism, and an efficient triangulation and Bundle Adjustment (BA) technique.
COLMAP outperforms state-of-the-art SfM system on benchmark datasets with a
large number of photos from Internet with varying camera density and distributed

over large area.
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2.6 MurTIVIEW STEREO (MVS)

Multiview Stereo (MVS) is another well known method for reconstruction. Merrell
in [Merrell et al. 2007] presented a viewpoint-based approach to fuse multiple stereo
depth maps for reconstructing 3-D shape from video. By decoupling the processing
into two stages, they are able to run large-scale reconstruction in real-time using a
GPU implementation for efficient computation. The computational power available
on board of the robot is very limited, making the deployment of bundle adjustment

based methods not feasible on the robot.

2.7 VISION-BASED UNDERWATER NAVIGATION

Exploiting SLAM techniques in underwater environment is a difficult task due to the
highly unstructured nature. Salvi et al. in [Salvi et al. 2008] implemented a real-time
EKF-SLAM incorporating a sparsely distributed robust feature selection and 6-DOF
pose estimation using only calibrated stereo cameras. Johnson et al. in [Johnson-
Roberson et al. 2010] proposed an idea to generate 3D model of the seafloor from
stereo images. Beall et al. in [Beall et al. 2011] presented an accurate 3D recon-
struction on a large-scale underwater dataset by performing bundle adjustment over
all cameras and a subset of features rather than using a traditional filtering tech-
nique. A stereo SLAM framework named selective SLAM (SSLAM) for autonomous
underwater vehicle localization was proposed in in [Bellavia, Fanfani, and Colombo
2015].

Vision is often combined with IMU and other sensors in underwater domain for
improved estimation of pose. Hogue et al. in [Hogue, German, and Jenkin 2007] used
stereo and IMU for underwater reconstruction. Stereo and IMU were used for VO in in
[Hildebrandt and Kirchner 2010] and in [Wirth, Carrasco, and Codina 2013]. Séez et

al. in [Sdez et al. 2006] proposed a 6DOF Entropy Minimization SLAM to create dense
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3D visual maps of underwater environments using a dense 3D stereo-vision system
and IMU; it is an offline method. Shkurti et al. in [Shkurti et al. 2011] proposed
a state estimation algorithm for underwater robot by combining information from
monocular camera, IMU, and pressure sensor based on the multi-state constrained

Kalman filter in [Mourikis and Roumeliotis 2007] .
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CHAPTER 3
A MODULAR SENSOR SUITE FOR UNDERWATER

RECONSTRUCTION
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3.1 INTRODUCTION

Localization and mapping in underwater environments is an important problem, com-
mon in many fields such as marine archeology, search and rescue, resource man-
agement, hydro-geology, and speleology. Target environments include, but are not
limited to wrecks (ships/boats, planes, and buses), underwater structures (bridges,
docks, and dams), and underwater caves in [Weidner et al. 2017; Mallios et al. 2017,
Stone 2007; Gary et al. 2008]. Underwater environments present a huge challenge for
vision-only mapping and navigation systems, making the deployment of autonomous
underwater vehicles still an open problem. Light and color attenuation, due to the
presence of particulates in the water, often combined with the complete absence of
natural light, present major challenges. The combination of Visual and Inertial data
has gain popularity with several proposed methods for fusing the two measurements
in [Mourikis and Roumeliotis 2007; Jones and Soatto 2011; Kelly and Sukhatme
2011; Leutenegger et al. 2015]. In addition, most of the state-of-the-art visual or
visual-inertial odometry algorithms have been shown to fail in underwater environ-
ments in [Quattrini Li et al. 2016]. However, vision still remains an accessible, easily
interpretable sensor. On the other hand, the majority of underwater sensing for local-
ization is based on acoustic sensors, such as ultrashort baseline (USBL) and Doppler
Velocity Logger (DVL). Unfortunately, such sensors are usually expensive and could
possibly disturb divers and/or the environment.

This paper presents the design, development, and deployment of an underwa-
ter sensor suite to be operated by human divers. The literature mainly focuses on
AUVs and Autonomous Surface Vehicles (ASVs), and a body of work studies the
Simultaneous Mapping and Localization (SLAM) problem and oceanographic recon-
struction. Leedekerken et al. in [Leedekerken, Fallon, and Leonard 2014] presented
an Autonomous Surface Craft (ASC) for concurrent mapping both above and below

the water surface in large scale marine environments using a surface craft equipped
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Figure 3.1: Our proposed underwater sensor suite mounted on a dual Diver Propulsion
Vehicle (DPV), where a stability check was performed at Blue Grotto, FL.

with imaging sonar for subsurface perception and LIDAR, camera, and radar for
perception above the surface.

Folaga in [Alvarez et al. 2005, a low cost AUV, can navigate on the sea surface
and dive only at selected geographical points when measurements are needed. Ro-
man et al. in [Roman et al. 2000] proposed an AUV equipped with camera and
pencil beam sonar for applications including underwater photo-mosaicking, 3D image
reconstruction, mapping, and navigation. AQUA in [Dudek et al. 2005], a visually
guided legged swimming robot uses vision to navigate underwater and the target ap-
plication areas are environmental assessment in [Hogue, German, and Jenkin 2007
and longitudinal analysis of coral reef environments in [Giguere et al. 2009]. Our
aim is to accelerate state estimation research in the underwater domain that can be
eventually deployed robustly in autonomous underwater vehicles (AUV) by enabling
easy data collection by human divers. In particular, a specific target application is
cave mapping, where the diving community has protocols in place for exploring and
mapping such dangerous environments. The primary design goal of the proposed
underwater sensor suite is to reduce the cognitive load of human divers by employing
robotic technologies to map underwater structures. A second design goal is to enable

software interoperability between different platforms, including AUVs. In particular,
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the sensor suite presented in this paper contains identical sensors with an Aqua2
AUV in [Dudek et al. 2005], and can be deployed in different modes, hand-held by
a diver, mounted on a single Diver Propulsion Vehicle (DPV), or on a dual DPV
for better stability; see Fig. 3.1. The selected sensors include a mechanical scanning
sonar, which provides robust range information about the presence of obstacles. Such
a design choice improves the scale estimation by fusing acoustic range data into the
visual-inertial framework in [Rahman, Quattrini Li, and Rekleitis 2018b].

The chapter is structured as follows. The next section outlines the design layout
of hardware and software, deployment strategies, and the two versions of the sensor
suite. The chapter concludes with a discussion on lessons learned and directions of

future work.

3.2 SENSOR SUITE DESIGN

The sensor suite hardware has been designed with underwater cave mapping in [Wei-
dner et al. 2017 as the target application to be used by divers during cave exploration
operations. In general, it can be used for mapping a variety of underwater structures
and objects. In the following, the main requirements, hardware, and software compo-
nents, are presented. Note that the full documentation for building and maintaining
the hardware, as well as the necessary software can be found on our lab wiki page

Autonomous Field Robotics Lab 2018.

3.2.1 REQUIREMENTS

Given that the sensor suite will be primarily used by divers who are not necessarily
engineers or computer scientists, the following requirements drive the hardware and

software design of the proposed sensor suite:

e Portable.
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Neutrally buoyant.

Hand-held or DPV deployment.

Simple to operate.

Waterproof to technical-diver operational depths.

Furthermore, the following desiderata are considered to make research in state
estimation applied to the proposed sensor suite easily portable to other platforms,

such as AUVs and ASVs:
e Standardization of hardware and software.
e Easy data storing.

e Low cost.

3.2.2 HARDWARE DESIGN

In this section, the electronics selected and the designed enclosure are discussed,

together with lessons learned during the construction of the proposed sensor suite.

ELECTRONICS

To assist vision-based state estimation, we employ an Inertial Measurement Unit
(IMU), a depth, and an acoustic sensor for accurate state estimation in underwater
environments. The specific sensors and electronics of the sensor suite were selected for
compatibility with the Aqua2 Autonomous Underwater Vehicles (AUVs) in [Dudek
et al. 2005. Figure 3.2 shows the computer and internal sensors on a Plexiglas plate,
where the different electronic boards were placed optimizing the space to reduce the

size of the sensor suite. In particular, the electronics consists of:

e two IDS UI-3251LE cameras in a stereo configuration,
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Figure 3.2: The Main Unit containing stereo camera, IMU, Intel NUC, and Pressure
Sensor.

e Microstrain 3DM-GX4-15 IMU,
e Bluerobotics Bar30 pressure sensor,
e Intel NUC as the computing unit,

o IMAGENEX 831L Sonar.
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Figure 3.3: (a) First version of the stereo vision setup, where the two cameras are
mounted externally to the main unit. (b) Second version of the sensor suite, where
the stereo camera is inside the main unit. (c¢) Second version where the sensor suite
is mounted on a DPV.

The two cameras are synchronized via a TinyLily, an Arduino-compatible board,
and are capable of capturing images of 1600 x 1200 resolution at 20 Hz. The sonar
provides range measurement with maximum range of 6 m distance, scanning in a plane
over 360°, with angular resolution of 0.9°. A complete scan at 6 m takes 4s. Note that
the sonar provides for each measurement (point) 255 intensity values, that is 6/255 m
is the distance between each returned intensity value. Clearly, higher response means
a more likely presence of an obstacle. Sediment on the floor, porous material, and
multiple reflections result in a multi-modal distribution of intensities. The IMU
produces linear accelerations and angular velocities in three axis at a frequency of
100 Hz. Finally, the depth sensor produces depth measurements at 1 Hz. To enable
the easy processing of data, the Robot Operating System (ROS) framework in [ros
has been utilized for the sensor drivers and for recording timestamped data.

A 5 inch LED display has been added to provide visual feedback to the diver
together with a system based on AR tags is used for changing parameters and to

start/stop the recording underwater in [X. Wu et al. 2015 (see Section 3.2.3).

ENCLOSURE

The enclosure for the electronics has been designed to ensure ease of operations by

divers and waterproofness up to 100m. In particular, two different designs were
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tested. Both of them are characterized by the presence of handles for hand-held
operations. The handles have been chosen so that a dive light can be easily added
using a set of articulated arms. Note that all enclosures are sealed with proper o-
rings/gaskets (details are reported in the linked documentation).

In the first design (see Fig. 3.3(a)) the main unit, a square shaped aluminum
box — composed of two parts tighten together by screws — contained the computer,
sensors, and other related electronics. The two cameras were sealed in aluminum
tubes with tempered glass in front of the camera lenses. The stereo camera and
display were mounted on the top of the main unit whereas the sonar was on the bottom
of it. Both the cameras and sonar were connected to the main unit by underwater
cables. The rationale behind such a design was to allow for an adjustable stereo
baseline. Unfortunately, the USB 3.0 interfacing standard used by the cameras is not
compatible with the underwater cables available in the market, resulting in highly
degraded performance for the cameras with multiple dropped frames. In addition,
the aluminum body made the sensor suite relatively heavy and negative buoyant.
Furthermore, the position of the screen was not optimal for seeing it during regular
diver deployment.

In the second design (see Fig. 3.3b), we took into account the lessons learned
from the first design. In particular, a PVC tube was used instead of the aluminum
box. This made the enclosure lighter and positive buoyant. Some rails at the bottom
allows for additional weights for ballasting. Furthermore, the main enclosure hosted
the two cameras as well. In this way, the cameras can be directly connected to the
computer with standard USB 3.0 cables, to avoid unnecessary transmission of data
over underwater cables as it was in the first design. The front panel is made of
transparent Plexiglas, 33 mm thickness, while the back panel is made of aluminum,
where a waterproof switch, a display, pressure sensor, and underwater connector for

the sonar are mounted. Stainless steel Latches are used to close the panels with the
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PVC tube, so that it can be easily open and maintained. The sonar was mounted
on the top with the scanning plane parallel to the image plane and connected to
the main unit by a standard SubConn underwater cable. Such a design and choice
of material reduced the size and weight, and made it easier to carry and maintain.
In addition, the second design of the sensor suite allows for modularity in terms of
electronics used: a Plexiglas plate inside the enclosure was used to mount all the
electronics and can be easily removed for troubleshooting or changed with a different
computer, cameras, and IMU.

The second version of the sensor suite has been designed considering two different
deployment strategies: hand-held and on different diver propulsion vehicles (DPV).
Such deployment strategies depend on the structure of the environment and the
distance to cover. The hand-held approach is more appropriate for covering a smaller
area for a short period of time, whereas the sensor suite can be mounted on a single
or double DPV in order to collect data over longer distances while being under water.
Mounting the rig on a DPV is specifically useful in cave diving, at larger depths,
to make better use of limited underwater time. Hand-held operations are possible
through the handles on the side of the PVC tube, as shown in Fig. 3.3(b). DPV
operations can be performed in two ways. First, mounted on a single DPV unit; see
Fig. 3.3(c). Second, mounted on a dual DPV unit; see Fig. 3.1.

Fig. 3.4 shows a front view of the sensor suite fully assembled. The two side-ring
holders are used to mount a canister battery for the video light; usually, a 13.5Ah
NiMH standard battery.

MOUNTING OPTIONS

Mounting the sensor suite on single or dual DPVs uses different attachment methods.
For single DPV attachment hose-clamps are used through the two metal bars to

secure the sensor; see Fig. 3.5a. Please note, the bottom of the sensor suite has a

29



e i eh e Rci

Figure 3.4: Front top view of the assembled sensor suite.

Figure 3.5: (a) The mounting system for single DPV deployment. (b) Mounting
attachment for use with a dual DPV. (c¢) The dual DPV attachment partially mount
on the bottom of the sensor suite.

round hollow that fits on a SUEX! DPV; either XJ37 or XK1 models. For mounting
on a dual DPV, an attachment system is used; see Fig. 3.5b. The PVC components
are hooked through the supporting metal poles at the bottom; see Fig. 3.5¢ where
the plate is half mounted. When the plate is attached to the bottom of the sensor
suite, then it locks on the railing system of the dual DPV unit. The mounting on

the DPV can be carried out while in water, allowing divers to easily carry modular

https://www.suex.it/
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parts to the entry point for the dive. It is worth noting that the cheese-board and

rail design allow for changing the location of the sensor on the dual DPV.

Figure 3.6: Sensor suite on a dual DPV free floating, neutrally buoyant.

Fig. 3.6 demonstrates the stability of the sensor suite on a dual DPV. The unit

floats in the water neutrally buoyant, with the video light on top illuminating forward.

3.2.3 SOFTWARE DESIGN
The main software components of the sensor suite consist of:
e drivers for each hardware unit,
e a ROS interface for communication between sensors and data processing,

e an interface for user and sensor suite interaction.

DRIVERS

The aim for the software design is to have a modular system that ensures re-usability
for both the system as a whole and also for each component. Each driver provides con-
sistent interface for communication with the Robot Operating System (ROS) frame-

work in [ros The main ROS drivers are:
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Menu depth (ft -3.7 Altitude Voltage-0.01
0:StereoRigTroubleShoot temp. (C) 24.2 IMU health 21:20:07

e press.(m 899.9 Sonar health
» Recording True AutoExp True

2:Cameras exp. (ms) €1:1.0,C2:AutoGain True
3:Sonar

Figure 3.7: The default view of the menu.

e UEye driver for each camera, together with the Arduino code for the trigger
to synchronize the cameras — available open-source [Anqgi Xu and contributors

2018].
e IMU driver — available open-source [Kumar Robotics 2018].

e Sonar driver — developed in our lab, released open-source [Autonomous Field

Robotics Lab 2018].

e Depth sensor driver - developed in our lab, released open-source [Autonomous

Field Robotics Lab 2018].

ROS PLATFORM

For easy data collection, each sensor node publishes the related data. All the opera-
tions are performed on the computer that runs a Linux-based operating system. In
particular, the Software was tested both on Ubuntu 14.04 and 16.04. After the oper-
ating system boot, a startup script runs all sensor nodes and at the same time starts

the recording of sensor data through ROS bag file? that allows for easy play-back.
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INTERFACE

The interface consists of two components: Graphical User Interface (GUI) for online
data monitoring; and AR tags [Fiala 2004] that supports user and sensor suite inter-
action, similarly to the proposed system by Sattar et al. [Sattar et al. 2007]. The
GUI - based on Qt? for modularity — shows the current video stream of each camera
and outputs the overall health of the system. Fig. 3.7 shows the sensor data from the
GUI. Depth in feet and altitude represent the distance from the surface and from the
bottom respectively; measured by the depth and the Sonar sensors. The temperature
of the CPU is also reported in case there is overheating, especially if operations are
started above water. In addition, the GUI shows a menu with a list of options that
a user can select; left side of the screen. Each option has a corresponding AR tag
associated with its number. Through the menu a user can perform basic operations
on the computer — such as reboot or shutdown — start or stop recording data, get
access to both camera or sonar settings. When a camera is selected, a user can change
its gain and exposure and perform camera calibration. In addition, sonar data can
be visualized through rviz* by selecting the corresponding option. Note that such a
menu is modular and straightforward to add, remove, or modify the menu entries.

Fig. 3.7 shows how the GUI looks like.

3.3 CONCLUSION

In this paper, we presented the design and development of a sensor suite for underwa-
ter reconstruction, together with some lessons learned during its construction. Our

proposed sensor suite has been used by divers in coral reefs, shipwrecks, and cave

2http://wiki.ros.org/rosbag
3https://www.qt.io/

‘http://wiki.ros.org/rviz
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systems to collect visual, inertial, and sonar data, and different algorithms have been
studied to improve state estimation in caves.

Immediate future work on the proposed sensor suite includes a comprehensive
study on the quality of cameras for underwater operations, as well as a more user-
friendly electronics placement and wiring. More broadly, such a sensor suite will be
mounted on a platform that can operate autonomously, to allow for easy swap of

sensors on a robot.
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CHAPTER 4
AN UNDERWATER SLAM SYSTEM USING SONAR,

VISUAL, INERTIAL, AND DEPTH SENSOR
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Figure 4.1: Underwater cave in Ginnie Springs, FL, where data have been collected
using an underwater stereo rig.

4.1 INTRODUCTION

Most of the underwater navigation algorithms in [Leonard and Durrant-Whyte 2012;
Lee et al. 2005; Snyder 2010; Johannsson et al. 2010; Rigby, Pizarro, and S. B.
Williams 2006] are based on acoustic sensors, such as Doppler velocity log (DVL),
Ultra-short Baseline (USBL), and sonar. However, data collection with these sensors
is expensive and sometimes not suitable due to the highly unstructured underwa-
ter environments. In recent years, many vision-based state estimation algorithms
have been developed using monocular, stereo, or multi-camera system mostly for in-
door and outdoor environments. Vision is often combined with Inertial Measurement
Unit (IMU) for improved estimation of pose in challenging environments, termed as
Visual-Inertial Odometry (VIO) in [Mur-Artal and Juan D Tardés 2017; Leutenegger
et al. 2015; Qin, Li, and Shen 2018; Mourikis and Roumeliotis 2007; Sun et al. 2018].
However, the underwater environment — e.g., see Fig. 4.1 — presents unique chal-
lenges to vision-based state estimation. As shown in a previous study in [Quattrini
Li et al. 2016], it is not straightforward to deploy the available vision-based state
estimation packages underwater. In particular, suspended particulates, blurriness,
and light and color attenuation result in features that are not as clearly defined as
above water. Consequently results from different vision-based state estimation pack-

ages show a significant number of outliers resulting in inaccurate estimate or even
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complete tracking loss.

In this chapter, we propose a novel SLAM system specifically targeted for under-
water environments — e.g., wrecks and underwater caves — and easily adaptable for
different sensor configuration: acoustic (mechanical scanning profiling sonar), visual
(stereo camera), inertial (linear accelerations and angular velocities), and depth data.
This makes our system versatile and applicable on-board of different sensor suites and
underwater vehicles.

The idea is that acoustic range data, though sparser, provide robust information
about the presence of obstacles, where visual features reside; together with a more
accurate estimate of scale. To fuse range data from sonar into the traditional VIO
framework, we propose a new approach of taking a visual patch around each sonar
point, and introduce extra constraints in the pose graph using the distance of the
sonar point to the patch. The proposed method operates under the assumption that
the visual-feature based patch is small enough and approximately coplanar with the
sonar point. The resulting pose-graph consists of a combination of visual features and
sonar features. In addition, we adopt the principle of keyframe based approaches to
keep the graph sparse enough to enable real-time optimization. A particular challenge
arises from the fact that the sonar features at an area are sensed after some time from
the visual features due to the sensor suite configuration.

In our recent work, SVInin [Rahman, Quattrini Li, and Rekleitis 2018b], acoustic,
visual, and inertial data is fused together to map different underwater structures by
augmenting the visual-inertial state estimation package OKVIS in [Leutenegger et al.
2015]. This improves the trajectory estimate especially when there is varying visibility
underwater, as sonar provides robust information about the presence of obstacles with
accurate scale. However, in long trajectories, drifts could accumulate resulting in an
erroneous trajectory.

In [Rahman, Quattrini Li, and Rekleitis 2018¢]|, we extend our work by including
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an image enhancement technique targeted to the underwater domain, introducing
depth measurements in the optimization process, loop-closure capabilities, and a more
robust initialization. These additions enable the proposed approach to robustly and
accurately estimate the sensor’s trajectory, where every other approach has shown
incorrect trajectories or loss of localization.

To validate our proposed approach, first, we assess the performance of the pro-
posed loop-closing method, by comparing it to other state-of-the-art systems on the
EuRoC micro-aerial vehicle public dataset in [Burri et al. 2016], disabling the fu-
sion of sonar and depth measurements in our system. Second, we test the proposed
full system on several different underwater datasets in a diverse set of conditions.
More specifically, underwater data — consisting of visual, inertial, depth, and acoustic
measurements — has been collected using a custom made sensor suite in [Rahman,
Quattrini Li, and Rekleitis 2018a] from different locales; furthermore, data collected
by an Aqua2 underwater vehicle in [Dudek et al. 2005] include visual, inertial, and
depth measurements. The results on the underwater datasets illustrate the loss of
tracking and/or failure to maintain consistent scale for other state-of-the-art systems
while our proposed method maintains correct scale without diverging. Experimental
data were collected from the Ginnie ballroom cavern at High Springs, in Florida; a
submerged bus in North Carolina; a fake underwater cemetery in Lake Jocassee in
South Carolina; and an artificial shipwreck in Barbados. In all cases a custom sensor
suite employing a stereo camera, a mechanical scanning profiling sonar, and an IMU
was used.

The paper is structured as follows. The next section discusses related work. Sec-
tion 4.2 presents the mathematical formulation of the proposed system and describes
the approach developed for image preprocessing, pose initialization, loop-closure, and
relocalization. Section 4.3 presents results from a publicly available aerial dataset and

a diverse set of challenging underwater environments. We conclude this paper with
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Figure 4.2: Block diagram of the proposed system, SVIn2; in yellow the sensor input,
in green the components from OKVIS; in red the contribution from our work in [Rah-
man, Quattrini Li, and Rekleitis 2018b], and in blue the contributions in [Rahman,
Quattrini Li, and Rekleitis 2018c].

a discussion on lessons learned and directions of future work.

4.2 PROPOSED METHOD

This section describes the proposed system, SVIn2, depicted in Fig. 4.2. The full
proposed state estimation system can operate with a robot that has stereo camera,
IMU, sonar, and depth sensor — the last two can be also disabled to operate as a
visual-inertial system.

Due to low visibility and dynamic obstacles, it is hard to find good features to
track. In addition to the underwater vision constraints, e.g., light and color attenu-
ation, vision-based systems also suffer from poor contrast. Hence, we augment the
pipeline by adding an image preprocessing step, where contrast adjustment along with
histogram equalization is applied to improve feature detection underwater. In par-
ticular, we use a contrast limited adaptive histogram equalization filter in the image

pre-processing step.
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In the following, after defining the state, we describe the proposed initialization,

sensor fusion optimization, loop closure and relocalization steps.

4.2.1 NOTATIONS AND STATES

The full sensor suite is composed of the following coordinate frames: Camera (stereo),
IMU, Sonar (acoustic), Depth, and World which are denoted as C, I, S, D, and W
respectively. The transformation between two arbitrary coordinate frames X and Y
is represented by a homogeneous transformation matrix xTy = [xRy|xpy| where
xRy is rotation matrix with corresponding quaternion xq, and xp, is position
vector.

Let us now define the robot R state xg that the system is estimating as:
Xr = [Wp?aw q??W V?a bgTa baT]T (41)

which contains the position yp;, the attitude represented by the quaternion wq;,
the linear velocity vy, all expressed as the IMU reference frame [ with respect
to the world coordinate W; moreover, the state vector contains the gyroscopes and
accelerometers bias b, and b,.

The associated error-state vector is defined in minimal coordinates, while the

perturbation takes place in the tangent space:
oxgp = [op",0q",6v",0b,", b, ]" (4.2)

which represents the error for each component of the state vector with a transforma-

tion between tangent space and minimal coordinates in [Forster et al. 2017a].

4.2.2 TIGHTLY-COUPLED NON-LINEAR OPTIMIZATION WITH

SONAR-VISUAL-INERTIAL-DEPTH (SVIND) MEASUREMENTS

For the tightly-coupled non-linear optimization, we use the following cost function

J(x), which includes the reprojection error e, and the IMU error e, with the addition
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of the sonar error e;, and the depth error e,:

JET(3,k)

2 K

ZZ Y el pe ”k—l—Ze Pre

=1k=1

K-1

Z —I—Ze " Plek (4.3)

where ¢ denotes the camera index — i.e., left (i = 1) or right (i = 2) camera in a stereo
camera system with landmark index j observed in the A" camera frame. P¥ P¥
PF, and P represent the information matrix of visual landmarks, IMU, sonar range,
and depth measurement for the k" frame respectively.

For completeness, we briefly discuss each error term — see [Leutenegger et al. 2015]
for more details. The reprojection error describes the difference between a keypoint
measurement in camera coordinate frame C' and the corresponding landmark pro-
jection according to the stereo projection model. The IMU error term combines all
accelerometer and gyroscope measurements by IMU pre-integration in [Forster et al.
2017a] between successive camera measurements and represents the pose, speed and
bias error between the prediction based on previous and current states. Both reprojec-
tion error and IMU error term follow the formulation by Leutenegger in [Leutenegger
et al. 2015].

The concept behind calculating the sonar range error is that, if the sonar detects
any obstacle at some distance, it is more likely that the visual features would be
located on the surface of that obstacle, and thus will be approximately at the same
distance. The step involves computing a visual patch detected in close proximity of
each sonar point to introduce an extra constraint, using the distance of the sonar
point to the patch. Here, we assume that the visual-feature based patch is small
enough and approximately coplanar with the sonar point.

In the presented system, the sonar measurements are used to correct the robot

pose estimate as well as to optimize the use of landmarks coming from both vision and
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Figure 4.3: The relationship between sonar measurement and stereo camera features.
A visual feature detected at time k is only detected by the sonar with a delay, at time
k + i, where ¢ depends on the speed the sensor is moving.

sonar. Due to the low visibility of underwater environments when it is hard to find
visual features, sonar provides features with accurate scale. A particular challenge
is the temporal displacement between the two sensors, vision and sonar. Figure 4.3
illustrates the structure of the problem, at time k some features are detected by the
stereo camera, it takes some time (until k£ 4 ) for the sonar to pass by these visual
features and thus obtain a related measurement. To address the above challenge,
visual features detected in close proximity to the sonar return are grouped together
and used to construct a patch. The distance between the sonar and the visual patch
is used as an additional constraint.

For computational efficiency, the sonar range correction only takes place when a
new camera frame is added to the pose graph. As sonar has a faster measurement rate
than the camera, only the nearest range to the robot pose in terms of timestamp is
used to calculate a small patch from visual landmarks around the sonar landmark for
that given range and head__position. Algorithm 1 shows how to calculate the range
error e} given the robot position yp¥ and the sonar measurement z¥ at time k.

The sonar returns range r and head__position € measurements which are used to

obtain each sonar landmark w1 = [l,, [, [,, 1] in homogeneous coordinate by a simple
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Algorithm 1 SONAR Range Error Algorithm

Input: Estimation of robot position 1 p% at time k
Sonar measurement zf = [r, 0] at time k
List of current visual landmarks, £,
Distance threshold, T}

Output: Range error ef at time k

/*Compute sonar landmark in world coordinates™/
1. wil= (wTiTs[Is|r cos(d), rsin(6),0]5)

/*Create list of visual landmarks around sonar landmark™*/
2: ES =0

3: for (every ;in £, ) do
/*Compute Euclidean distance from visual landmark to sonar landmark™/
& ds=lwl- 4
5: if ( ds < Td) then
6: Lo=LgUL
7: end if
8: end for
9: 7 = wa)]; - mean(ﬁg)H

10: return r» — 7

geometric transformation in world coordinates:
wl= (wT;Ts[Ls|r cos(@),rsin(@),()]g) (4.4)

where T and ;Tg are the respective transformation matrices used to transform
the sonar measurement from the sonar coordinates to the world coordinates. ;Tg
represents the transformation from the sonar frame of reference to the IMU reference
frame, and T represents the transformation from the inertial (IMU) frame to the
world coordinates. Consequently, the sonar range prediction is calculated using the

lines 2-9 of Algorithm 1:

7 = |lwp; — mean(Ls)|, (4.5)

where Lg is the subset of visual landmarks around the sonar landmark. As mentioned
above, the concept behind calculating the range error is that, if the sonar detects
any obstacles at some distance, it is more likely that the visual features would be

located on the surface of that obstacle, and thus will be at approximately the same
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distance. Thus, the error term is the difference between the two distances. Note that
we approximate the visual patch with the centroid (mean(Lg)), to filter out noise on
the visual landmarks.

As such, given the sonar measurement zy, the error term ef(yp%,zF) is based
on the difference between those two distances which is used to correct the position
wpY. We assume an approximate normal conditional probability density function f
with zero mean and W¥ variance, and the conditional covariance Q(épﬂzf), updated

iteratively as new sensor measurements are integrated:

fleflwpl) = N(0, Wy) (4.6)
The information matrix is:
-1
_ ek N oek T
P =Wk = L Q(5pk|zh) L 4.7
f— W (W i) (4.7)

The Jacobian can be derived by differentiating the expected range r measurement

with respect to the robot position:

d6pk r ’ r ’ r
The pressure sensor, introduced in this paper, provides accurate depth measure-
ments based on water pressure. Depth values are extracted along the gravity direction

which is aligned with the z of the world W — observable due to the tightly coupled

IMU integration. The depth data at time % is given by!:

wpsp® =d" —d° (4.9)

With depth measurement 2¥, the depth error term ef (yp. %, 2¥) can be calculated

as the difference between the robot position along the z direction and the depth data

"More precisely, wp.p* = (d* — d°) + init_disp_ from_IMU to account for the initial displace-
ment along z axis from IMU, which is the main reference frame used by visual SLAM to track the
sensor suite/robot.
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to correct the position of the robot. The error term can be defined as:

efa(szIka 25) = ‘szI; - W psz‘ (410)

The information matrix calculation follows a similar approach as the sonar and
the Jacobian is straight-forward to derive.
All the error terms are added in the Ceres Solver nonlinear optimization framework

in [Agarwal, Mierle, et al. 2015] to estimate the robot state.

4.2.3 INITIALIZATION: TWO-STEP SCALE REFINEMENT

A robust and accurate initialization is required for the success of tightly-coupled non-
linear systems, as described in in [Mur-Artal and Juan D Tardés 2017] and in [Qin,
Li, and Shen 2018]. For underwater deployments, this becomes even more important
as vision is often occluded as well as is negatively affected by the lack of features for
tracking. Indeed, from our comparative study of visual-inertial based state estimation
systems in [Joshi et al. 2019], in underwater datasets, most of the state-of-the-art
systems either fail to initialize or make wrong initialization resulting into divergence.
Hence, we propose a robust initialization method using the sensory information from
stereo camera, IMU, and depth for underwater state estimation. The reason behind
using all these three sensors is to introduce constraints on scale to have a more
accurate estimation on initialization. Note that no acoustic measurements have been
used because the sonar range and visual features contain a temporal difference, which
would not allow to have any match between acoustic and visual features, if the robot
is not moving. This is due to the fact that the sonar scans on a plane over 360°
around the robot and camera detects features in front of the robot Rahman, Quattrini
Li, and Rekleitis 2018b]; see Fig. 4.4.

In particular, the proposed initialization works as follows. First, we make sure

that the system only initializes when a minimum number of visual features are present
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Vision

Figure 4.4: Custom made sensor suite mounted on a dual DPV. Sonar scans around
the sensor while the cameras see in front.

to track (in our experiments 15 worked well). Second, the two-step refinement of the
initial scale from the stereo vision takes place.

The depth sensor provides accurate depth measurements which are used to refine
the initial scale factor from stereo camera. Including a scale factor s, the transfor-

mation between camera C' and depth sensor D can be expressed as

WPzp = S1 * WDzc + WRzCC’pD (411)

For keyframe k, solving the above equation for sy, provides the first refinement r;

of the initial stereo scale wp,,., i.e.,

wPric = S1* wPc (4.12)

In the second step, the refined measurement from stereo camera in Eq. (4.12)
is aligned with the IMU pre-integral values. Similarly, the transformation between

camera C' and IMU [ with scale factor sy can be expressed as:

wPr = S2 * wP,1c + wRcoeP; (4.13)
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In addition to refining the scale, we also approximate initial velocity and gravity
vector similar to the method described in in [Qin, Li, and Shen 2018]. The state
prediction from IMU integration X% ' (x%, z}) with IMU measurements z in OKVIS

at+1

in [Leutenegger et al. 2015 with conditional covariance Q(0X} * |x',z}) can be written

s (the details about IMU pre-integration can be found in in [Forster et al. 2017a)):

WIA)ZIJJrl = WPI +w V[At + ;WgAt +w RIO‘ZI+l

w¥T = wvh 4w gAt +w R ”1

Wit = (119
where a”l, ZH, and '7”1 are IMU pre-integration terms defining the motion be-

tween two consecutive keyframes i and i+1 in time interval At¢; and can be obtained

only from the IMU measurements. Eq. (4.14) can be re-arranged with respect to

a}“, ’Ijl as follows:

al[j—l = IR‘%’V(WpIJrl —w P —w V[Atz‘ - ingtZQ)
o= Ry —w v — weAt) (4.15)

i+1

Substituting Eq. (4.13) into Eq. (4.15), we can estimate xg = [vi,vi ™ w g, so]”

by solving the linear least square problem in the following form:

‘ 2
mmZ’ 5itl —Hi! H (4.16)
ic
2+l
where 2~ =
A i1 i 1 1 ] ]
o/;r — Ry wRI epi™ + Ricp)
Ait1
I;
i+1 _
and Hg ™ =
—IAG 0 —5Ryp AL Ry (wpad — wpnb)
-1 RiwRM™  —Ri At 0
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4.2.4 LOOP-CLOSING AND RELOCALIZATION

In a sliding window and marginalization based optimization method, drift accumu-
lates over time on the pose estimate. A global optimization and relocalization scheme
is necessary to eliminate this drift and to achieve global consistency. We adapt
DBoW?2 in [Gélvez-Lépez and Tardos 2012], a bag of binary words (BoW) place
recognition module, and augment OKVIS for loop detection and relocalization. For
each keyframe, the descriptors for only the keypoints detected during the local track-
ing are used to build BoW database. No new features will be detected in the loop
closure step.

A pose-graph is maintained to represent the connection between keyframes. In
particular, a node represents a keyframe and an edge between two keyframes exists if
the matched keypoints ratio between them is more than 0.75. In practice, this results
into a very sparse graph. With each new keyframe in the pose-graph, the loop-closing
module searches for candidates in the bag of words database. A query for detecting
loops to the BoW database only returns the candidates outside the current marginal-
ization window and having greater than or equal to score than the neighbor keyframes
of that node in the pose-graph. If loop is detected, the candidate with the highest
score is retained and feature correspondences between the current keyframe in the
local window and the loop candidate keyframe are obtained to establish connection
between them. The pose-graph is consequently updated with loop information. A
2D-2D descriptor matching and a 3D-2D matching between the known landmark
in the current window keyframe and loop candidate with outlier rejection by PnP
RANSAC is performed to obtain the geometric validation.

When a loop is detected, the global relocalization module aligns the current
keyframe pose in the local window with the pose of the loop keyframe in the pose-
graph by sending back the drift in pose to the windowed sonar-visual-inertial-depth

optimization thread. Also, an additional optimization step, similar to Eq. (4.3), is
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taken only with the matched landmarks with loop candidate for calculating the sonar

error term and reprojection error; see Eq. (4.17).

K K1
Jx) = 33 % e PRt 4 3 o Phek
=1 k=1 j€ Loop(i,k) k=1

(4.17)

After loop detection, a 6-DoF (position, x, and rotation, xq) pose-graph opti-
mization takes place to optimize over relative constraints between poses to correct
drift. The relative transformation between two poses T; and T for current keyframe

in the current window i and keyframe j (either loop candidate keyframe or connected

keyframe) can be calculated from AT;; = T;T;"'. The error term, ef;f; xq Detween
keyframes ¢ and j is formulated minimally in the tangent space:
i\j e
ex’f)’xq = AT,L]TZTJ (418)

where (7) denotes the estimated values obtained from local sonar-visual-inertial-
depth optimization. and the cost function to minimize is given by
J<Xp7 Xq) = Zegi,xq P;’i,xqe;i,xq + Z p(e;f),xq P;{,,xqe;i,xq) (419)
Y (i,5)€ Loop

where P;f) xq 18 the information matrix set to identity, as in in [Strasdat 2012], and p

is the Huber loss function to potentially down-weight any incorrect loops.

4.3 EXPERIMENTAL RESULTS

The proposed state estimation system, SVIn2, is quantitatively validated first on a
standard dataset, to ensure that loop closure and the initialization work also above
water. Moreover, it is compared to other state-of-the-art methods, i.e., VINS-Mono
in [Qin, Li, and Shen 2018], the basic OKVIS in [Leutenegger et al. 2015], and the
MSCKF in [Mourikis and Roumeliotis 2007] implementation from the GRASP lab
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in [Research group of Prof. Kostas Daniilidis 2018]. Second, we qualitatively test
the proposed approach on several different datasets collected utilizing a custom made
sensor suite in [Rahman, Quattrini Li, and Rekleitis 2018a] and an Aqua2 AUV in

[Dudek et al. 2005].

4.3.1 VALIDATION ON STANDARD DATASET

Here, we present results on the EuRoC dataset in [Burri et al. 2016], one of the
benchmark datasets used by many visual-inertial state estimation systems, including
OKVIS (Stereo), VINS-Mono, and MSCKF. To compare the performance, we disable
depth and sonar integration in our method and only assess the loop-closure scheme.

Following the current benchmarking practices, an alignment is performed between
ground truth and estimated trajectory, by minimizing the least mean square errors
between estimate/ground-truth locations, which are temporally close, varying rota-
tion and translation, according to the method from Umeyama 1991]. The resulting
metric is the Root Mean Square Error (RMSE) for the translation, shown in Ta-
ble 4.1 for several Machine Hall sequences in the EuRoC dataset. For each package,
every sequence has been run 5 times and the best run (according to RMSE) has been
shown. Our method shows reduced RMSE in every sequence from OKVIS, validating
the improvement of pose-estimation after loop-closing. SVIn2 has also less RMSE
than MSCKF and slightly higher in some sequences, but comparable, to results from
VINS-Mono. Fig. 4.5 shows the trajectories for each method together with the ground

truth for the Machine Hall sequence.

4.3.2 UNDERWATER DATASETS

Our proposed state estimation system — SVIn2 — is targeted for the underwater envi-
ronment, where sonar and depth can be fused together with the visual-inertial data.

Here, we show results from four different datasets in three different underwater en-
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Table 4.1: The best absolute trajectory error (RMSE) in meters for each Machine
Hall EuRoC sequence.
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MH 01 | 0.13 | 0.15 | 0.07 | 0.21
MH 02 | 0.08 | 0.14 | 0.08 | 0.24
MH 03 | 0.07 | 0.12 | 0.05 | 0.24
MH 04 | 0.13 | 0.18 | 0.15 | 0.46
MH 05 | 0.15 | 0.24 | 0.11 | 0.54

vironments. First, a sunken bus in Fantasy Lake (NC), where data was collected
by a diver with a custom-made underwater sensor suite [Rahman, Quattrini Li, and
Rekleitis 2018a]. The diver started from outside the bus, performed a loop around
and entered in it from the back door, exited across and finished at the front-top of
the bus.  The images are affected by haze and low visibility. Second and third,
data from an underwater cavern in Ginnie Springs (FL) is collected again by a diver
with the same sensor suite as for the sunken bus. The diver performed several loops,
around one spot in the second dataset — Cavernl — and two spots in the third dataset
— Cavern2 — inside the cavern. The environment is affected by complete absence of
natural light. Fourth, an AUV — Aqua2 robot — collected data over a fake underwater
cemetery in Lake Jocassee (SC) and performed several loops around the tombstones
in a square pattern. The visibility, as well as brightness and contrast, was very low.
In the underwater datasets, it is a challenge to get any ground truth, because it is a
GPS-denied unstructured environment. As such, the evaluation is qualitative, with
a rough estimate on the size of the environment measured beforehand by the divers
collecting the data.

Figs. 4.7-4.10 show the trajectories from SVIn2, OKVIS, and VINS-Mono in the
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datasets just described. MSCKF was able to keep track only for some small segments
in all the datasets, hence excluded from the plots. For a fair comparison, when
the trajectories were compared against each other, sonar and depth were disabled
in SVIn2. All trajectories are plotted keeping the original scale produced by each
package.

Fig. 4.7 shows the results for the submerged bus dataset. In particular, VINS-
Mono lost track when the exposure increased for quite some time. It tried to re-
initialize, but it was not able to track successfully. Even using histogram equalization
or a contrast adjusted histogram equalization filter, VINS-Mono was not able to track.
Even if the scale drifted, OKVIS was able to track using a contrast adjusted histogram
equalization filter in the image pre-processing step. Without the filter, it lost track
at the high exposure location. The proposed method was able to track, detect, and
correct the loop, successfully.

In Cavernl — see Fig. 4.8 — VINS-Mono tracked successfully the whole time. How-
ever, as can be noticed in Fig. 4.8c, the scale was incorrect based on empirical ob-
servations during data collection. OKVIS instead produced a good trajectory, and
SVIn2 was also able to detect and close the loops.

In Cavern2 (Fig. 4.9), VINS-Mono lost track at the beginning, reinitialized, was
able to track for some time, and detected a loop, before losing track again. VINS-
Mono had similar behavior even if the images were pre-processed with different filters.
OKVIS tracked well, but as drifts accumulated over time, it was not able to join the
current pose with a previous pose where a loop was expected. SVIn2 was able to
track and reduce the drift in the trajectory with successful loop closure.

In the cemetery dataset — Fig. 4.10 — both VINS-Mono and OKVIS were able to
track, but VINS-Mono was not able to reduce the drift in trajectory, while SVIn2

was able to fuse and correct the loops.
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4.3.3 RECONSTRUCTION USING SONAR DATA

The proposed approach has been tested in numerous challenging environments. In
the following a description of each dataset together with the state estimate of the
sensor suite and challenges during the field trials are presented.

One of the first datasets was collected at an artificial shipwreck in Barbados; see
Fig. 4.12a. The initial deployment of the sonar sensor suffered from a misconfigu-
ration where data was collected at a very slow rate and at a maximum range of one
meter resulting on only collecting sonar data from the floor. Note that Fig. 4.12c
shows the trajectory of the camera going slightly upwards, although the frame shows
the floor parallel to the motion. The shipwreck was sunken on the sea floor with some
inclination, that the IMU was able to capture.

We collected also a short segment from inside a cavern in Ginnie Springs, in
Florida (USA). Such footage provided preliminary data from an underwater cave
environment; see Fig. 4.13a. The video light utilized was providing illumination on
only part of the scene. The reconstruction shows both visual landmarks and sonar
points giving a sense of the cavern as the diver was swimming around. In such a case,
the sonar was correctly configured; however, because the light was not uniformly
illuminating the scene, the visual features were not optimal.

Finally, the inside of a sunken bus was mapped at Fantasy Lake Scuba Park, NC,
USA; see Fig. 4.14a. The image quality was quite poor due to the many particulates
in the water. In all environments, the images contain a significant amount of blur
(softness) which clearly increases with distance. In addition, dynamic obstacles, such
as fish, but more importantly floating particles that reflect back with high intensity;
see Fig. 4.11, where floating particles were present in all datasets.

In such challenging environments, it is very hard to get ground truth. However,
the trajectory and the distance covered resembled the one followed by the diver.

Further, the sonar landmarks were indeed used to correct the pose estimate. All the
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results in the datasets, but the shipwreck, show several rings, indicating the mapping

of the structure.

4.4 CONCLUSIONS

In this chapter, we presented a state estimation system with robust initialization,
sensor fusion of depth, sonar, visual, and inertial data, and loop closure capabili-
ties. While the proposed system can also work out of the water, by disabling the
sensors that are not applicable, our system is specifically targeted for underwater
environments. Experimental results in a standard benchmark dataset and different
underwater datasets demonstrate excellent performance.

Utilizing the insights gained from implementing the proposed approach, an online
adaptation of the discussed framework for the limited computational resources of the
Aqua2 AUV in [Dudek et al. 2005] is currently under consideration; see Fig. 4.6. It
is worth noting that maintaining the proper attitude of the traversed trajectory and
providing an estimate of the distance traveled will greatly enhance the autonomous
capabilities of the vehicle in [Sattar et al. 2008]. Furthermore, accurately modeling the
surrounding structures would enable Aqua2, as well as other vision based underwater
vehicles to operate near, and through, a variety of underwater structures, such as

caves, shipwrecks, and canyons.

54



Figure 4.5: Trajectories on the MH sequence of the EuRoC dataset.
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Figure 4.6: The Aqua2 AUV in [Dudek et al. 2005] equipped with the scanning sonar
collecting data over the coral reef.

——OKVIS
—— VINS-Mono
-6 | | | | | | |
-12 -10 -8 -6 -4 -2 0 2
X [m]

Figure 4.7: (a) Submerged bus, Fantasy Lake, NC, USA; trajectories from SVIn2
with all sensors enabled shown in rviz (b) and aligned trajectories from SVIn2 with
Sonar and depth disabled, OKVIS, and VINS-Mono (c) are displayed.
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SVIN2
—— OKVIS
——— VINS-Mono

Figure 4.8: (a) Cave environment, Ballroom, Ginnie Springs, FL, USA, with a unique
loop; trajectories from SVIn2 with all sensors enabled shown in rviz (b) and aligned
trajectories from SVIn2 with Sonar and depth disabled, OKVIS, and VINS-Mono (c)

are displayed.
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VINS-Mono

X [m]

Figure 4.9: (a) Cave environment, Ballroom, Ginnie Springs, FL, USA, with two
loops in different areas; trajectories from SVIn2 with all sensors enabled shown in
rviz (b) and aligned trajectories from SVIn2 with Sonar and depth disabled, OKVIS,

and VINS-Mono (c) are displayed.
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(a) (b)

———SVIN2
OKVIS
—— VINS-Mono

Figure 4.10: (a) Aqua2 in a fake cemetery, Lake Jocassee, SC, USA; trajectories from
SVIn2 with visual, inertial, and depth sensor (no sonar data has been used) shown in
rviz (b) and aligned trajectories from SVIn2 with Sonar and depth disabled, OKVIS,
and VINS-Mono (c) are displayed.
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Figure 4.11: A small particle reflecting back at high speed generating a blurry streak.
In addition light reflecting back from a nearby surface completely saturates the cam-
era.

Figure 4.12: Bajan Queen artificial reef (shipwreck) in Carlisle Bay, Barbados. (a)
Sample image of the data collected inside the wreck (beginning of trajectory). (b)
Top view of the reconstruction.
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(b)

Figure 4.13: Underwater cave, Ballroom Ginnie cavern at High Springs, FL, USA.
(a) Sample image of the data collected inside the cavern. (b) Top view of the recon-
struction. (c) Side view of the reconstruction.

()

(a)

Figure 4.14: Sunken bus, Fantasy Lake Scuba Park, NC, USA. (a) Sample image of
the data collected from inside the bus. (b) Top view of the reconstruction. (c) Side
view of the reconstruction, note the stairs detected by visual features at the right side
of the image.
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CHAPTER 5
CONTOUR BASED RECONSTRUCTION OF UNDERWATER
STRUCTURES USING SONAR, VISUAL, INERTIAL, AND

DEPTH SENSOR
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5.1 INTRODUCTION

Underwater cave exploration is one of the most extreme adventures pursued by hu-
mans in [Exley 1977]. It is a dangerous activity with more than 600 fatalities, since
the beginning of underwater cave exploration, that currently attracts many divers.
Generating models of the connectivity between different underwater cave systems
together with data on the depth, distribution, and size of the underwater chambers
is extremely important for fresh water managements in [Climate Change and Sea-
Level Rise in Florida: An Update of “The Effects of Climate Change on Florida’s
Ocean and Coastal Resources.” 2010], environmental protection, and resource uti-
lization in [Xu et al. 2016]. In addition, caves provide valuable historical evidence as
they present an undisturbed time capsule in [Abbott 2014], and information about
geological processes in [Kresic and Mikszewski 2013].

Before venturing beyond the light zone with autonomous robots, it is crucial to
ensure that localization and mapping abilities have been developed and are adequately
robust. Constructing a map of an underwater cave presents many challenges. First
of all, vision underwater is plagued by limited visibility, color absorption, hazing,
and lighting variations. Furthermore, the absence of natural light inside underwater
caves makes localization and mapping more difficult; however, the use of an artificial
light can be used to infer the structure in [Weidner et al. 2017]. The most common
underwater mapping sensor is based on sonar, which, when mounted on a moving
platform, requires a secondary sensor to provide a common frame of reference for
the range measurements collected over time. Furthermore, the majority of sonar
sensors generate multiple returns in enclosed spaces making mapping caves extremely
difficult.

In our earlier work, the cone of light perceived by a stereo camera was used to
reconstruct offline the boundaries of a cave in Mexico in [Weidner et al. 2017]. No

other sensor was available and the stereo-baseline of 0.03 m limited the accuracy of the
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Figure 5.1: The stereo, inertial, depth, and acoustic sensor suite mounted on a dual
diver propulsion vehicle (DPV) equipped with a flashlight, in front of the Blue Grotto
cavern.

reconstruction for objects further than a couple of meters. More recently, augmenting
the visual-inertial state estimation package OKVIS in [Leutenegger et al. 2015], we
fused visual and inertial data together with acoustic range measurements from a
pencil beam sonar, which provide more reliable distance estimate of features. This
allows a more robust and reliable state estimation in [Rahman, Quattrini Li, and
Rekleitis 2018b]. One of the limitations is the granularity of the resulting 3D point
cloud: only few keypoints are typically tracked, resulting in very sparse 3D point
cloud, which cannot be directly used, for example, by an Autonomous Underwater
Vehicle (AUV) to navigate and avoid obstacles. Applying a direct-based method, such
as LSD-SLAM in [Engel, Schops, and Cremers 2014], is not straightforward, given
the sharp changes in illumination in the underwater scene. A fundamental difference
with most vision based estimation approaches is that in a cave environment, the light
source is constantly moving thus generating shadows that also move. Consequently
the majority of the strong features cannot be used for estimating the pose of the
camera.

In this paper, we propose a novel system that is able to track the state estimate and
at the same time improve the 3-D reconstruction from visual edge based information

in the cave boundaries.
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In particular, the proposed approach for real-time reconstruction of the cave envi-
ronment with medium density is based on an underwater SLAM system that combines
acoustic (sonar range), visual (stereo camera), inertial (linear accelerations and an-
gular velocities), and depth data to estimate the trajectory of the employed sensor
suite. The inspiration for a denser point cloud comes from the following observa-
tion: visual features on the boundaries created by shadows, occlusion edges, and the
boundaries of the artificial illumination (video light) — see Fig. 5.1 — are all located at
the floor, ceiling, and walls of the cave. The point cloud resulting from such edges is
then optimized in a local bundle adjustment, and can be used for providing a denser
reconstruction, enabling the deployment of AUVs like Aqua2 in [Dudek et al. 2005]
with advanced swimming gaits in [Meger et al. 2015|, navigating around obstacles
without disturbing the sediment at the bottom. Experiments in caverns and caves
validate the proposed approach.

The paper is structured as follows. In the next section, we present related work,
specifically focusing on state estimation and 3D reconstruction. Section 5.2 describes
the proposed method. Experimental results are presented in Section 5.3. Section 5.4

concludes the paper.

5.2 TECHNICAL APPROACH

The proposed approach augments in [Rahman, Quattrini Li, and Rekleitis 2018b;
Rahman, Quattrini Li, and Rekleitis 2018c|] to generate real-time a denser recon-
struction of underwater structures exploiting the boundaries of the structure and the
cone-of-light. For completeness, we briefly introduce the system hardware and visual
inertial method that includes acoustic and depth measurements. Then, we describe
the proposed 3D reconstruction based on contour matching and the local optimization

of such point cloud.

65



5.2.1 SYSTEM OVERVIEW

The target hardware system is composed of a stereo camera, mechanical scanning
profiling Sonar, IMU, pressure sensor, and an on-board computer. This is part for
example of a custom-made sensor suite — which can be carried by divers as well as
can be mounted on a single or dual Diver Propulsion Vehicle (DPV) in [Rahman,
Quattrini Li, and Rekleitis 2018a] — or an AQUA2 AUV in [Dudek et al. 2005], which
have been used for underwater reconstruction. The hardware was designed with cave
mapping as the target application. As such, the sonar scanning plane is parallel to
the image plane which provides data at a maximum of 6 m range, scanning in a plane

over 360°, with angular resolution of 0.9°.

5.2.2 NOTATIONS AND STATES

The reference frames associated to each sensor and the world are denoted as C' for
Camera, I for IMU, S for Sonar, D for Depth, and W for World. Let us denote
xTy = [xRy|xpy] the homogeneous transformation matrix between two arbitrary
coordinate frames X and Y, where xRy represents the rotation matrix with corre-
sponding quaternion xqy and xpy denotes the position vector.

The state of the robot R is denoted as xp:
XRr = [Wp?aW q??W V?7bgTabaT]T (51)

It contains the position yp;, the quaternion y q;, the linear velocity wv;. All of
them are in the IMU reference frame I with respect to the world reference frame W'.
In addition, the gyroscopes and accelerometers bias b, and b, are also estimated and
stored in the state vector.

The corresponding error-state vector is defined in minimal coordinates, while the

perturbation takes place in the tangent space:
oxp = [0p",dq",6v",db,", ob," ] (5.2)
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5.2.3 TIGHTLY-COUPLED NON-LINEAR OPTIMIZATION PROBLEM

The cost function J(x) for the tightly-coupled non-linear optimization includes the

reprojection error e,, the IMU error e,, sonar error e;, and the depth error e,:

K
Z e,]k Pk Z’jk—i—Ze P
k=1jeJ(i,k)

||Mm

1k
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7
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f

with ¢ denoting the camera index — ¢ = 1 for left, : = 2 for right camera in a stereo
camera — and landmark index j observed in the k" camera frame. P*, P* P¥ and
P* denote the information matrix of visual landmarks, IMU, sonar range, and depth
measurement for the A" frame respectively.

The reprojection error describes the difference between a keypoint measurement
in camera coordinate frame C' and the corresponding landmark projection according
to the stereo projection model. The IMU error term combines all accelerometer and
gyroscope measurements by IMU pre-integration in [Forster et al. 2017a] between
successive camera measurements and represents the pose, speed and bias error between
the prediction based on previous and current states. Both reprojection error and IMU
error term follow the formulation by Leutenegger et. al.in [Leutenegger et al. 2015].

The sonar range error, introduced in the previous chapter [Rahman, Quattrini
Li, and Rekleitis 2018b], represents the difference between the 3D point that can be
derived from the range measurement and a corresponding visual feature in 3D.

The depth error term can be calculated as the difference between the rig position
along the z direction and the water depth measurement provided by a pressure sensor.
Depth values are extracted along the gravity direction which is aligned with the z
of the world W — observable due to the tightly coupled IMU integration. This can

correct the position of the robot along the z axis.
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Ceres Solver nonlinear optimization framework Agarwal, Mierle, et al. 2015 opti-

mizes J(x) then to estimate the state of the system.

5.2.4 FEATURE SELECTION AND 3D RECONSTRUCTION FROM STEREO CONTOUR

MATCHING

To ensure that the VIO system and the 3D reconstruction can be run in real-time
in parallel, we replaced the OKVIS feature detection method with the one described
in [Shi et al. 1994], which provides a short list of the most prominent features based
on the corner response function in the images. This reduces the computation in the
frontend tracking and, as shown in the results, retains the same accuracy with less

computational requirements.

Figure 5.2: Image in a cave and the detected contours.

We included a real-time stereo contour matching algorithm followed by an outlier
rejection mechanism to produce the point-cloud on the contour created by the light;
see Fig. 5.4c for an example of all the edge-features detected. The approach of Weidner
et. al in [Weidner et al. 2017] has been adapted for the contours from the intersection
of the cone of light with the cave wall; see Fig. 5.2 for the extracted contours from
an underwater cave. In particular, adaptive thresholding the images based on the
light and dark areas ensures that the illuminated areas are clearly defined. In our
current work, we also found that sampling from pixels which have rich gradient, e.g.,
edges provides better and denser point-cloud reconstructions. As such, both types
of edges — one marking the boundaries between the light and dark areas and the

other from visible cave walls — are used to reconstruct the 3-D map of the cave. The
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overview of the augmenting Stereo Contour Matching method in our tightly-coupled
Sonar-Visual-Inertial-Depth optimization framework is as follows.

For every frame in the local optimization window, a noisy edge map is created
from the edges described above, followed by a filtering process to discard short con-
tours by calculating their corresponding bounding boxes and only keeping the largest
third percentile. This method retains the highly defined continuous contours of the
surroundings while eliminating spurious false edges, thus allowing to use the pixels
on them as good features to be used in the reconstruction. In a stereo frame, for
every image point on the contour of the left image a BRISK feature descriptor is cal-
culated and matched against the right image searching along the epipolar line. Then
a sub-pixel accurate localization of the matching disparity is performed. Another
layer of filtering is done based on the grouping of the edge detector, i.e., keeping only
the consecutive points belonging to the same contour in a stereo pair. These stereo
contour matched features along with depth estimation is projected into 3-D which
are projected back for checking the reprojection error consistency resulting into a
point-cloud with very low reprojection error.

The reason behind choosing stereo matched contour features rather than tracking
them using a semi-direct method is to avoid any spurious edge detection due to light-
ing variation in consecutive images, which could lead to erroneous estimation or even
tracking failure. The performance of SVO in [Forster et al. 2017b], an open-source
state-of-the-art semi-direct method, in underwater datasets in [Quattrini Li et al.
2016; Joshi et al. 2019] validates this statement. In addition, though indirect feature
extractors and descriptors are invariant to photometric variations to some extent,
using a large number of features for tracking and thus using them for reconstruction

is unrealistic due to the computational complexity of maintaining them.
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5.2.5 LocAL BUNDLE ADJUSTMENT (BA) FOR CONTOUR FEATURES

In the current optimization window, a local BA is performed for all newly detected
stereo contour matched features and the keyframes they are observed in, to achieve
an optimal reconstruction. A joint non-linear optimization is performed for refining
kth keyframe pose WTCik and homogeneous landmark j in world coordinate W, y ¥ =
17, lyj , 1.7, 1,/] minimizing the cost function:

Jx) = 3 p(eM Prteit) (5.4)

jik

Hereby P?* denotes the information matrix of associated landmark measurement,
p is the Huber loss function to down-weight outliers. The reprojection error, e’*
for landmark j with matched keypoint measurement z;; in image coordinate in the

respective camera ¢ is defined as:
et = 2% —h(wTe wb) (5.5)

with camera projection model h;. We used Levenberg-Marquardt to solve local BA

problem which obtains a good estimation for the non-linear optimization system.

5.3 EXPERIMENTAL RESULT

The experimental data were collected using a custom made sensor suite in [Rahman,
Quattrini Li, and Rekleitis 2018a] consisting of a stereo camera, an IMU, a depth
sensor and a mechanical scanning Sonar, as described in Section 5.2.1. More specif-
ically, two USB-3 uEye cameras in a stereo configuration provide data at 15 Hz, an
IMAGENEX 831L mechanical scanning Sonar sensor acquires a full 360° scan every
four seconds; the Bluerobotics Bar30 pressure sensor provides depth data at 1 Hz; a
MicroStrain 3DM-GX4-15 IMU generates inertial data at 100 Hz; and an Intel NUC
running Linux and ROS consolidates all the data. A video light is attached to the

unit to provide artificial illumination of the scene. The Sonar is mounted on top of
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(b)

Figure 5.3: Partial trajectories generated by DSO. (a) Incorrect odometry and failing
to track just after a few seconds and (b) longer trajectory after starting at a place
with better illumination which also fails later on.

the main unit which contains the remaining electronics. In Fig. 5.6(a,b) the unit can
be seen deployed in two different modes: hand-held by a diver and mounted on a
Diver Propulsion Vehicle (DPV).

In the following, we present, first, preliminary experiments with DSO in [En-
gel, Koltun, and Cremers 2018] showing the problem with photometric consistency,
and, second, a qualitative result of the proposed approach in different underwater

environments.

5.3.1 COMPARISON WITH DSO

Fig. 5.3 shows the result of DSO in the underwater cave dataset in two different runs,
Fig. 5.3a and Fig. 5.3b. DSO did not track for the full length of cave, instead it
was able to keep track just for a small segment due to the variation of the light and
hence violating the photometric consistency assumption of a direct method. Also, the
initialization method is critical as it requires mainly translational movement and a
very small rotational change due to the fact that it is a pure monocular visual SLAM.
We ran DSO with different starting point of the dataset to have a better initialization,

the best one we got in Fig. 5.3b — eventually failed too because of the poor lighting.
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Figure 5.4: (a) Odometry using only a few strong features (green) for tracking. (b)
Scanning Sonar measurements (red) aligned along the trajectory. (c) Reconstruction
of the cave using the edges detected in the stereo contour points (gray).

5.3.2 ODOMETRY AND 3D CAVE-WALL RECONSTRUCTION

The ballroom at Ginnie Springs, FL, is a cavern open to divers with no cave-diving
training. It provides a safe locale to collect data in an underwater cave environment.
From entering the cavern at a depth of seven meters, the sensor was taken down
to fifteen meters, and then a closed loop trajectory was traversed three times. As
there is no ground truth available underwater, such as a motion capture system, we
validate our approach from the information collected by the divers during the data
collection procedure. The length of the trajectory produced by our method is 87
meters, consistent with the measure from the divers.

Fig. 5.4 shows the whole trajectory with the different point clouds generated by
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the features used for tracking, Sonar data, and stereo contour matching. Keeping
a small set of features for only tracking helps to run the whole system in real-time.
As shown in the figure, Sonar provides a set of sparse but robust points using range
and head__position information. Finally, the stereo contour matched point generates
a denser point-cloud to represent the cave environment. Fig. 5.5 highlights some
specific sections of the cavern, with the image and the corresponding reconstruction
— in gray, the points from the contours; in red the points from the Sonar. As it can
be observed, our proposed method enhances the reconstruction with a dense point

cloud; for example rocks and valleys are clearly visible in Fig. 5.5.

5.4 DISCUSSION

The proposed system improves the point cloud reconstruction and is able to perform
in real time even with additional capabilities. One of the lessons learned during
experimental activities is that the position of the light affects also the quality of
the reconstruction. In the next version of the sensor suite, we plan to mount the
dive light in a fixed position so that the cone of light can be predicted according to
the characteristics of the dive light. Furthermore, setting the maximum distance of
the Sonar according to the specific environment improves the range measurements
obtainable.

We are currently deploying the sensor suite either hand-held by a diver — see Fig.
5.6a — or mounted on a DPV — see 5.6b — in a variety of locations. Future plans are
to deploy the sensor suite on a dual DPV which will provide greater stability — see
Fig. 5.1 for preliminary tests. Furthermore, the sonar can be deployed on an AUV,
such as an Aqua2 in [Dudek et al. 2005] vehicle — see 5.6¢, for autonomous operations.
It is worth noting that the sensor suite utilizes the same hardware with an Aqua2

AUV for maximum compatibility.
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Figure 5.5: Stereo contour reconstruction results in (b), (d), (f) and the corresponding
images in (a), (c), (e) respectively.

74



(b)

Figure 5.6: Data collection approaches: (a) Diver holds the sensor swimming through
the cave. (b) Sensor suite mounted on a DPV. (¢) an Aqua 2 vehicle in [Dudek et al.
2005] with similar hardware carrying the scanning sonar collects data over a coral
reef.
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CHAPTER 6

CONCLUSIONS

As vision based stated estimation achieves a certain degree of maturity, more sensors
are being integrated. Extending the well studied problem of Visual Inertial integra-
tion, we introduce a new sensor, a mechanical scanning sonar, which returns range
measurements based on acoustic information. While the primary motivation of our
work has been the mapping of underwater caves in [Weidner et al. 2017], the tech-
nique was tested in different environments, including the a shipwreck at the clear
waters of Barbados, to artificial wrecks in the lakes of the Carolinas. A novel ap-
proach of merging sonar points with visual features is used to extend the pose graph
generated for applying a global nonlinear optimization. The integration of the range
data in the popular optimizer of Ceres in [Agarwal, Mierle, et al. 2015] resulted in
scale estimation improvements.

During the different experiments, it became clear that a minimum visibility and
clarity in the visual data is required for basic performance, however, the data used
degraded to a degree not often seen in VO or VIO approaches. Moreover, the use
of a strong video light while necessary in the cave environment, it requires careful
calibration of its position in order to not saturate the camera. Furthermore, differ-
ent surfaces resulted in different reflectance properties of the acoustic signal; we are
currently analyzing the sonar data to improve the quality.

Integration of multiple sensors will improve the quality of the estimation in addi-
tion to the density of the reconstruction. A variety of domains will be affected with

underwater archaeology and speleology being the primary areas. The resulting tech-
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nology will be integrated to existing AUVs and ROVs for improving their autonomous

capabilities.
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