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Abstract

Exploration of underwater environments with autonomous robots could assist us

in a variety of scenarios, ranging from historical studies to health monitoring of coral

reef; underwater infrastructure inspection e.g., bridges, hydroelectric dams, water

supply systems and oil rigs. Mapping underwater structures is important in several

fields, such as, marine archaeology, Search and Rescue (SaR), resource management,

hydrogeology, and speleology. However, due to the highly unstructured nature of such

environments, navigation by human divers could be extremely dangerous, tedious and

labor intensive. Hence, employing an underwater robot is an excellent fit to build the

map of the environment while simultaneously localizing itself in the map.

The contribution of this thesis is the design and development of a real-time robust

Simultaneous Localization and Mapping (SLAM) algorithm for underwater domain.

A novel tightly-coupled keyframe-based non-linear optimization framework with loop-

closing and relocalization capabilities fusing Sonar, Visual, Inertial and Depth infor-

mation has been presented. Introducing acoustic range information to aid the visual

data in underwater, shows improved reconstruction. The availability of depth infor-

mation from water pressure enables a robust initialization and refines the scale; as

well as assists to reduce the drift due to the tightly-coupled formulation. In addition,

we propose to augment the pipeline with magnetometer for a more accurate orienta-

tion estimation from the dead reckoning sensor. To address the denser reconstruction

of the surroundings in a low lighting conditions, a contour-based reconstruction ap-

proach utilizing the well defined edges between the well lit areas and darkness has

been developed. Furthermore, we propose a semi-direct sparse approach of recon-
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struction by jointly minimizing the photometric and reprojection error from direct

method and indirect method respectively where indirect method is used for accurate

tracking while high-gradient pixels help in reconstruction. Experimental results on

datasets collected with a custom-made underwater sensor suite and an autonomous

underwater vehicle (AUV) Aqua2 from challenging underwater environments with

poor visibility demonstrate performance never achieved before in terms of accuracy

and robustness.
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Chapter 1

Introduction

Exploring and mapping underwater environments such as caves, bridges, dams, and

shipwrecks, are extremely important tasks for the economy, conservation, and scien-

tific discoveries. Currently, most of the efforts are performed by divers that need to

take measurements manually using a grid and measuring tape, or using hand-held

sensors Henderson et al. 2013, and data is post-processed afterwards. Autonomous

Underwater Vehicles (AUVs) present unique opportunities to automate this process;

however, there are several open problems that still need to be addressed for reli-

able deployments, including real-time robust Simultaneous Localization and Mapping

(SLAM), the focus of this thesis.

Figure 1.1: Typical scene from an underwater cave.
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1.1 Motivation

The underwater environment presents unique challenges to vision-based state estima-

tion. In particular, suspended particulates, blurriness, and light and color attenuation

result in features that are not as clearly defined as above water. Consequently re-

sults from different vision-based state estimation packages show a significant number

of outliers resulting in inaccurate estimate or even complete tracking loss. Here we

present a comprehensive study of the performances of state-of-the-art open-source Vi-

sual and Visual-Inertial state estimation algorithms in underwater domain and draw

out the scope of improvements by introducing acoustic and pressure sensor.

1.1.1 Performances of state-of-the-art Visual and Visual-Inertial State

Estimation Algorithms in Underwater

We have considered ten state estimation packages which are characterised by the

following:

• number of cameras, e.g., monocular, stereo, or more rarely multiple cameras;

• the presence of an IMU ;

• direct vs. indirect (feature-based) methods;

• loosely vs. tightly-coupled optimization when multiple sensors are used – e.g.,

camera and IMU;

• the presence of a loop closing mechanism.

Table 1.1 lists the methods evaluated and their properties.

Datasets

Most of the standard benchmark datasets represent only a single scenario, such as a

lab space (e.g. [Sturm et al. 2012; Burri et al. 2016]), or a urban environment (e.g.
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Kitti in [Geiger et al. 2013]), and with good visual quality. The limited nature of

the public datasets is one of the primary motivations to evaluate these packages with

datasets collected by our lab over the years in more challenging environments, such

as underwater.

In particular, the datasets used can be categorized according to the robotic plat-

form used:

• Underwater sensor suite operated by a diver around a sunken bus (Fantasy

Lake, North Carolina) – see Fig. 1.2(a),(b) – and inside an underwater cave

(Ginnie Springs, Florida); see Fig. 1.2(c). The custom-made underwater sensor

suite is equipped with an IMU operating at 100 Hz (MicroStrain 3DM-GX15)

and a stereo camera running at 15 fps, 1600× 1200 (IDS UI-3251LE).

• Underwater sensor suite mounted on an Diver Propulsion Vehicle (DPV). Data

collected over the coral reefs of Barbados; see Fig. 1.2(d).

• Aqua2 Autonomous Underwater Vehicle (AUV) over a coral reef (Fig. 1.2(e))

and an underwater structure (Lake Jocassee, South Carolina) (Fig. 1.2(f)), with

the same setup as the underwater sensor suite.

The overall performance of the tested packages is discussed next. LSD-SLAM

in [Engel, Schöps, and Cremers 2014], REBiVO in [Tarrio and Pedre 2017], and

Table 1.1: Summary of characteristics for evaluated methods.
Method Camera IMU Indirect/ (L)oosely/ Loop

Direct (T)ightly Closure
LSD-SLAM Engel, Schöps, and Cremers 2014 mono no direct N/A yes
DSO Engel, Koltun, and Cremers 2018 mono no direct N/A no
SVO Forster et al. 2017b multi optional semi-direct N/A no
ORB-SLAM2 Mur-Artal, Montiel, and Juan D. Tardós 2015a mono, stereo no indirect N/A yes
REBiVO Tarrio and Pedre 2017 mono optional indirect L no
Mono-MSCKF Research group of Prof. Kostas Daniilidis 2018 mono yes indirect T no
Stereo-MSCKF Sun et al. 2018 stereo yes indirect T no
ROVIO Bloesch et al. 2017 multi yes direct T no
OKVIS Leutenegger et al. 2015 multi yes indirect T no
VINS-Mono Qin, Li, and Shen 2018 mono yes indirect T yes
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(a) (b)

(c) (d)

(e) (f)

Figure 1.2: Sample images from the evaluated datasets. (a) UW sensor suite outside
a sunken bus (NC); (b) UW sensor suite inside a sunken bus (NC); (c) UW sensor
suite inside a cave (FL); (d) UW sensor suite mounted on a Diver Propulsion Vehicle
(DPV) over a coral reef; (e) Aqua2 AUV over a coral reef; (f) AUV over a fake
cemetery (SC).

Monocular SVO were unable to produce any consistent results, as such, they were

excluded from Table 1.2.

DSO in [Engel, Koltun, and Cremers 2018] requires full photometric calibration

accounting for the exposure time, lens vignetting and non-linear gamma response

function for best performance. Even without photometric calibration, it worked well

4



Monocular Monocular + IMU Stereo Stereo + IMU

ds
o

or
bs
la
m

or
bs
la
m
lc

m
sc
kf

ok
vi
s

ro
vi
o

sv
o

vi
ns
m
on

o

vi
ns
m
on

ol
c

or
bs
la
m

or
bs
la
m
lc

sv
o

ok
vi
s

sv
o

st
er
eo
m
sc
kf

Bus/Out
Cave
Aqua2Lake
Bus/In
DPV
Aqua2Reef

Table 1.2: Performance of the different open source packages. Datasets: UW sensor
suite outside a sunken bus (Bus/Out); UW sensor suite inside a cave (Cave); Aqua2
(AUV) over a fake cemetery (Aqua2Lake) at Lake Jocassee; UW sensor suite inside a
sunken bus (Bus/In); UW sensor suite mounted on a Diver Propulsion Vehicle over a
coral reef (DPV); Aqua2 AUV over a coral reef (Aqua2Reef). Qualitative analysis:
the color chart legend is: red–failure; orange–partial failure; yellow–partial success;
green-success.

on areas having high intensity gradients and when subjected to large rotation. In

addition, it provided excellent reconstructions; however, in the areas with low gradient

images, it was able to spatially track the motion only for a few seconds. Some scale

change was also observed due to being monocular. DSO requires more computational

power and memory usage compared to the other packages, which is justifiable since

it uses direct method for visual odometry.

SVO 2.0 in [Forster et al. 2017b] was able to track the camera pose over long

trajectories, even in parts with few features. It tracks features using the direct method

by creating a depth scene. In case of low gradient images, it was subject to depth

scale changes, which was predominant in mono camera where tracking failed. SVO

in stereo mode without inertial measurements was able to track most of the time but

was subject to rotation errors. SVO stereo with IMU was able to keep track most of

the time generating a good trajectory estimate.

ORB-SLAM2 in [Mur-Artal, Montiel, and Juan D. Tardós 2015a] mono could not
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initialize in both datasets collected of the sunken bus (Bus/In, Bus/Out). ORB-

SLAM2 works fine in the other datasets, but loses track in some cases when running

it without loop closure. With loop closure, even if the track is lost, loops can be

detected and the robot can relocalize. This makes ORB-SLAM2 more robust to

track loss.

Mono-MSCKF in [Research group of Prof. Kostas Daniilidis 2018] performed well

when the AUV or sensor suite were standing still so that the IMU could properly

initialize, otherwise it did not track. Moreover, it was among the most efficient in

terms of CPU and memory usage.

ROVIO in [Bloesch et al. 2017] is one of the most efficient packages tested. Its

overall performance was robust on most datasets even when just a few good features

were tracked. On the Aqua2Reef dataset though, not enough features were visible

and thus it could not track the trajectory.

OKVIS in [Leutenegger et al. 2015] provided good results for both monocular and

stereo. In Bus/Out, despite the haze and low-contrast, OKVIS was able to detect

good features and track them successfully. Also in Cave, it kept track successfully

and produced accurate trajectory even in the presence of low illumination.

VINS-Mono in [Qin, Li, and Shen 2018] works well in good illumination where

there are good features to track. It was one of the few packages that worked success-

fully in the underwater domain. In the case of Aqua2Reef, it cannot detect and track

enough features and diverges. With the loop-closure module enabled, VINS-Mono

reduces the drift accumulated over time in the pose estimate and produces a globally

consistent trajectory.

Stereo-MSCKF in [Sun et al. 2018] uses the Observability Constrained EKF (OC-

EKF) in [Hesch et al. 2012], which does not heavily depend on an accurate initial

estimation. Also, the camera poses in the state vector can be represented with respect

to the inertial frame instead of the latest IMU frame so that the uncertainty of
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the existing camera states in the state vector is not affected by the uncertainty of

the latest IMU state during the propagation step. As a result, Stereo-MSCKF can

initialize well enough even without a perfect stand still period. It uses the first 200

IMU measurements for initialization and is recommended to not have fast motion

during this period. Stereo-MSCKF worked acceptably well in most datasets except

Aqua2Reef and DPV. The Stereo-MSCKF cannot initialize well over the coral reef

due to the fast motion from the start and the low number of feature points. On the

DPV dataset, it diverges after one-fourth time is completed.

1.1.2 Discussion

Underwater state estimation has many open challenges, including visibility, color at-

tenuation Skaff, Clark, and Rekleitis 2008, floating particulates, blurriness, varying

illumination, and lack of features Oliver, Hou, and Wang 2010. Indeed, in some un-

derwater environments, there is a very low visibility that prevents seeing objects that

are only a few meters away. This can be observed for example in Bus/Out, where

the back of the submerged bus is not clearly visible. Such challenges make underwa-

ter localization very challenging, leaving an interesting gap to be investigated in the

current state of the art. In addition, light attenuates with depth, with different wave-

lengths of the ambient light being absorbed very quickly – e.g., the red wavelength

is almost completely absorbed at 5 m. This results in a change in appearance of the

image, which will affect feature tracking, even in grayscale.

The appearance of color underwater is different than above, including the color

loss with depth. There is a concern when most color shifts to blue, there is a loss

of sharpness, which further degrades performance. This will be a venue for further

research in the future, in order to investigate the effect of any color restoration to the

state estimation process.

From the experimental results it was clear that direct VO approaches are not
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robust as there are often no discernible features. As such DSO and SVO, quite often

fail to track the complete trajectory, however, they had the best reconstructions for

the tracked parts. Similar approaches that depend on the existence of a specific

feature, such as edges, are not appropriate in underwater environments in general.

Overall, as expected, stereo performed better than monocular, the introduction to

loop closure enabled the VO/VIO packages to track for longer periods of time, and

the introduction of inertial data improved the scale estimations.

1.2 Challenges in Underwater

Underwater environments suffer from poor visibility, light and color attenuation. In

addition to that, floating particulates, haze, and varying illumination make vision-

based state estimation almost impossible to work.

Navigation and mapping around underwater structures is very challenging; target

domains include wrecks (ships, planes, and buses); underwater structures such as

bridges and dams; and underwater caves. One of the primary motivations of this

work is the mapping of underwater caves where exploration by human divers is an

extremely dangerous operation due to the harsh environment. Figure 1.1 shows a

typical cave segment. In addition to underwater vision constraints–e.g., light and

color attenuation–cave environments suffer from the absence of natural illumination.

Currently, for surveying of newly explored area, divers manually measure distances,

using a cave-line with knots every 3 m between attachment points. Simultaneously,

the divers also measure the water depth at each attachment point, as well as the

azimuth of the line leading to the next attachment point. This process is error-prone

and time consuming, and at greater depths results in significant decompression times,

where total dive time can reach between 15 to 28 hours per dive. Therefore, employing

robotic technology to map the cave would reduce the cognitive load of divers.

The importance of underwater cave mapping spans several fields. First, it is crucial
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in monitoring and tracking groundwater flows in karstic aquifers. According to Ford

and Williams [Ford and P. W. Williams 1994] 25% of the world’s population relies on

karst water resources. Our work is motivated by the Woodville Karst Plain (WKP)

which is a geomorphic region that extends from Central Leon County around the “Big

Bend” of Florida [Lane 2001]. Due to the significance of WKP, the Woodville Karst

Plain Project (WKPP) has explored more than 34 miles of cave systems in Florida

since 1987 [C. McKinlay 2015], proving the cave system to be the longest in USA

[Gulden 2015]. This region is an important source of drinking water and is also a sen-

sitive and vulnerable ecosystem. There is much to learn from studying the dynamics

of the water flowing through these caves. Volumetric modeling of these caves will give

researchers a better perspective about their size, structure, and connectivity. These

models have even greater importance than simply enhancing the mapping. Under-

standing the volume of the conduits and how that volume increases and decreases

over space is a critical component to characterizing the volume of flow through the

conduit system. Current measurements are limited to point-flow velocities of the

cave metering system and a cross-sectional volume at that particular point. The pro-

posed approach results in 3-D reconstructions which will give researchers the above

described capabilities. Furthermore, volumetric models, will be incredibly helpful for

those involved with environmental and agricultural studies throughout the area, and

once perfected this technology could help map other subterranean water systems, as

well as any 3-D environment that is difficult to map. The Woodville Karst Plain area

is sensitive to seawater intrusions which threaten the agriculture and the availability

of drinking water; for more details see the recent work by Zexuan et al. [Xu et al.

2016]. Second, detailed 3-D representations of underwater caves will provide insights

to the hydrogeological processes that formed the caves. Finally, because several cave

systems contain historical records dating to the prehistoric times, producing accurate

maps will be valuable to underwater archaeologists.
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1.3 Contributions

The focus of this thesis is the robust tightly-coupled formulation of an underwater

SLAM system combining acoustic data from Sonar; stereo vision; angular velocity

and linear acceleration from IMU; and depth data from water pressure measurement.

A robust SLAM system combining Sonar, Visual, Inertial and Depth

information. We propose a tightly-coupled keyframe based SLAM system fusing

Sonar, Visual, Inertial and Depth information in a non-linear optimization-based

framework for underwater domain. The underwater domain presents unique chal-

lenges in the quality of the visual data available; as such, augmenting the exterocep-

tive sensing with acoustic range data results in improved reconstructions of the un-

derwater structures. Depth data from water pressure measurement enables to bound

the localization error. To address drift and loss of localization – one of the main prob-

lems affecting other packages in underwater domain – a robust initialization method

to refine scale using depth measurements, a fast preprocessing step to enhance the

image quality, and a real-time loop-closing and relocalization method using bag of

words (BoW) have been provided. Lastly we propose to augment our SVIn2 pipeline

with magnetometer which would provide accurate heading information and thus assist

in achieving robust dead-reckoning pose estimation from IMU. An ablation study to

understand the contribution of each sensor in state estimation will also be reported.

To validate the robustness and accuracy of our approach, we deployed an autonomous

underwater vehicle (AUV) Aqua2 running our method on-board. Further datasets

were collected with a custom-made underwater sensor suite both on hand-held mode

while diving and deploying with a Diver Propulsion Vehicle (DPV). Experimental

results from underwater wrecks, an underwater cave, fake underwater cemetery, over

coral reef, and a submerged bus demonstrate the performance of our approach.

A contour-based reconstruction of underwater environment. Another

contribution is contour-based real-time reconstruction of an underwater environment
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using Sonar, Visual, Inertial, and Depth data. In particular, low lighting conditions,

or even complete absence of natural light inside caves, results in strong lighting varia-

tions, e.g., the cone of the artificial video light intersecting underwater structures, and

the shadow contours. The proposed method utilizes the well defined edges between

well lit areas and darkness to provide additional features, resulting into a denser 3D

point cloud than the usual point clouds from a Visual SLAM system. Experimental

results in an underwater cave at Ginnie Springs, FL, with a custom-made underwa-

ter sensor suite demonstrate the performance of our system. This will enable more

robust navigation of AUVs using the denser 3D point cloud to detect obstacles and

achieve higher resolution reconstructions.

A semi-direct sparse reconstruction. Lastly, to take another step ahead from

contour based reconstruction, we propose a semi-dense reconstruction to achieve a

denser map of the environment along with robust odometry in real-time. Direct

methods provide promising reconstruction, but due to the brightness consistency

assumption, they often fail to track in challenging low-contrast environment. Hence,

combining direct method and feature-based method could benefit each other – i.e.,

achieving a denser reconstruction from the gradient-rich pixels on the contour using

direct method and tracking based on the feature based method – by jointly minimizing

the photometric error and reprojection error.
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Chapter 2

Related Work
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2.1 Acoustic Sensor based Underwater Navigation

Sonar based underwater SLAM and navigation systems have been exploited for many

years. Folkesson et al. in [Folkesson et al. 2007] used a blazed array sonar for real-time

feature tracking. A feature reacquisition system with a low-cost sonar and navigation

sensors was described in in [Fallon et al. 2013]. More recently, Sunfish in [Richmond

et al. 2018] – an underwater SLAM system using a multibeam sonar, an underwater

dead-reckoning system based on a fiber-optic gyroscope (FOG) IMU, acoustic DVL,

and pressure-depth sensors – has been developed for autonomous cave exploration.

Vision and visual-inertial based SLAM systems also developed in in [Salvi et al. 2008;

Beall et al. 2011; Shkurti et al. 2011] for underwater reconstruction and navigation.

Most of the underwater navigation algorithms in [Leonard and Durrant-Whyte

2012], in [Lee et al. 2005], in [Snyder 2010], in [Johannsson et al. 2010], in [Rigby,

Pizarro, and S. B. Williams 2006 are based on acoustic sensors such as DVL, USBL,

and sonar. Nevertheless, collecting data using DVL, sonar, and USBL while diving

is expensive and sometimes not suitable in challenging underwater environment, e.g.,

cave. Corke et al. in [Corke et al. 2007] compared acoustic and visual methods for

underwater localization showing the viability of using visual methods underwater in

some scenarios.

2.1.1 Underwater Cave Exploration

Visual odometry in underwater cave environment is a challenging problem due to the

lack of natural light illumination and dynamic obstacles in addition to the underwater

vision constraints i.e. light and color attenuation. There are not many works for

mapping and localization in an underwater cave.

Robotic exploration of underwater caves is at its infancy. One of the first attempts

was to explore a Cenote, a vertical shaft filled with water in [Gary et al. 2008], by

the vehicle DEPTHX (DEep Phreatic THermal eXplorer) in [Stone 2007] designed
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by Stone Aerospace in [Stone Aerospace 2015], equipped with LIDAR and sonar.

More recently, Mallios demonstrated the first results of an Autonomous Underwater

Vehicle (AUV) performing limited penetration, inside a cave [Mallios et al. 2016].

The main sensor used for SLAM is a horizontally mounted scanning sonar. A robotic

fish was proposed for discovering underwater cave entrances based on vision and

perform visual servoing, with experiments restricted to a swimming pool in [Chen

and Yu 2014]. More recently, Sunfish in [Richmond et al. 2018] – an underwater

SLAM system using a multibeam sonar, an underwater dead-reckoning system based

on a fiber-optic gyroscope (FOG) IMU, acoustic DVL, and pressure-depth sensors –

has been developed for autonomous cave exploration. The design of the sensor suite

we use is driven by portability requirements that divers have in [Rahman, Quattrini

Li, and Rekleitis 2018a], not permitting the use of some sensors, such as multibeam

sonar or DVL.

2.2 Pure Visual Odometry (VO)

The literature presents many vision-based state estimation techniques, which use

either monocular or stereo cameras and that are indirect (feature-based), direct, or

semi-direct methods. For example, MonoSLAM in [Davison et al. 2007], PTAM

in [Klein and Murray 2007], and ORB-SLAM in [Mur-Artal, Montiel, and Juan D.

Tardós 2015b] are feature-based, LSD-SLAM in [Engel, Schöps, and Cremers 2014],

and DSO in [Engel, Koltun, and Cremers 2018] are direct, and SVO in [Forster et al.

2017b] is semi-direct.

2.2.1 Direct Method

Direct methods compare the intensity values in the image and optimize the photo-

metric error

Recently, direct methods (e.g., LSD-SLAM in [Engel, Schöps, and Cremers 2014],
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DSO in [Engel, Koltun, and Cremers 2018]) and semi-direct method (SVO in [Forster

et al. 2017b]) based SLAM systems show promising performance in 3-D reconstruc-

tion of large-scale map in real time, as well as accurate pose estimation based on

direct image alignment. However, theses methods are sensitive to brightness consis-

tency assumption which limits the baseline of the matches and in low visibility with

small contrast environment like underwater, often result into tracking loss in [Joshi

et al. 2019]. In addition, direct method suffers in presence of strong geometric noise,

such as rolling shutter. For good reconstruction, they require perfect photometric

calibration for modeling gain and exposure. DSO in [Engel, Koltun, and Cremers

2018] shows an improvement in performance providing a full photometric calibration

that accounts for lens attenuation, gamma correction, and known exposure times. In

purely monocular vision based direct SLAM, like DSO, the initialization is slow and

requires very small rotational change.

2.2.2 Semi-direct Method

Semi-Direct Visual Odometry, e.g., SVO [Forster et al. 2017b] relies on direct method

for tracking and triangulating pixels with high image gradients and a feature-based

method for jointly optimizing structure and motion. It uses the IMU prior for image

alignment and can be generalized to multi-camera systems.

2.2.3 Indirect Method

Feature-based methods pre-process images to find corners and establish correspon-

dences, then optimize the geometric error.

PTAM [Klein and Murray 2007] is one of the early SLAM approaches which pro-

posed to split the tracking and mapping process for a small AR workspace without

any prior knowledge of the scene. MonoSLAM [Davison et al. 2007] is a monoc-

ular vision based real-time SLAM approach which includes an active approach to
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mapping and measurement, a general motion model for smooth camera movement,

and solutions for monocular feature initialization and feature orientation estimation.

Currently ORB-SLAM [Mur-Artal, Montiel, and Juan D. Tardós 2015b] is one of

the most reliable vision-based SLAM systems with loop-closing and relocalization

capabilities.

2.3 Vision combined with other sensors

2.3.1 Visual-Inertial Odometry (VIO)

In the following, we highlight some of the state estimation systems which use visual-

inertial measurements and feature-based method.

To improve the pose estimate, vision-based state estimation techniques have been

augmented with IMU sensors, whose data is fused together with visual information.

A class of approaches is based on the Kalman Filter, e.g., Multi-State Constraint

Kalman Filter (MSCKF) in [Mourikis and Roumeliotis 2007] and its stereo exten-

sion in [Sun et al. 2018]; ROVIO in [Bloesch et al. 2017]; REBiVO in [Tarrio and

Pedre 2017]. The other spectrum of methods optimizes the sensor states, possibly

within a window, formulating the problem as a graph optimization problem. For

feature-based visual-inertial systems, as in OKVIS in [Leutenegger et al. 2015] and

Visual-Inertial ORB-SLAM in [Mur-Artal and Juan D Tardós 2017], the optimiza-

tion function includes the IMU error term and the reprojection error. The frontend

tracking mechanism maintains a local map of features in a marginalization window

which are never used again once out of the window. VINS-Mono in [Qin, Li, and

Shen 2018] uses a similar approach and maintains a minimum number of features for

each image and existing features are tracked by Kanade-Lucas-Tomasi (KLT) sparse

optical flow algorithm in local window. Delmerico and Scaramuzza in [Delmerico and

Scaramuzza 2018] did a comprehensive comparison specifically monitoring resource

usage by the different methods. While KLT sparse features allows VINS-Mono run-
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ning in real-time on low-cost embedded systems, often results into tracking failure

in challenging environments, e.g., underwater environments with low visibility. In

addition, for loop detection additional features and their descriptors are needed to be

computed for keyframes.

To avoid scale ambiguity in monocular system, stereo camera pairs are used. Os-

kiper et al. in [Oskiper et al. 2007] proposed a real-time VO using two pairs of

backward and forward looking stereo cameras and an IMU in GPS denied environ-

ments. Howard in [Howard 2008] presented a real-time stereo VO for autonomous

ground vehicles. This approach is based on inlier detection— i.e., using a rigid-

ity constraint on the 3D location of features before computing the motion estimate

between frames. Konolige et al. in [Konolige, Agrawal, and Sola 2010] presented a

real-time large scale VO on rough outdoor terrain integrating stereo images with IMU

measurements. Kitt et al. in [Kitt, Geiger, and Lategahn 2010] presented a visual

odometry based only on stereo images using the trifocal geometry between image

triples and a RANSAC based outlier rejection scheme. Their method requires only a

known camera geometry where no rectification is needed for the images. Badino et

al. in [Badino, Yamamoto, and Kanade 2013] proposed a new technique for improved

motion estimation by using the whole history of tracked features for real-time stereo

VO.

2.4 Visual or Visual-Inertial SLAM with Loop-Closing

Loop closure – the capability of recognizing a place that was seen before – is an impor-

tant component to mitigate the drift of the state estimate. FAB-MAP in [Cummins

and Newman 2008; Cummins and Newman 2011] is an appearance-based method to

recognize places in a probabilistic framework. ORB-SLAM in [Mur-Artal, Montiel,

and Juan D. Tardós 2015b] and its extension with IMU in [Mur-Artal and Juan D

Tardós 2017] use bag-of-words (BoW) for loop closure and relocalization. VINS-Mono
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also uses a BoW approach.

Note that all visual-inertial state estimation systems require a proper initializa-

tion. VINS-Mono uses a loosely-coupled sensor fusion method to align monocular

vision with inertial measurement for estimator initialization. ORB-SLAM with IMU

in [Mur-Artal and Juan D Tardós 2017] performs initialization by first running a

monocular SLAM to observe the pose first and then, IMU biases are also estimated.

Given the modularity of OKVIS for adding new sensors and robustness in track-

ing in underwater environment – we fused sonar data in previous work in [Rahman,

Quattrini Li, and Rekleitis 2018b] – we extend OKVIS to include also depth esti-

mate, loop closure capabilities, and a more robust initialization to specifically target

underwater environments.

2.5 Structure-from-Motion (SfM)

Structure-from-Motion (SfM) from unstructured collections of photographs to build

the 3-D model of the scene has been addressed in different solutions, Bundler in

[Snavely, Seitz, and Szeliski 2006] and VisualSFM in [C. Wu 2013]. They provided

algorithmic analysis to improve computational complexity and performance accuracy.

COLMAP in [Schonberger and Frahm 2016] proposes a SfM algorithm to improve on

the state-of-the-art incremental SfM methods for 3D reconstruction from unordered

image collections. They provide scene graph augmentation, a next best view selection

mechanism, and an efficient triangulation and Bundle Adjustment (BA) technique.

COLMAP outperforms state-of-the-art SfM system on benchmark datasets with a

large number of photos from Internet with varying camera density and distributed

over large area.
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2.6 Multiview Stereo (MVS)

Multiview Stereo (MVS) is another well known method for reconstruction. Merrell

in [Merrell et al. 2007] presented a viewpoint-based approach to fuse multiple stereo

depth maps for reconstructing 3-D shape from video. By decoupling the processing

into two stages, they are able to run large-scale reconstruction in real-time using a

GPU implementation for efficient computation. The computational power available

on board of the robot is very limited, making the deployment of bundle adjustment

based methods not feasible on the robot.

2.7 Vision-based Underwater Navigation

Exploiting SLAM techniques in underwater environment is a difficult task due to the

highly unstructured nature. Salvi et al. in [Salvi et al. 2008] implemented a real-time

EKF-SLAM incorporating a sparsely distributed robust feature selection and 6-DOF

pose estimation using only calibrated stereo cameras. Johnson et al. in [Johnson-

Roberson et al. 2010] proposed an idea to generate 3D model of the seafloor from

stereo images. Beall et al. in [Beall et al. 2011] presented an accurate 3D recon-

struction on a large-scale underwater dataset by performing bundle adjustment over

all cameras and a subset of features rather than using a traditional filtering tech-

nique. A stereo SLAM framework named selective SLAM (SSLAM) for autonomous

underwater vehicle localization was proposed in in [Bellavia, Fanfani, and Colombo

2015].

Vision is often combined with IMU and other sensors in underwater domain for

improved estimation of pose. Hogue et al. in [Hogue, German, and Jenkin 2007] used

stereo and IMU for underwater reconstruction. Stereo and IMU were used for VO in in

[Hildebrandt and Kirchner 2010] and in [Wirth, Carrasco, and Codina 2013]. Sáez et

al. in [Sáez et al. 2006] proposed a 6DOF Entropy Minimization SLAM to create dense
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3D visual maps of underwater environments using a dense 3D stereo-vision system

and IMU; it is an offline method. Shkurti et al. in [Shkurti et al. 2011] proposed

a state estimation algorithm for underwater robot by combining information from

monocular camera, IMU, and pressure sensor based on the multi-state constrained

Kalman filter in [Mourikis and Roumeliotis 2007] .
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Chapter 3

A Modular Sensor Suite for Underwater

Reconstruction
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3.1 Introduction

Localization and mapping in underwater environments is an important problem, com-

mon in many fields such as marine archeology, search and rescue, resource man-

agement, hydro-geology, and speleology. Target environments include, but are not

limited to wrecks (ships/boats, planes, and buses), underwater structures (bridges,

docks, and dams), and underwater caves in [Weidner et al. 2017; Mallios et al. 2017;

Stone 2007; Gary et al. 2008]. Underwater environments present a huge challenge for

vision-only mapping and navigation systems, making the deployment of autonomous

underwater vehicles still an open problem. Light and color attenuation, due to the

presence of particulates in the water, often combined with the complete absence of

natural light, present major challenges. The combination of Visual and Inertial data

has gain popularity with several proposed methods for fusing the two measurements

in [Mourikis and Roumeliotis 2007; Jones and Soatto 2011; Kelly and Sukhatme

2011; Leutenegger et al. 2015]. In addition, most of the state-of-the-art visual or

visual-inertial odometry algorithms have been shown to fail in underwater environ-

ments in [Quattrini Li et al. 2016]. However, vision still remains an accessible, easily

interpretable sensor. On the other hand, the majority of underwater sensing for local-

ization is based on acoustic sensors, such as ultrashort baseline (USBL) and Doppler

Velocity Logger (DVL). Unfortunately, such sensors are usually expensive and could

possibly disturb divers and/or the environment.

This paper presents the design, development, and deployment of an underwa-

ter sensor suite to be operated by human divers. The literature mainly focuses on

AUVs and Autonomous Surface Vehicles (ASVs), and a body of work studies the

Simultaneous Mapping and Localization (SLAM) problem and oceanographic recon-

struction. Leedekerken et al. in [Leedekerken, Fallon, and Leonard 2014] presented

an Autonomous Surface Craft (ASC) for concurrent mapping both above and below

the water surface in large scale marine environments using a surface craft equipped
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Figure 3.1: Our proposed underwater sensor suite mounted on a dual Diver Propulsion
Vehicle (DPV), where a stability check was performed at Blue Grotto, FL.

with imaging sonar for subsurface perception and LIDAR, camera, and radar for

perception above the surface.

Folaga in [Alvarez et al. 2005, a low cost AUV, can navigate on the sea surface

and dive only at selected geographical points when measurements are needed. Ro-

man et al. in [Roman et al. 2000] proposed an AUV equipped with camera and

pencil beam sonar for applications including underwater photo-mosaicking, 3D image

reconstruction, mapping, and navigation. AQUA in [Dudek et al. 2005], a visually

guided legged swimming robot uses vision to navigate underwater and the target ap-

plication areas are environmental assessment in [Hogue, German, and Jenkin 2007

and longitudinal analysis of coral reef environments in [Giguere et al. 2009]. Our

aim is to accelerate state estimation research in the underwater domain that can be

eventually deployed robustly in autonomous underwater vehicles (AUV) by enabling

easy data collection by human divers. In particular, a specific target application is

cave mapping, where the diving community has protocols in place for exploring and

mapping such dangerous environments. The primary design goal of the proposed

underwater sensor suite is to reduce the cognitive load of human divers by employing

robotic technologies to map underwater structures. A second design goal is to enable

software interoperability between different platforms, including AUVs. In particular,
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the sensor suite presented in this paper contains identical sensors with an Aqua2

AUV in [Dudek et al. 2005], and can be deployed in different modes, hand-held by

a diver, mounted on a single Diver Propulsion Vehicle (DPV), or on a dual DPV

for better stability; see Fig. 3.1. The selected sensors include a mechanical scanning

sonar, which provides robust range information about the presence of obstacles. Such

a design choice improves the scale estimation by fusing acoustic range data into the

visual-inertial framework in [Rahman, Quattrini Li, and Rekleitis 2018b].

The chapter is structured as follows. The next section outlines the design layout

of hardware and software, deployment strategies, and the two versions of the sensor

suite. The chapter concludes with a discussion on lessons learned and directions of

future work.

3.2 Sensor Suite Design

The sensor suite hardware has been designed with underwater cave mapping in [Wei-

dner et al. 2017 as the target application to be used by divers during cave exploration

operations. In general, it can be used for mapping a variety of underwater structures

and objects. In the following, the main requirements, hardware, and software compo-

nents, are presented. Note that the full documentation for building and maintaining

the hardware, as well as the necessary software can be found on our lab wiki page

Autonomous Field Robotics Lab 2018.

3.2.1 Requirements

Given that the sensor suite will be primarily used by divers who are not necessarily

engineers or computer scientists, the following requirements drive the hardware and

software design of the proposed sensor suite:

• Portable.
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• Neutrally buoyant.

• Hand-held or DPV deployment.

• Simple to operate.

• Waterproof to technical-diver operational depths.

Furthermore, the following desiderata are considered to make research in state

estimation applied to the proposed sensor suite easily portable to other platforms,

such as AUVs and ASVs:

• Standardization of hardware and software.

• Easy data storing.

• Low cost.

3.2.2 Hardware Design

In this section, the electronics selected and the designed enclosure are discussed,

together with lessons learned during the construction of the proposed sensor suite.

Electronics

To assist vision-based state estimation, we employ an Inertial Measurement Unit

(IMU), a depth, and an acoustic sensor for accurate state estimation in underwater

environments. The specific sensors and electronics of the sensor suite were selected for

compatibility with the Aqua2 Autonomous Underwater Vehicles (AUVs) in [Dudek

et al. 2005. Figure 3.2 shows the computer and internal sensors on a Plexiglas plate,

where the different electronic boards were placed optimizing the space to reduce the

size of the sensor suite. In particular, the electronics consists of:

• two IDS UI-3251LE cameras in a stereo configuration,
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Figure 3.2: The Main Unit containing stereo camera, IMU, Intel NUC, and Pressure
sensor.

• Microstrain 3DM-GX4-15 IMU,

• Bluerobotics Bar30 pressure sensor,

• Intel NUC as the computing unit,

• IMAGENEX 831L Sonar.
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(a) (b) (c)

Figure 3.3: (a) First version of the stereo vision setup, where the two cameras are
mounted externally to the main unit. (b) Second version of the sensor suite, where
the stereo camera is inside the main unit. (c) Second version where the sensor suite
is mounted on a DPV.

The two cameras are synchronized via a TinyLily, an Arduino-compatible board,

and are capable of capturing images of 1600 × 1200 resolution at 20 Hz. The sonar

provides range measurement with maximum range of 6 m distance, scanning in a plane

over 360◦, with angular resolution of 0.9◦. A complete scan at 6 m takes 4 s. Note that

the sonar provides for each measurement (point) 255 intensity values, that is 6/255 m

is the distance between each returned intensity value. Clearly, higher response means

a more likely presence of an obstacle. Sediment on the floor, porous material, and

multiple reflections result in a multi-modal distribution of intensities. The IMU

produces linear accelerations and angular velocities in three axis at a frequency of

100 Hz. Finally, the depth sensor produces depth measurements at 1 Hz. To enable

the easy processing of data, the Robot Operating System (ROS) framework in [ros

has been utilized for the sensor drivers and for recording timestamped data.

A 5 inch LED display has been added to provide visual feedback to the diver

together with a system based on AR tags is used for changing parameters and to

start/stop the recording underwater in [X. Wu et al. 2015 (see Section 3.2.3).

Enclosure

The enclosure for the electronics has been designed to ensure ease of operations by

divers and waterproofness up to 100 m. In particular, two different designs were
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tested. Both of them are characterized by the presence of handles for hand-held

operations. The handles have been chosen so that a dive light can be easily added

using a set of articulated arms. Note that all enclosures are sealed with proper o-

rings/gaskets (details are reported in the linked documentation).

In the first design (see Fig. 3.3(a)) the main unit, a square shaped aluminum

box – composed of two parts tighten together by screws – contained the computer,

sensors, and other related electronics. The two cameras were sealed in aluminum

tubes with tempered glass in front of the camera lenses. The stereo camera and

display were mounted on the top of the main unit whereas the sonar was on the bottom

of it. Both the cameras and sonar were connected to the main unit by underwater

cables. The rationale behind such a design was to allow for an adjustable stereo

baseline. Unfortunately, the USB 3.0 interfacing standard used by the cameras is not

compatible with the underwater cables available in the market, resulting in highly

degraded performance for the cameras with multiple dropped frames. In addition,

the aluminum body made the sensor suite relatively heavy and negative buoyant.

Furthermore, the position of the screen was not optimal for seeing it during regular

diver deployment.

In the second design (see Fig. 3.3b), we took into account the lessons learned

from the first design. In particular, a PVC tube was used instead of the aluminum

box. This made the enclosure lighter and positive buoyant. Some rails at the bottom

allows for additional weights for ballasting. Furthermore, the main enclosure hosted

the two cameras as well. In this way, the cameras can be directly connected to the

computer with standard USB 3.0 cables, to avoid unnecessary transmission of data

over underwater cables as it was in the first design. The front panel is made of

transparent Plexiglas, 33 mm thickness, while the back panel is made of aluminum,

where a waterproof switch, a display, pressure sensor, and underwater connector for

the sonar are mounted. Stainless steel Latches are used to close the panels with the
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PVC tube, so that it can be easily open and maintained. The sonar was mounted

on the top with the scanning plane parallel to the image plane and connected to

the main unit by a standard SubConn underwater cable. Such a design and choice

of material reduced the size and weight, and made it easier to carry and maintain.

In addition, the second design of the sensor suite allows for modularity in terms of

electronics used: a Plexiglas plate inside the enclosure was used to mount all the

electronics and can be easily removed for troubleshooting or changed with a different

computer, cameras, and IMU.

The second version of the sensor suite has been designed considering two different

deployment strategies: hand-held and on different diver propulsion vehicles (DPV).

Such deployment strategies depend on the structure of the environment and the

distance to cover. The hand-held approach is more appropriate for covering a smaller

area for a short period of time, whereas the sensor suite can be mounted on a single

or double DPV in order to collect data over longer distances while being under water.

Mounting the rig on a DPV is specifically useful in cave diving, at larger depths,

to make better use of limited underwater time. Hand-held operations are possible

through the handles on the side of the PVC tube, as shown in Fig. 3.3(b). DPV

operations can be performed in two ways. First, mounted on a single DPV unit; see

Fig. 3.3(c). Second, mounted on a dual DPV unit; see Fig. 3.1.

Fig. 3.4 shows a front view of the sensor suite fully assembled. The two side-ring

holders are used to mount a canister battery for the video light; usually, a 13.5Ah

NiMH standard battery.

Mounting Options

Mounting the sensor suite on single or dual DPVs uses different attachment methods.

For single DPV attachment hose-clamps are used through the two metal bars to

secure the sensor; see Fig. 3.5a. Please note, the bottom of the sensor suite has a
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Figure 3.4: Front top view of the assembled sensor suite.

(a) (b) (c)

Figure 3.5: (a) The mounting system for single DPV deployment. (b) Mounting
attachment for use with a dual DPV. (c) The dual DPV attachment partially mount
on the bottom of the sensor suite.

round hollow that fits on a SUEX1 DPV; either XJ37 or XK1 models. For mounting

on a dual DPV, an attachment system is used; see Fig. 3.5b. The PVC components

are hooked through the supporting metal poles at the bottom; see Fig. 3.5c where

the plate is half mounted. When the plate is attached to the bottom of the sensor

suite, then it locks on the railing system of the dual DPV unit. The mounting on

the DPV can be carried out while in water, allowing divers to easily carry modular

1https://www.suex.it/
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parts to the entry point for the dive. It is worth noting that the cheese-board and

rail design allow for changing the location of the sensor on the dual DPV.

Figure 3.6: Sensor suite on a dual DPV free floating, neutrally buoyant.

Fig. 3.6 demonstrates the stability of the sensor suite on a dual DPV. The unit

floats in the water neutrally buoyant, with the video light on top illuminating forward.

3.2.3 Software Design

The main software components of the sensor suite consist of:

• drivers for each hardware unit,

• a ROS interface for communication between sensors and data processing,

• an interface for user and sensor suite interaction.

Drivers

The aim for the software design is to have a modular system that ensures re-usability

for both the system as a whole and also for each component. Each driver provides con-

sistent interface for communication with the Robot Operating System (ROS) frame-

work in [ros The main ROS drivers are:
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Figure 3.7: The default view of the menu.

• UEye driver for each camera, together with the Arduino code for the trigger

to synchronize the cameras – available open-source [Anqi Xu and contributors

2018].

• IMU driver – available open-source [Kumar Robotics 2018].

• Sonar driver – developed in our lab, released open-source [Autonomous Field

Robotics Lab 2018].

• Depth sensor driver - developed in our lab, released open-source [Autonomous

Field Robotics Lab 2018].

ROS platform

For easy data collection, each sensor node publishes the related data. All the opera-

tions are performed on the computer that runs a Linux-based operating system. In

particular, the Software was tested both on Ubuntu 14.04 and 16.04. After the oper-

ating system boot, a startup script runs all sensor nodes and at the same time starts

the recording of sensor data through ROS bag file2 that allows for easy play-back.
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Interface

The interface consists of two components: Graphical User Interface (GUI) for online

data monitoring; and AR tags [Fiala 2004] that supports user and sensor suite inter-

action, similarly to the proposed system by Sattar et al. [Sattar et al. 2007]. The

GUI – based on Qt3 for modularity – shows the current video stream of each camera

and outputs the overall health of the system. Fig. 3.7 shows the sensor data from the

GUI. Depth in feet and altitude represent the distance from the surface and from the

bottom respectively; measured by the depth and the Sonar sensors. The temperature

of the CPU is also reported in case there is overheating, especially if operations are

started above water. In addition, the GUI shows a menu with a list of options that

a user can select; left side of the screen. Each option has a corresponding AR tag

associated with its number. Through the menu a user can perform basic operations

on the computer – such as reboot or shutdown – start or stop recording data, get

access to both camera or sonar settings. When a camera is selected, a user can change

its gain and exposure and perform camera calibration. In addition, sonar data can

be visualized through rviz4 by selecting the corresponding option. Note that such a

menu is modular and straightforward to add, remove, or modify the menu entries.

Fig. 3.7 shows how the GUI looks like.

3.3 Conclusion

In this paper, we presented the design and development of a sensor suite for underwa-

ter reconstruction, together with some lessons learned during its construction. Our

proposed sensor suite has been used by divers in coral reefs, shipwrecks, and cave

2http://wiki.ros.org/rosbag

3https://www.qt.io/

4http://wiki.ros.org/rviz
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systems to collect visual, inertial, and sonar data, and different algorithms have been

studied to improve state estimation in caves.

Immediate future work on the proposed sensor suite includes a comprehensive

study on the quality of cameras for underwater operations, as well as a more user-

friendly electronics placement and wiring. More broadly, such a sensor suite will be

mounted on a platform that can operate autonomously, to allow for easy swap of

sensors on a robot.
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Chapter 4

An Underwater SLAM System using Sonar,

Visual, Inertial, and Depth Sensor
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Figure 4.1: Underwater cave in Ginnie Springs, FL, where data have been collected
using an underwater stereo rig.

4.1 Introduction

Most of the underwater navigation algorithms in [Leonard and Durrant-Whyte 2012;

Lee et al. 2005; Snyder 2010; Johannsson et al. 2010; Rigby, Pizarro, and S. B.

Williams 2006] are based on acoustic sensors, such as Doppler velocity log (DVL),

Ultra-short Baseline (USBL), and sonar. However, data collection with these sensors

is expensive and sometimes not suitable due to the highly unstructured underwa-

ter environments. In recent years, many vision-based state estimation algorithms

have been developed using monocular, stereo, or multi-camera system mostly for in-

door and outdoor environments. Vision is often combined with Inertial Measurement

Unit (IMU) for improved estimation of pose in challenging environments, termed as

Visual-Inertial Odometry (VIO) in [Mur-Artal and Juan D Tardós 2017; Leutenegger

et al. 2015; Qin, Li, and Shen 2018; Mourikis and Roumeliotis 2007; Sun et al. 2018].

However, the underwater environment – e.g., see Fig. 4.1 – presents unique chal-

lenges to vision-based state estimation. As shown in a previous study in [Quattrini

Li et al. 2016], it is not straightforward to deploy the available vision-based state

estimation packages underwater. In particular, suspended particulates, blurriness,

and light and color attenuation result in features that are not as clearly defined as

above water. Consequently results from different vision-based state estimation pack-

ages show a significant number of outliers resulting in inaccurate estimate or even
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complete tracking loss.

In this chapter, we propose a novel SLAM system specifically targeted for under-

water environments – e.g., wrecks and underwater caves – and easily adaptable for

different sensor configuration: acoustic (mechanical scanning profiling sonar), visual

(stereo camera), inertial (linear accelerations and angular velocities), and depth data.

This makes our system versatile and applicable on-board of different sensor suites and

underwater vehicles.

The idea is that acoustic range data, though sparser, provide robust information

about the presence of obstacles, where visual features reside; together with a more

accurate estimate of scale. To fuse range data from sonar into the traditional VIO

framework, we propose a new approach of taking a visual patch around each sonar

point, and introduce extra constraints in the pose graph using the distance of the

sonar point to the patch. The proposed method operates under the assumption that

the visual-feature based patch is small enough and approximately coplanar with the

sonar point. The resulting pose-graph consists of a combination of visual features and

sonar features. In addition, we adopt the principle of keyframe based approaches to

keep the graph sparse enough to enable real-time optimization. A particular challenge

arises from the fact that the sonar features at an area are sensed after some time from

the visual features due to the sensor suite configuration.

In our recent work, SVIn in [Rahman, Quattrini Li, and Rekleitis 2018b], acoustic,

visual, and inertial data is fused together to map different underwater structures by

augmenting the visual-inertial state estimation package OKVIS in [Leutenegger et al.

2015]. This improves the trajectory estimate especially when there is varying visibility

underwater, as sonar provides robust information about the presence of obstacles with

accurate scale. However, in long trajectories, drifts could accumulate resulting in an

erroneous trajectory.

In [Rahman, Quattrini Li, and Rekleitis 2018c], we extend our work by including
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an image enhancement technique targeted to the underwater domain, introducing

depth measurements in the optimization process, loop-closure capabilities, and a more

robust initialization. These additions enable the proposed approach to robustly and

accurately estimate the sensor’s trajectory, where every other approach has shown

incorrect trajectories or loss of localization.

To validate our proposed approach, first, we assess the performance of the pro-

posed loop-closing method, by comparing it to other state-of-the-art systems on the

EuRoC micro-aerial vehicle public dataset in [Burri et al. 2016], disabling the fu-

sion of sonar and depth measurements in our system. Second, we test the proposed

full system on several different underwater datasets in a diverse set of conditions.

More specifically, underwater data – consisting of visual, inertial, depth, and acoustic

measurements – has been collected using a custom made sensor suite in [Rahman,

Quattrini Li, and Rekleitis 2018a] from different locales; furthermore, data collected

by an Aqua2 underwater vehicle in [Dudek et al. 2005] include visual, inertial, and

depth measurements. The results on the underwater datasets illustrate the loss of

tracking and/or failure to maintain consistent scale for other state-of-the-art systems

while our proposed method maintains correct scale without diverging. Experimental

data were collected from the Ginnie ballroom cavern at High Springs, in Florida; a

submerged bus in North Carolina; a fake underwater cemetery in Lake Jocassee in

South Carolina; and an artificial shipwreck in Barbados. In all cases a custom sensor

suite employing a stereo camera, a mechanical scanning profiling sonar, and an IMU

was used.

The paper is structured as follows. The next section discusses related work. Sec-

tion 4.2 presents the mathematical formulation of the proposed system and describes

the approach developed for image preprocessing, pose initialization, loop-closure, and

relocalization. Section 4.3 presents results from a publicly available aerial dataset and

a diverse set of challenging underwater environments. We conclude this paper with
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Figure 4.2: Block diagram of the proposed system, SVIn2; in yellow the sensor input,
in green the components from OKVIS, in red the contribution from our work in [Rah-
man, Quattrini Li, and Rekleitis 2018b], and in blue the contributions in [Rahman,
Quattrini Li, and Rekleitis 2018c].

a discussion on lessons learned and directions of future work.

4.2 Proposed Method

This section describes the proposed system, SVIn2, depicted in Fig. 4.2. The full

proposed state estimation system can operate with a robot that has stereo camera,

IMU, sonar, and depth sensor – the last two can be also disabled to operate as a

visual-inertial system.

Due to low visibility and dynamic obstacles, it is hard to find good features to

track. In addition to the underwater vision constraints, e.g., light and color attenu-

ation, vision-based systems also suffer from poor contrast. Hence, we augment the

pipeline by adding an image preprocessing step, where contrast adjustment along with

histogram equalization is applied to improve feature detection underwater. In par-

ticular, we use a contrast limited adaptive histogram equalization filter in the image

pre-processing step.
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In the following, after defining the state, we describe the proposed initialization,

sensor fusion optimization, loop closure and relocalization steps.

4.2.1 Notations and States

The full sensor suite is composed of the following coordinate frames: Camera (stereo),

IMU, Sonar (acoustic), Depth, and World which are denoted as C, I, S, D, and W

respectively. The transformation between two arbitrary coordinate frames X and Y

is represented by a homogeneous transformation matrix XTY = [XRY |XpY ] where

XRY is rotation matrix with corresponding quaternion XqY and XpY is position

vector.

Let us now define the robot R state xR that the system is estimating as:

xR = [WpT
I ,W qT

I ,W vT
I ,bg

T ,ba
T ]T (4.1)

which contains the position WpI , the attitude represented by the quaternion WqI ,

the linear velocity WvI , all expressed as the IMU reference frame I with respect

to the world coordinate W ; moreover, the state vector contains the gyroscopes and

accelerometers bias bg and ba.

The associated error-state vector is defined in minimal coordinates, while the

perturbation takes place in the tangent space:

δχR = [δpT , δqT , δvT , δbg
T , δba

T ]T (4.2)

which represents the error for each component of the state vector with a transforma-

tion between tangent space and minimal coordinates in [Forster et al. 2017a].

4.2.2 Tightly-coupled Non-Linear Optimization with

Sonar-Visual-Inertial-Depth (SVIND) measurements

For the tightly-coupled non-linear optimization, we use the following cost function

J(x), which includes the reprojection error er and the IMU error es with the addition
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of the sonar error et, and the depth error eu:

J(x) =
2∑

i=1

K∑
k=1

∑
j∈J (i,k)

ei,j,kT

r Pk
rei,j,k

r +
K−1∑
k=1

ekT

s Pk
sek

s

+
K−1∑
k=1

ekT

t Pk
t ek

t +
K−1∑
k=1

ekT

u P k
u e

k
u (4.3)

where i denotes the camera index – i.e., left (i = 1) or right (i = 2) camera in a stereo

camera system with landmark index j observed in the kth camera frame. Pk
r , Pk

s ,

Pk
t , and P k

u represent the information matrix of visual landmarks, IMU, sonar range,

and depth measurement for the kth frame respectively.

For completeness, we briefly discuss each error term – see [Leutenegger et al. 2015]

for more details. The reprojection error describes the difference between a keypoint

measurement in camera coordinate frame C and the corresponding landmark pro-

jection according to the stereo projection model. The IMU error term combines all

accelerometer and gyroscope measurements by IMU pre-integration in [Forster et al.

2017a] between successive camera measurements and represents the pose, speed and

bias error between the prediction based on previous and current states. Both reprojec-

tion error and IMU error term follow the formulation by Leutenegger in [Leutenegger

et al. 2015].

The concept behind calculating the sonar range error is that, if the sonar detects

any obstacle at some distance, it is more likely that the visual features would be

located on the surface of that obstacle, and thus will be approximately at the same

distance. The step involves computing a visual patch detected in close proximity of

each sonar point to introduce an extra constraint, using the distance of the sonar

point to the patch. Here, we assume that the visual-feature based patch is small

enough and approximately coplanar with the sonar point.

In the presented system, the sonar measurements are used to correct the robot

pose estimate as well as to optimize the use of landmarks coming from both vision and

41



Figure 4.3: The relationship between sonar measurement and stereo camera features.
A visual feature detected at time k is only detected by the sonar with a delay, at time
k + i, where i depends on the speed the sensor is moving.

sonar. Due to the low visibility of underwater environments when it is hard to find

visual features, sonar provides features with accurate scale. A particular challenge

is the temporal displacement between the two sensors, vision and sonar. Figure 4.3

illustrates the structure of the problem, at time k some features are detected by the

stereo camera, it takes some time (until k + i) for the sonar to pass by these visual

features and thus obtain a related measurement. To address the above challenge,

visual features detected in close proximity to the sonar return are grouped together

and used to construct a patch. The distance between the sonar and the visual patch

is used as an additional constraint.

For computational efficiency, the sonar range correction only takes place when a

new camera frame is added to the pose graph. As sonar has a faster measurement rate

than the camera, only the nearest range to the robot pose in terms of timestamp is

used to calculate a small patch from visual landmarks around the sonar landmark for

that given range and head_position. Algorithm 1 shows how to calculate the range

error ek
t given the robot position Wpk

I and the sonar measurement zk
t at time k.

The sonar returns range r and head_position θ measurements which are used to

obtain each sonar landmark W l = [lx, ly, lz, 1] in homogeneous coordinate by a simple
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Algorithm 1 SONAR Range Error Algorithm
Input: Estimation of robot position Wpk

I at time k
Sonar measurement zk

t = [r, θ] at time k
List of current visual landmarks, Lv

Distance threshold, Td

Output: Range error ek
t at time k

/*Compute sonar landmark in world coordinates*/
1: W l = (WTI ITS[I3|r cos(θ), r sin(θ), 0]TS )

/*Create list of visual landmarks around sonar landmark*/
2: LS = ∅
3: for (every li in Lv ) do

/*Compute Euclidean distance from visual landmark to sonar landmark*/
4: dS = ‖W l− li‖
5: if ( dS < Td) then
6: LS = LS ∪ li
7: end if
8: end for
9: r̂ =

∥∥∥W p̂k
I −mean(LS)

∥∥∥
10: return r − r̂

geometric transformation in world coordinates:

W l = (WTI ITS[I3|r cos(θ), r sin(θ), 0]TS ) (4.4)

where WTI and ITS are the respective transformation matrices used to transform

the sonar measurement from the sonar coordinates to the world coordinates. ITS

represents the transformation from the sonar frame of reference to the IMU reference

frame, and WTI represents the transformation from the inertial (IMU) frame to the

world coordinates. Consequently, the sonar range prediction is calculated using the

lines 2-9 of Algorithm 1:

r̂ =
∥∥

W p̂I −mean(LS)
∥∥ , (4.5)

where LS is the subset of visual landmarks around the sonar landmark. As mentioned

above, the concept behind calculating the range error is that, if the sonar detects

any obstacles at some distance, it is more likely that the visual features would be

located on the surface of that obstacle, and thus will be at approximately the same
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distance. Thus, the error term is the difference between the two distances. Note that

we approximate the visual patch with the centroid (mean(LS)), to filter out noise on

the visual landmarks.

As such, given the sonar measurement zk
t , the error term ek

t (Wpk
I , zk

t ) is based

on the difference between those two distances which is used to correct the position

Wpk
I . We assume an approximate normal conditional probability density function f

with zero mean and Wk
t variance, and the conditional covariance Q(δp̂k|zk

t ), updated

iteratively as new sensor measurements are integrated:

f(ek
t |Wpk

I ) ≈ N (0,Wk
t ) (4.6)

The information matrix is:

Pk
t = Wk

t

−1 =
 ∂ek

t

∂δp̂k
Q(δp̂k|zk

t ) ∂e
k
t

∂δp̂k

T
−1

(4.7)

The Jacobian can be derived by differentiating the expected range r measurement

with respect to the robot position:

∂ek
t

∂δp̂k
=
[
−lx + Wpx

r
,
−ly + Wpy

r
,
−lz + Wpz

r

]
(4.8)

The pressure sensor, introduced in this paper, provides accurate depth measure-

ments based on water pressure. Depth values are extracted along the gravity direction

which is aligned with the z of the world W – observable due to the tightly coupled

IMU integration. The depth data at time k is given by1:

WpzD
k = dk − d0 (4.9)

With depth measurement zk
u, the depth error term ek

u(WpzI
k, zk

u) can be calculated

as the difference between the robot position along the z direction and the depth data

1More precisely, W pzD
k = (dk − d0) + init_disp_from_IMU to account for the initial displace-

ment along z axis from IMU, which is the main reference frame used by visual SLAM to track the
sensor suite/robot.
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to correct the position of the robot. The error term can be defined as:

ek
u(WpzI

k, zk
u) = |Wpz

k
I −W pz

k
D| (4.10)

The information matrix calculation follows a similar approach as the sonar and

the Jacobian is straight-forward to derive.

All the error terms are added in the Ceres Solver nonlinear optimization framework

in [Agarwal, Mierle, et al. 2015] to estimate the robot state.

4.2.3 Initialization: Two-step Scale Refinement

A robust and accurate initialization is required for the success of tightly-coupled non-

linear systems, as described in in [Mur-Artal and Juan D Tardós 2017] and in [Qin,

Li, and Shen 2018]. For underwater deployments, this becomes even more important

as vision is often occluded as well as is negatively affected by the lack of features for

tracking. Indeed, from our comparative study of visual-inertial based state estimation

systems in [Joshi et al. 2019], in underwater datasets, most of the state-of-the-art

systems either fail to initialize or make wrong initialization resulting into divergence.

Hence, we propose a robust initialization method using the sensory information from

stereo camera, IMU, and depth for underwater state estimation. The reason behind

using all these three sensors is to introduce constraints on scale to have a more

accurate estimation on initialization. Note that no acoustic measurements have been

used because the sonar range and visual features contain a temporal difference, which

would not allow to have any match between acoustic and visual features, if the robot

is not moving. This is due to the fact that the sonar scans on a plane over 360◦

around the robot and camera detects features in front of the robot Rahman, Quattrini

Li, and Rekleitis 2018b]; see Fig. 4.4.

In particular, the proposed initialization works as follows. First, we make sure

that the system only initializes when a minimum number of visual features are present
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Figure 4.4: Custom made sensor suite mounted on a dual DPV. Sonar scans around
the sensor while the cameras see in front.

to track (in our experiments 15 worked well). Second, the two-step refinement of the

initial scale from the stereo vision takes place.

The depth sensor provides accurate depth measurements which are used to refine

the initial scale factor from stereo camera. Including a scale factor s1, the transfor-

mation between camera C and depth sensor D can be expressed as

WpzD = s1 ∗ WpzC + WRzCCpD (4.11)

For keyframe k, solving the above equation for s1, provides the first refinement r1

of the initial stereo scale Wpr1C , i.e.,

Wpr1C = s1 ∗ WpC (4.12)

In the second step, the refined measurement from stereo camera in Eq. (4.12)

is aligned with the IMU pre-integral values. Similarly, the transformation between

camera C and IMU I with scale factor s2 can be expressed as:

WpI = s2 ∗ Wpr1C + WRCCpI (4.13)
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In addition to refining the scale, we also approximate initial velocity and gravity

vector similar to the method described in in [Qin, Li, and Shen 2018]. The state

prediction from IMU integration x̂i+1
R (xi

R, zi
I) with IMU measurements zi

I in OKVIS

in [Leutenegger et al. 2015 with conditional covarianceQ(δx̂i+1
R |xi

R, zi
I) can be written

as (the details about IMU pre-integration can be found in in [Forster et al. 2017a]):

W p̂i+1
I = Wpi

I +W vi
I∆ti + 1

2Wg∆ti2 +W Ri
Iα

i+1
Ii

W v̂i+1
I = Wvi

I +W g∆ti +W Ri
Iβ

i+1
Ii

W q̂i+1
I = γi+1

Ii
(4.14)

where αi+1
Ii

, βi+1
Ii

, and γi+1
Ii

are IMU pre-integration terms defining the motion be-

tween two consecutive keyframes i and i+1 in time interval ∆ti and can be obtained

only from the IMU measurements. Eq. (4.14) can be re-arranged with respect to

αi+1
Ii

, βi+1
Ii

as follows:

αi+1
Ii

= IRi
W (W p̂i+1

I −W pi
I −W vi

I∆ti −
1
2Wg∆ti2)

βi+1
Ii

= IRi
W (W v̂i+1

I −W vi
I − Wg∆ti) (4.15)

Substituting Eq. (4.13) into Eq. (4.15), we can estimate χS = [vi
I ,vi+1

I ,W g, s2]T

by solving the linear least square problem in the following form:

min
χS

∑
i∈K

∥∥∥ẑi+1
Si
−Hi+1

Si
χS

∥∥∥2
(4.16)

where ẑi+1
Si

= α̂
i+1
Ii
− IRi

W WRi+1
C Cpi+1

I + IRi
CCpi

I

β̂
i+1
Ii


and Hi+1

Si
=

−I∆ti 0 −1
2 IRi

W ∆ti2
IRi

W (Wpr1
i+1
C − Wpr1

i
C)

−I IRi
W WRi+1

I −IRi
W ∆ti 0


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4.2.4 Loop-closing and Relocalization

In a sliding window and marginalization based optimization method, drift accumu-

lates over time on the pose estimate. A global optimization and relocalization scheme

is necessary to eliminate this drift and to achieve global consistency. We adapt

DBoW2 in [Gálvez-López and Tardos 2012], a bag of binary words (BoW) place

recognition module, and augment OKVIS for loop detection and relocalization. For

each keyframe, the descriptors for only the keypoints detected during the local track-

ing are used to build BoW database. No new features will be detected in the loop

closure step.

A pose-graph is maintained to represent the connection between keyframes. In

particular, a node represents a keyframe and an edge between two keyframes exists if

the matched keypoints ratio between them is more than 0.75. In practice, this results

into a very sparse graph. With each new keyframe in the pose-graph, the loop-closing

module searches for candidates in the bag of words database. A query for detecting

loops to the BoW database only returns the candidates outside the current marginal-

ization window and having greater than or equal to score than the neighbor keyframes

of that node in the pose-graph. If loop is detected, the candidate with the highest

score is retained and feature correspondences between the current keyframe in the

local window and the loop candidate keyframe are obtained to establish connection

between them. The pose-graph is consequently updated with loop information. A

2D-2D descriptor matching and a 3D-2D matching between the known landmark

in the current window keyframe and loop candidate with outlier rejection by PnP

RANSAC is performed to obtain the geometric validation.

When a loop is detected, the global relocalization module aligns the current

keyframe pose in the local window with the pose of the loop keyframe in the pose-

graph by sending back the drift in pose to the windowed sonar-visual-inertial-depth

optimization thread. Also, an additional optimization step, similar to Eq. (4.3), is
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taken only with the matched landmarks with loop candidate for calculating the sonar

error term and reprojection error; see Eq. (4.17).

J(x) =
2∑

i=1

K∑
k=1

∑
j∈Loop(i,k)

ei,j,kT

r Pk
rei,j,k

r +
K−1∑
k=1

ekT

t Pk
t ek

t

(4.17)

After loop detection, a 6-DoF (position, xp and rotation, xq) pose-graph opti-

mization takes place to optimize over relative constraints between poses to correct

drift. The relative transformation between two poses Ti and Tj for current keyframe

in the current window i and keyframe j (either loop candidate keyframe or connected

keyframe) can be calculated from ∆Tij = TjTi
−1. The error term, ei,j

xp,xq between

keyframes i and j is formulated minimally in the tangent space:

ei,j
xp,xq = ∆TijT̂iT̂j

−1 (4.18)

where (̂.) denotes the estimated values obtained from local sonar-visual-inertial-

depth optimization. and the cost function to minimize is given by

J(xp,xq) =
∑
i,j

ei,j
xp,xq

TPi,j
xp,xqe

i,j
xp,xq +

∑
(i,j)∈Loop

ρ(ei,j
xp,xq

TPi,j
xp,xqe

i,j
xp,xq) (4.19)

where Pi,j
xp,xq is the information matrix set to identity, as in in [Strasdat 2012], and ρ

is the Huber loss function to potentially down-weight any incorrect loops.

4.3 Experimental Results

The proposed state estimation system, SVIn2, is quantitatively validated first on a

standard dataset, to ensure that loop closure and the initialization work also above

water. Moreover, it is compared to other state-of-the-art methods, i.e., VINS-Mono

in [Qin, Li, and Shen 2018], the basic OKVIS in [Leutenegger et al. 2015], and the

MSCKF in [Mourikis and Roumeliotis 2007] implementation from the GRASP lab
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in [Research group of Prof. Kostas Daniilidis 2018]. Second, we qualitatively test

the proposed approach on several different datasets collected utilizing a custom made

sensor suite in [Rahman, Quattrini Li, and Rekleitis 2018a] and an Aqua2 AUV in

[Dudek et al. 2005].

4.3.1 Validation on Standard dataset

Here, we present results on the EuRoC dataset in [Burri et al. 2016], one of the

benchmark datasets used by many visual-inertial state estimation systems, including

OKVIS (Stereo), VINS-Mono, and MSCKF. To compare the performance, we disable

depth and sonar integration in our method and only assess the loop-closure scheme.

Following the current benchmarking practices, an alignment is performed between

ground truth and estimated trajectory, by minimizing the least mean square errors

between estimate/ground-truth locations, which are temporally close, varying rota-

tion and translation, according to the method from Umeyama 1991]. The resulting

metric is the Root Mean Square Error (RMSE) for the translation, shown in Ta-

ble 4.1 for several Machine Hall sequences in the EuRoC dataset. For each package,

every sequence has been run 5 times and the best run (according to RMSE) has been

shown. Our method shows reduced RMSE in every sequence from OKVIS, validating

the improvement of pose-estimation after loop-closing. SVIn2 has also less RMSE

than MSCKF and slightly higher in some sequences, but comparable, to results from

VINS-Mono. Fig. 4.5 shows the trajectories for each method together with the ground

truth for the Machine Hall sequence.

4.3.2 Underwater datasets

Our proposed state estimation system – SVIn2 – is targeted for the underwater envi-

ronment, where sonar and depth can be fused together with the visual-inertial data.

Here, we show results from four different datasets in three different underwater en-
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Table 4.1: The best absolute trajectory error (RMSE) in meters for each Machine
Hall EuRoC sequence.
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MH 01 0.13 0.15 0.07 0.21
MH 02 0.08 0.14 0.08 0.24
MH 03 0.07 0.12 0.05 0.24
MH 04 0.13 0.18 0.15 0.46
MH 05 0.15 0.24 0.11 0.54

vironments. First, a sunken bus in Fantasy Lake (NC), where data was collected

by a diver with a custom-made underwater sensor suite [Rahman, Quattrini Li, and

Rekleitis 2018a]. The diver started from outside the bus, performed a loop around

and entered in it from the back door, exited across and finished at the front-top of

the bus. The images are affected by haze and low visibility. Second and third,

data from an underwater cavern in Ginnie Springs (FL) is collected again by a diver

with the same sensor suite as for the sunken bus. The diver performed several loops,

around one spot in the second dataset – Cavern1 – and two spots in the third dataset

– Cavern2 – inside the cavern. The environment is affected by complete absence of

natural light. Fourth, an AUV – Aqua2 robot – collected data over a fake underwater

cemetery in Lake Jocassee (SC) and performed several loops around the tombstones

in a square pattern. The visibility, as well as brightness and contrast, was very low.

In the underwater datasets, it is a challenge to get any ground truth, because it is a

GPS-denied unstructured environment. As such, the evaluation is qualitative, with

a rough estimate on the size of the environment measured beforehand by the divers

collecting the data.

Figs. 4.7-4.10 show the trajectories from SVIn2, OKVIS, and VINS-Mono in the
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datasets just described. MSCKF was able to keep track only for some small segments

in all the datasets, hence excluded from the plots. For a fair comparison, when

the trajectories were compared against each other, sonar and depth were disabled

in SVIn2. All trajectories are plotted keeping the original scale produced by each

package.

Fig. 4.7 shows the results for the submerged bus dataset. In particular, VINS-

Mono lost track when the exposure increased for quite some time. It tried to re-

initialize, but it was not able to track successfully. Even using histogram equalization

or a contrast adjusted histogram equalization filter, VINS-Mono was not able to track.

Even if the scale drifted, OKVIS was able to track using a contrast adjusted histogram

equalization filter in the image pre-processing step. Without the filter, it lost track

at the high exposure location. The proposed method was able to track, detect, and

correct the loop, successfully.

In Cavern1 – see Fig. 4.8 – VINS-Mono tracked successfully the whole time. How-

ever, as can be noticed in Fig. 4.8c, the scale was incorrect based on empirical ob-

servations during data collection. OKVIS instead produced a good trajectory, and

SVIn2 was also able to detect and close the loops.

In Cavern2 (Fig. 4.9), VINS-Mono lost track at the beginning, reinitialized, was

able to track for some time, and detected a loop, before losing track again. VINS-

Mono had similar behavior even if the images were pre-processed with different filters.

OKVIS tracked well, but as drifts accumulated over time, it was not able to join the

current pose with a previous pose where a loop was expected. SVIn2 was able to

track and reduce the drift in the trajectory with successful loop closure.

In the cemetery dataset – Fig. 4.10 – both VINS-Mono and OKVIS were able to

track, but VINS-Mono was not able to reduce the drift in trajectory, while SVIn2

was able to fuse and correct the loops.
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4.3.3 Reconstruction using Sonar data

The proposed approach has been tested in numerous challenging environments. In

the following a description of each dataset together with the state estimate of the

sensor suite and challenges during the field trials are presented.

One of the first datasets was collected at an artificial shipwreck in Barbados; see

Fig. 4.12a. The initial deployment of the sonar sensor suffered from a misconfigu-

ration where data was collected at a very slow rate and at a maximum range of one

meter resulting on only collecting sonar data from the floor. Note that Fig. 4.12c

shows the trajectory of the camera going slightly upwards, although the frame shows

the floor parallel to the motion. The shipwreck was sunken on the sea floor with some

inclination, that the IMU was able to capture.

We collected also a short segment from inside a cavern in Ginnie Springs, in

Florida (USA). Such footage provided preliminary data from an underwater cave

environment; see Fig. 4.13a. The video light utilized was providing illumination on

only part of the scene. The reconstruction shows both visual landmarks and sonar

points giving a sense of the cavern as the diver was swimming around. In such a case,

the sonar was correctly configured; however, because the light was not uniformly

illuminating the scene, the visual features were not optimal.

Finally, the inside of a sunken bus was mapped at Fantasy Lake Scuba Park, NC,

USA; see Fig. 4.14a. The image quality was quite poor due to the many particulates

in the water. In all environments, the images contain a significant amount of blur

(softness) which clearly increases with distance. In addition, dynamic obstacles, such

as fish, but more importantly floating particles that reflect back with high intensity;

see Fig. 4.11, where floating particles were present in all datasets.

In such challenging environments, it is very hard to get ground truth. However,

the trajectory and the distance covered resembled the one followed by the diver.

Further, the sonar landmarks were indeed used to correct the pose estimate. All the
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results in the datasets, but the shipwreck, show several rings, indicating the mapping

of the structure.

4.4 Conclusions

In this chapter, we presented a state estimation system with robust initialization,

sensor fusion of depth, sonar, visual, and inertial data, and loop closure capabili-

ties. While the proposed system can also work out of the water, by disabling the

sensors that are not applicable, our system is specifically targeted for underwater

environments. Experimental results in a standard benchmark dataset and different

underwater datasets demonstrate excellent performance.

Utilizing the insights gained from implementing the proposed approach, an online

adaptation of the discussed framework for the limited computational resources of the

Aqua2 AUV in [Dudek et al. 2005] is currently under consideration; see Fig. 4.6. It

is worth noting that maintaining the proper attitude of the traversed trajectory and

providing an estimate of the distance traveled will greatly enhance the autonomous

capabilities of the vehicle in [Sattar et al. 2008]. Furthermore, accurately modeling the

surrounding structures would enable Aqua2, as well as other vision based underwater

vehicles to operate near, and through, a variety of underwater structures, such as

caves, shipwrecks, and canyons.
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(a) (b)

(c) (d)

(e)

Figure 4.5: Trajectories on the MH sequence of the EuRoC dataset.
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Figure 4.6: The Aqua2 AUV in [Dudek et al. 2005] equipped with the scanning sonar
collecting data over the coral reef.

(a) (b)

(c)

Figure 4.7: (a) Submerged bus, Fantasy Lake, NC, USA; trajectories from SVIn2
with all sensors enabled shown in rviz (b) and aligned trajectories from SVIn2 with
Sonar and depth disabled, OKVIS, and VINS-Mono (c) are displayed.
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(a) (b)

(c)

Figure 4.8: (a) Cave environment, Ballroom, Ginnie Springs, FL, USA, with a unique
loop; trajectories from SVIn2 with all sensors enabled shown in rviz (b) and aligned
trajectories from SVIn2 with Sonar and depth disabled, OKVIS, and VINS-Mono (c)
are displayed.
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(a) (b)

(c)

Figure 4.9: (a) Cave environment, Ballroom, Ginnie Springs, FL, USA, with two
loops in different areas; trajectories from SVIn2 with all sensors enabled shown in
rviz (b) and aligned trajectories from SVIn2 with Sonar and depth disabled, OKVIS,
and VINS-Mono (c) are displayed.
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(a) (b)

(c)

Figure 4.10: (a) Aqua2 in a fake cemetery, Lake Jocassee, SC, USA; trajectories from
SVIn2 with visual, inertial, and depth sensor (no sonar data has been used) shown in
rviz (b) and aligned trajectories from SVIn2 with Sonar and depth disabled, OKVIS,
and VINS-Mono (c) are displayed.
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Figure 4.11: A small particle reflecting back at high speed generating a blurry streak.
In addition light reflecting back from a nearby surface completely saturates the cam-
era.

(a) (b) (c)

Figure 4.12: Bajan Queen artificial reef (shipwreck) in Carlisle Bay, Barbados. (a)
Sample image of the data collected inside the wreck (beginning of trajectory). (b)
Top view of the reconstruction.
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(a) (b) (c)

Figure 4.13: Underwater cave, Ballroom Ginnie cavern at High Springs, FL, USA.
(a) Sample image of the data collected inside the cavern. (b) Top view of the recon-
struction. (c) Side view of the reconstruction.

(a) (b) (c)

Figure 4.14: Sunken bus, Fantasy Lake Scuba Park, NC, USA. (a) Sample image of
the data collected from inside the bus. (b) Top view of the reconstruction. (c) Side
view of the reconstruction, note the stairs detected by visual features at the right side
of the image.
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Chapter 5

Contour based Reconstruction of Underwater

Structures Using Sonar, Visual, Inertial, and

Depth Sensor
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5.1 Introduction

Underwater cave exploration is one of the most extreme adventures pursued by hu-

mans in [Exley 1977]. It is a dangerous activity with more than 600 fatalities, since

the beginning of underwater cave exploration, that currently attracts many divers.

Generating models of the connectivity between different underwater cave systems

together with data on the depth, distribution, and size of the underwater chambers

is extremely important for fresh water managements in [Climate Change and Sea-

Level Rise in Florida: An Update of “The Effects of Climate Change on Florida’s

Ocean and Coastal Resources.” 2010], environmental protection, and resource uti-

lization in [Xu et al. 2016]. In addition, caves provide valuable historical evidence as

they present an undisturbed time capsule in [Abbott 2014], and information about

geological processes in [Kresic and Mikszewski 2013].

Before venturing beyond the light zone with autonomous robots, it is crucial to

ensure that localization and mapping abilities have been developed and are adequately

robust. Constructing a map of an underwater cave presents many challenges. First

of all, vision underwater is plagued by limited visibility, color absorption, hazing,

and lighting variations. Furthermore, the absence of natural light inside underwater

caves makes localization and mapping more difficult; however, the use of an artificial

light can be used to infer the structure in [Weidner et al. 2017]. The most common

underwater mapping sensor is based on sonar, which, when mounted on a moving

platform, requires a secondary sensor to provide a common frame of reference for

the range measurements collected over time. Furthermore, the majority of sonar

sensors generate multiple returns in enclosed spaces making mapping caves extremely

difficult.

In our earlier work, the cone of light perceived by a stereo camera was used to

reconstruct offline the boundaries of a cave in Mexico in [Weidner et al. 2017]. No

other sensor was available and the stereo-baseline of 0.03 m limited the accuracy of the
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Figure 5.1: The stereo, inertial, depth, and acoustic sensor suite mounted on a dual
diver propulsion vehicle (DPV) equipped with a flashlight, in front of the Blue Grotto
cavern.

reconstruction for objects further than a couple of meters. More recently, augmenting

the visual-inertial state estimation package OKVIS in [Leutenegger et al. 2015], we

fused visual and inertial data together with acoustic range measurements from a

pencil beam sonar, which provide more reliable distance estimate of features. This

allows a more robust and reliable state estimation in [Rahman, Quattrini Li, and

Rekleitis 2018b]. One of the limitations is the granularity of the resulting 3D point

cloud: only few keypoints are typically tracked, resulting in very sparse 3D point

cloud, which cannot be directly used, for example, by an Autonomous Underwater

Vehicle (AUV) to navigate and avoid obstacles. Applying a direct-based method, such

as LSD-SLAM in [Engel, Schöps, and Cremers 2014], is not straightforward, given

the sharp changes in illumination in the underwater scene. A fundamental difference

with most vision based estimation approaches is that in a cave environment, the light

source is constantly moving thus generating shadows that also move. Consequently

the majority of the strong features cannot be used for estimating the pose of the

camera.

In this paper, we propose a novel system that is able to track the state estimate and

at the same time improve the 3-D reconstruction from visual edge based information

in the cave boundaries.
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In particular, the proposed approach for real-time reconstruction of the cave envi-

ronment with medium density is based on an underwater SLAM system that combines

acoustic (sonar range), visual (stereo camera), inertial (linear accelerations and an-

gular velocities), and depth data to estimate the trajectory of the employed sensor

suite. The inspiration for a denser point cloud comes from the following observa-

tion: visual features on the boundaries created by shadows, occlusion edges, and the

boundaries of the artificial illumination (video light) – see Fig. 5.1 – are all located at

the floor, ceiling, and walls of the cave. The point cloud resulting from such edges is

then optimized in a local bundle adjustment, and can be used for providing a denser

reconstruction, enabling the deployment of AUVs like Aqua2 in [Dudek et al. 2005]

with advanced swimming gaits in [Meger et al. 2015], navigating around obstacles

without disturbing the sediment at the bottom. Experiments in caverns and caves

validate the proposed approach.

The paper is structured as follows. In the next section, we present related work,

specifically focusing on state estimation and 3D reconstruction. Section 5.2 describes

the proposed method. Experimental results are presented in Section 5.3. Section 5.4

concludes the paper.

5.2 Technical Approach

The proposed approach augments in [Rahman, Quattrini Li, and Rekleitis 2018b;

Rahman, Quattrini Li, and Rekleitis 2018c] to generate real-time a denser recon-

struction of underwater structures exploiting the boundaries of the structure and the

cone-of-light. For completeness, we briefly introduce the system hardware and visual

inertial method that includes acoustic and depth measurements. Then, we describe

the proposed 3D reconstruction based on contour matching and the local optimization

of such point cloud.
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5.2.1 System Overview

The target hardware system is composed of a stereo camera, mechanical scanning

profiling Sonar, IMU, pressure sensor, and an on-board computer. This is part for

example of a custom-made sensor suite – which can be carried by divers as well as

can be mounted on a single or dual Diver Propulsion Vehicle (DPV) in [Rahman,

Quattrini Li, and Rekleitis 2018a] – or an AQUA2 AUV in [Dudek et al. 2005], which

have been used for underwater reconstruction. The hardware was designed with cave

mapping as the target application. As such, the sonar scanning plane is parallel to

the image plane which provides data at a maximum of 6 m range, scanning in a plane

over 360◦, with angular resolution of 0.9◦.

5.2.2 Notations and States

The reference frames associated to each sensor and the world are denoted as C for

Camera, I for IMU, S for Sonar, D for Depth, and W for World. Let us denote

XTY = [XRY |XpY ] the homogeneous transformation matrix between two arbitrary

coordinate frames X and Y , where XRY represents the rotation matrix with corre-

sponding quaternion XqY and XpY denotes the position vector.

The state of the robot R is denoted as xR:

xR = [WpT
I ,W qT

I ,W vT
I ,bg

T ,ba
T ]T (5.1)

It contains the position WpI , the quaternion WqI , the linear velocity WvI . All of

them are in the IMU reference frame I with respect to the world reference frame W .

In addition, the gyroscopes and accelerometers bias bg and ba are also estimated and

stored in the state vector.

The corresponding error-state vector is defined in minimal coordinates, while the

perturbation takes place in the tangent space:

δχR = [δpT , δqT , δvT , δbg
T , δba

T ]T (5.2)
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5.2.3 Tightly-coupled Non-Linear Optimization Problem

The cost function J(x) for the tightly-coupled non-linear optimization includes the

reprojection error er, the IMU error es, sonar error et, and the depth error eu:

J(x) =
2∑

i=1

K∑
k=1

∑
j∈J (i,k)

ei,j,kT

r Pk
rei,j,k

r +
K−1∑
k=1

ekT

s Pk
sek

s

+
K−1∑
k=1

ekT

t Pk
t ek

t +
K−1∑
k=1

ekT

u P k
u e

k
u (5.3)

with i denoting the camera index – i = 1 for left, i = 2 for right camera in a stereo

camera – and landmark index j observed in the kth camera frame. Pk
r , Pk

s , Pk
t , and

P k
u denote the information matrix of visual landmarks, IMU, sonar range, and depth

measurement for the kth frame respectively.

The reprojection error describes the difference between a keypoint measurement

in camera coordinate frame C and the corresponding landmark projection according

to the stereo projection model. The IMU error term combines all accelerometer and

gyroscope measurements by IMU pre-integration in [Forster et al. 2017a] between

successive camera measurements and represents the pose, speed and bias error between

the prediction based on previous and current states. Both reprojection error and IMU

error term follow the formulation by Leutenegger et. al.in [Leutenegger et al. 2015].

The sonar range error, introduced in the previous chapter [Rahman, Quattrini

Li, and Rekleitis 2018b], represents the difference between the 3D point that can be

derived from the range measurement and a corresponding visual feature in 3D.

The depth error term can be calculated as the difference between the rig position

along the z direction and the water depth measurement provided by a pressure sensor.

Depth values are extracted along the gravity direction which is aligned with the z

of the world W – observable due to the tightly coupled IMU integration. This can

correct the position of the robot along the z axis.
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Ceres Solver nonlinear optimization framework Agarwal, Mierle, et al. 2015 opti-

mizes J(x) then to estimate the state of the system.

5.2.4 Feature Selection and 3D Reconstruction from Stereo Contour

Matching

To ensure that the VIO system and the 3D reconstruction can be run in real-time

in parallel, we replaced the OKVIS feature detection method with the one described

in [Shi et al. 1994], which provides a short list of the most prominent features based

on the corner response function in the images. This reduces the computation in the

frontend tracking and, as shown in the results, retains the same accuracy with less

computational requirements.

Figure 5.2: Image in a cave and the detected contours.

We included a real-time stereo contour matching algorithm followed by an outlier

rejection mechanism to produce the point-cloud on the contour created by the light;

see Fig. 5.4c for an example of all the edge-features detected. The approach of Weidner

et. al in [Weidner et al. 2017] has been adapted for the contours from the intersection

of the cone of light with the cave wall; see Fig. 5.2 for the extracted contours from

an underwater cave. In particular, adaptive thresholding the images based on the

light and dark areas ensures that the illuminated areas are clearly defined. In our

current work, we also found that sampling from pixels which have rich gradient, e.g.,

edges provides better and denser point-cloud reconstructions. As such, both types

of edges – one marking the boundaries between the light and dark areas and the

other from visible cave walls – are used to reconstruct the 3-D map of the cave. The
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overview of the augmenting Stereo Contour Matching method in our tightly-coupled

Sonar-Visual-Inertial-Depth optimization framework is as follows.

For every frame in the local optimization window, a noisy edge map is created

from the edges described above, followed by a filtering process to discard short con-

tours by calculating their corresponding bounding boxes and only keeping the largest

third percentile. This method retains the highly defined continuous contours of the

surroundings while eliminating spurious false edges, thus allowing to use the pixels

on them as good features to be used in the reconstruction. In a stereo frame, for

every image point on the contour of the left image a BRISK feature descriptor is cal-

culated and matched against the right image searching along the epipolar line. Then

a sub-pixel accurate localization of the matching disparity is performed. Another

layer of filtering is done based on the grouping of the edge detector, i.e., keeping only

the consecutive points belonging to the same contour in a stereo pair. These stereo

contour matched features along with depth estimation is projected into 3-D which

are projected back for checking the reprojection error consistency resulting into a

point-cloud with very low reprojection error.

The reason behind choosing stereo matched contour features rather than tracking

them using a semi-direct method is to avoid any spurious edge detection due to light-

ing variation in consecutive images, which could lead to erroneous estimation or even

tracking failure. The performance of SVO in [Forster et al. 2017b], an open-source

state-of-the-art semi-direct method, in underwater datasets in [Quattrini Li et al.

2016; Joshi et al. 2019] validates this statement. In addition, though indirect feature

extractors and descriptors are invariant to photometric variations to some extent,

using a large number of features for tracking and thus using them for reconstruction

is unrealistic due to the computational complexity of maintaining them.
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5.2.5 Local Bundle Adjustment (BA) for Contour Features

In the current optimization window, a local BA is performed for all newly detected

stereo contour matched features and the keyframes they are observed in, to achieve

an optimal reconstruction. A joint non-linear optimization is performed for refining

kth keyframe pose WTCi

k and homogeneous landmark j in world coordinateW , W lj =

[lxj, lyj, lzj, lwj] minimizing the cost function:

J(x) =
∑
j,k

ρ(ej,kTPj,kej,k) (5.4)

Hereby Pj,k denotes the information matrix of associated landmark measurement,

ρ is the Huber loss function to down-weight outliers. The reprojection error, ej,k

for landmark j with matched keypoint measurement zj,k in image coordinate in the

respective camera i is defined as:

ej,k = zj,k − hi(WTCi

k,W lj) (5.5)

with camera projection model hi. We used Levenberg-Marquardt to solve local BA

problem which obtains a good estimation for the non-linear optimization system.

5.3 Experimental Result

The experimental data were collected using a custom made sensor suite in [Rahman,

Quattrini Li, and Rekleitis 2018a] consisting of a stereo camera, an IMU, a depth

sensor and a mechanical scanning Sonar, as described in Section 5.2.1. More specif-

ically, two USB-3 uEye cameras in a stereo configuration provide data at 15 Hz, an

IMAGENEX 831L mechanical scanning Sonar sensor acquires a full 360◦ scan every

four seconds; the Bluerobotics Bar30 pressure sensor provides depth data at 1 Hz; a

MicroStrain 3DM-GX4-15 IMU generates inertial data at 100 Hz; and an Intel NUC

running Linux and ROS consolidates all the data. A video light is attached to the

unit to provide artificial illumination of the scene. The Sonar is mounted on top of
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(a) (b)

Figure 5.3: Partial trajectories generated by DSO. (a) Incorrect odometry and failing
to track just after a few seconds and (b) longer trajectory after starting at a place
with better illumination which also fails later on.

the main unit which contains the remaining electronics. In Fig. 5.6(a,b) the unit can

be seen deployed in two different modes: hand-held by a diver and mounted on a

Diver Propulsion Vehicle (DPV).

In the following, we present, first, preliminary experiments with DSO in [En-

gel, Koltun, and Cremers 2018] showing the problem with photometric consistency,

and, second, a qualitative result of the proposed approach in different underwater

environments.

5.3.1 Comparison with DSO

Fig. 5.3 shows the result of DSO in the underwater cave dataset in two different runs,

Fig. 5.3a and Fig. 5.3b. DSO did not track for the full length of cave, instead it

was able to keep track just for a small segment due to the variation of the light and

hence violating the photometric consistency assumption of a direct method. Also, the

initialization method is critical as it requires mainly translational movement and a

very small rotational change due to the fact that it is a pure monocular visual SLAM.

We ran DSO with different starting point of the dataset to have a better initialization,

the best one we got in Fig. 5.3b – eventually failed too because of the poor lighting.
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(a) (b)

(c)

Figure 5.4: (a) Odometry using only a few strong features (green) for tracking. (b)
Scanning Sonar measurements (red) aligned along the trajectory. (c) Reconstruction
of the cave using the edges detected in the stereo contour points (gray).

5.3.2 Odometry and 3D Cave-Wall Reconstruction

The ballroom at Ginnie Springs, FL, is a cavern open to divers with no cave-diving

training. It provides a safe locale to collect data in an underwater cave environment.

From entering the cavern at a depth of seven meters, the sensor was taken down

to fifteen meters, and then a closed loop trajectory was traversed three times. As

there is no ground truth available underwater, such as a motion capture system, we

validate our approach from the information collected by the divers during the data

collection procedure. The length of the trajectory produced by our method is 87

meters, consistent with the measure from the divers.

Fig. 5.4 shows the whole trajectory with the different point clouds generated by
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the features used for tracking, Sonar data, and stereo contour matching. Keeping

a small set of features for only tracking helps to run the whole system in real-time.

As shown in the figure, Sonar provides a set of sparse but robust points using range

and head_position information. Finally, the stereo contour matched point generates

a denser point-cloud to represent the cave environment. Fig. 5.5 highlights some

specific sections of the cavern, with the image and the corresponding reconstruction

– in gray, the points from the contours; in red the points from the Sonar. As it can

be observed, our proposed method enhances the reconstruction with a dense point

cloud; for example rocks and valleys are clearly visible in Fig. 5.5.

5.4 Discussion

The proposed system improves the point cloud reconstruction and is able to perform

in real time even with additional capabilities. One of the lessons learned during

experimental activities is that the position of the light affects also the quality of

the reconstruction. In the next version of the sensor suite, we plan to mount the

dive light in a fixed position so that the cone of light can be predicted according to

the characteristics of the dive light. Furthermore, setting the maximum distance of

the Sonar according to the specific environment improves the range measurements

obtainable.

We are currently deploying the sensor suite either hand-held by a diver – see Fig.

5.6a – or mounted on a DPV – see 5.6b – in a variety of locations. Future plans are

to deploy the sensor suite on a dual DPV which will provide greater stability – see

Fig. 5.1 for preliminary tests. Furthermore, the sonar can be deployed on an AUV,

such as an Aqua2 in [Dudek et al. 2005] vehicle – see 5.6c, for autonomous operations.

It is worth noting that the sensor suite utilizes the same hardware with an Aqua2

AUV for maximum compatibility.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.5: Stereo contour reconstruction results in (b), (d), (f) and the corresponding
images in (a), (c), (e) respectively.
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(a) (b) (c)

Figure 5.6: Data collection approaches: (a) Diver holds the sensor swimming through
the cave. (b) Sensor suite mounted on a DPV. (c) an Aqua 2 vehicle in [Dudek et al.
2005] with similar hardware carrying the scanning sonar collects data over a coral
reef.
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Chapter 6

Conclusions

As vision based stated estimation achieves a certain degree of maturity, more sensors

are being integrated. Extending the well studied problem of Visual Inertial integra-

tion, we introduce a new sensor, a mechanical scanning sonar, which returns range

measurements based on acoustic information. While the primary motivation of our

work has been the mapping of underwater caves in [Weidner et al. 2017], the tech-

nique was tested in different environments, including the a shipwreck at the clear

waters of Barbados, to artificial wrecks in the lakes of the Carolinas. A novel ap-

proach of merging sonar points with visual features is used to extend the pose graph

generated for applying a global nonlinear optimization. The integration of the range

data in the popular optimizer of Ceres in [Agarwal, Mierle, et al. 2015] resulted in

scale estimation improvements.

During the different experiments, it became clear that a minimum visibility and

clarity in the visual data is required for basic performance, however, the data used

degraded to a degree not often seen in VO or VIO approaches. Moreover, the use

of a strong video light while necessary in the cave environment, it requires careful

calibration of its position in order to not saturate the camera. Furthermore, differ-

ent surfaces resulted in different reflectance properties of the acoustic signal; we are

currently analyzing the sonar data to improve the quality.

Integration of multiple sensors will improve the quality of the estimation in addi-

tion to the density of the reconstruction. A variety of domains will be affected with

underwater archaeology and speleology being the primary areas. The resulting tech-
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nology will be integrated to existing AUVs and ROVs for improving their autonomous

capabilities.
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