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Abstract— This paper deals with the problem of coopera-
tive localization for the case of large groups of mobile robots.
A Kalman filter estimator is implemented and tested for this
purpose. The focus of this paper is to examine the effect
on localization accuracy of the numberN of participating
robots and the accuracy of the sensors employed. More
specifically, we investigate the improvement in localization
accuracy per additional robot as the size of the team
increases. Furthermore, we provide an analytical expression
for the upper bound on the positioning uncertainty increase
rate for a team ofN robots as a function ofN , the odometric
and orientation uncertainty for each robot, and the accuracy
of a robot tracker measuring relative positions between pairs
of robots. The analytical results derived in this paper are
validated in simulation for different test cases.

I. INTRODUCTION

This paper studies the localization accuracy of a team
of mobile robots that closely cooperate while navigating
within the same area. The problem of localization is
central in mobile robotics. One of the advantages of multi-
robot systems is that robots can accurately localize by
measuring their relative position and/or orientation and
communicating localization information throughout the
group. Although external positioning information from a
GPS receiver or a map of the environment can further
increase the overall localization accuracy, we hereafter
consider primarily the most challenging scenario where
the absolute positions of the robots cannot be measured
or inferred. In this case the uncertainty in the position
estimates for all robots will continuously increase. Pre-
vious work on cooperative localization [17], [21], [27]
has demonstrated that the localization uncertainty increase
across groups of robots is lower compared to the situation
where each robot is estimating its position without coop-
eration with the rest of the team.

The theoretical analysis of the positioning uncertainty
propagation during cooperative localization has been an
open problem to this date. In this paper we present the first
theoretical treatment for determining upper bounds on the
position uncertainty accumulation for a group of N robots
by directly solving the continuous time Riccati equation
for the covariance of the errors in the position estimates.
The key element in our derivation is the separation of the
covariance matrix into two sets of submatrices: the ones
that converge to steady state values and those that capture

the time dependence of the uncertainty increase during
cooperative localization.

The main focus is on homogeneous teams of robots,
i.e. groups of robots that have the same proprioceptive
(odometric in this case) and exteroceptive (orientation and
relative position) sensing capabilities. Nevertheless, the
derived expressions are also applicable for determining the
upper localization uncertainty bounds for heterogeneous
teams of robots based on the sensing capabilities of the
robot with the least accurate sensors within the team.
The resulting formulae are for the maximum expected
uncertainty. Since both the kinematics of the robots and
the relative position measurements in 2D are described
by sets of nonlinear and time-varying equations, in this
treatment we consider maximum expected values for the
covariances of the different sources of uncertainty and
noise.

Throughout the paper we assume that all robots move
at the same time randomly. Each robot continuously
measures its relative position to the rest of the robots in
the team. Moreover, each robot is equipped with a sensor
(such as a compass or a sun sensor) of limited accuracy
that provides absolute orientation measurements. This is
required in the derivations that follow for determining
bounds on the orientation uncertainty for each robot. If
such sensor is not available, then an upper bound for the
orientation uncertainty needs to be defined by alternative
means, e.g. by estimating orientation from the structure of
the environment around the robot [18], [20], or by deriving
an estimate for the maximum orientation uncertainty from
odometry over a certain period of time for each robot [13].
In these cases the resulting expressions will provide an
upper bound for the localization uncertainty in the group.

In the following section we outline the main approaches
to cooperative localization. In Section III we present the
formulation of the multi-robot localization problem and
study the effect of consecutive relative position updates
on the structure of the Riccati equation describing the
time evolution of the uncertainty in the position estimates.
Section IV contains the derivations of the analytical ex-
pression for the uncertainty propagation in the case of
cooperative localization. In Section V simulation results
are presented that validate the derived analytical expres-
sions for the rate of localization increase. Finally, Section



VI draws the conclusions from this analysis and suggests
directions of future work.

II. RELATED WORK

Many robotic applications require that robots work
in collaboration in order to perform a certain task [4],
[5], [19]. When a group of robots needs to coordinate
efficiently, precise localization is of critical importance.
In these cases multi-robot cooperation for determining
positioning estimates will result in better localization by
compensating for errors in odometry and/or a pose sensor.

Previous work on multiple robots has considered col-
laborative strategies when lack of landmarks made local-
ization impossible [3]. An example of a system designed
for cooperative localization was first reported in [17].
A group of robots is divided into two teams in order
to perform cooperative positioning. At each instant, one
team is in motion while the other team remains stationary
and acts as a landmark. The teams then exchange roles
and the process continues until both teams have reached
their target. Improvements over this system and optimum
motion strategies are discussed in [16], [14] and [15].
Similarly, in [10], only one robot moves, while the rest
of the team of small-sized robots forms an equilateral
triangle of localization beacons in order to update their
pose estimates. Another implementation of cooperative
localization is described in [21] and [22]. In this approach
a team of robots moves through the free space system-
atically mapping the environment. At each time instant
at least one robot is stationary acting as a landmark for
the localization of the moving robots. Furthermore, the
moving robots, by maintaining an uninterrupted line of
visual contact, ensure that the area between the stationary
and the moving robots is free of obstacles. All previous
approaches have the following limitations: (a) Only one
robot (or team) is allowed to move at any given time, and
(b) The two robots (or teams) must maintain visual (or
sonar) contact at all times.

A different collaborative multirobot localization schema
is presented in [6], [7]. The authors have extended the
Monte Carlo localization algorithm [30] to the case of two
robots when a map of the area is available to both robots.
When these robots detect each other, the combination of
their belief functions facilitates their global localization
task. The main limitation of this approach is that it can
be applied only within known indoor environments. In
addition, since information interdependencies are being
ignored every time the two robots meet, this method can
lead to overly optimistic position estimates. This issue is
discussed in detail in [25]. A particle filter was also used
in the context of multi-robot exploration in [24].

A Kalman filter based implementation of a cooperative
navigation schema is described in [29]. In this case the
effect of the orientation uncertainty in both the state prop-
agation and the relative position measurements is ignored
resulting in a simplified distributed algorithm. Finally, in
[27], [28] a Kalman filter pose estimator is presented for a

group of simultaneously moving robots. Each of the robots
collects sensor data regarding its own motion and shares
this information with the rest of the team during the update
cycles. The Kalman filter is decomposed into a number of
smaller communicating filters, one for every robot, pro-
cessing sensor data collected by its host robot. It has been
shown that when every robot senses and communicates
with its colleagues at all times, every member of the group
has less uncertainty about its position than the robot with
the best (single) localization results. Finally, in [11] an
alternative to the Kalman filter approach was presented. A
Maximum Likelihood estimator was formulated to process
relative pose and odometric measurements recorded by the
robots and a solution was derived by invoking numerical
optimization.

Different sensing modalities have been used by teams
of mobile robots in order to track each other. Some sen-
sors are able to estimate accurately the distance between
robots, such as the ultrasound wave used in the milibots
project [9]. Other sensors estimate the bearing of the
observed robot such as the omnidirectional video cameras
used in [12], [8], or both the distance and relative bearing,
with stereo vision and active lighting in [2] and vision
and laser range scanners in [1]. Finally, sensors are able
to estimate even the orientation of the observed robot in
addition to the distance and relative bearing [14], [22].

To the best of our knowledge there exist only two
cases in the literature where analysis of the uncertainty
propagation has been considered in the context of cooper-
ative localization. In [29] the improvement in localization
accuracy is computed after only a single update step with
respect to the previous values of position uncertainty.
In this case the robot orientations are assumed to be
perfectly known and no expressions are derived for the
propagation of the localization uncertainty with respect
to time or the accuracy of the odometric and relative
position measurements. In [23] the authors studied in
simulation the effect of different robot tracker sensing
modalities in the accuracy of cooperative localization.
Statistical properties were derived from simulated results
for groups of robots of increasing size N when only one
robot moved at a time.

Hereafter we present the details of our approach for
estimating the uncertainty propagation during cooperative
localization. Our initial formulation is based on the al-
gorithm described in [28]. The main difference is that
the robots instead of measuring their relative orientations,
have access to absolute orientation measurements.

III. COOPERATIVE LOCALIZATION

Consider the case of a mobile robot moving on flat
terrain and equipped with odometric sensors that measure
its linear and rotational velocity. In this case the pose of
the robot (in discrete time) is given by



x(k + 1) = x(k) + V (k)Æt cos(�(k))

y(k + 1) = y(k) + V (k)Æt sin(�(k))

�(k + 1) = �(k) + !(k)Æt

where V (k) and !(k) are the linear and rotational velocity
of the robot at time k. This non-linear set of equations can
be used to propagate the estimate for the pose of the robot
as

x̂(k + 1=k) = x̂(k=k) + Vm(k)Æt cos(�̂(k=k)) (1)

ŷ(k + 1=k) = ŷ(k=k) + Vm(k)Æt sin(�̂(k=k)) (2)

�̂(k + 1=k) = �̂(k=k) + !m(k)Æt (3)

where

Vm(k) = V (k)� wV (k)

!m(k) = !(k)� w!(k)

are the measured linear and rotational velocity of the
robot, and wV (k) (w!(k)) is the noise contaminating the
linear (rotational) velocity measurements. Both wV (k) and
w!(k) are assumed to be independent zero-mean white
Gaussian processes with known variances

�2V = Efw2
V g; �

2
! = Efw2

!g (4)

If the robot receives absolute orientation measurements

z(k + 1) = �(k + 1) + n�(k + 1) (5)

with n�(k+1) a zero-mean white Gaussian process with
known variance �2� = Efn2�g, these measurements can be
processed to improve the odometric estimates (x̂; ŷ; �̂)
of the pose of the robot.

Instead of formulating an estimator that combines both
odometric and absolute orientation measurements, we fol-
low a two-tier approach to this problem where absolute
orientation measurements are first combined with odomet-
ric measurements of the rotational velocity of each robot
independently. Then, the resulting improved orientation
estimates are used to propagate the position estimates of
the robot. Although this approach is suboptimal compared
to an estimation scheme that combines all odometric and
absolute orientation measurements at once, it will facilitate
the derivation of an analytical expression for bounding the
uncertainty in the case of groups of robots moving in 2D.
The same two-tier approach can be used to derive similar
expressions for motion in 3D.

A. Orientation Estimation

For the first layer of estimation, the rotational velocity
measurements are used to propagate the orientation esti-
mates for the robot. This is described by the following
equation:

_̂
�(t) = !m(t) = 0�̂(t) + !(t)� w!(t) (6)

which is the continuous time form of Eq. (3). These
estimates are then updated by processing the absolute
orientation measurements

z(t) = �(t) + n�(t) (7)

In order to estimate the uncertainty of the orientation
estimates at steady state we invoke the continuous time
Riccati equation

_P = FP + PF T +GcQG
T
c � PHTR�1HP (8)

with P = �2�o
, F = 0, Gc = �1, Q = �2!, R = �2�,

and H = 1. The previous equation at steady state, where
limt!1 _P = 0, can be written as

0 = �2! �
1

�2�
�4�o

) �2�o
= ���! (9)

This last expression provides the estimate for the uncer-
tainty in the orientation of the robot when both rotational
velocity and absolute orientation measurements are pro-
cessed.

B. Position propagation

At this point we can use this result to provide an
expression for the uncertainty propagation of the position
estimates for the case of a single robot. By linearizing
Eqs. (1), (2), the position error propagation equations for
the robot can be written in a matrix expression as� ex(k + 1)ey(k + 1)

�
=

�
1 0
0 1

�� ex(k)ey(k)
�

+

�
Æt cos �̂(k) �Vm(k)Æt sin �̂(k)

Æt sin �̂(k) Vm(k)Æt cos �̂(k)

��
wV (k)e�(k)

�
, eX(k + 1) = �(k) eX(k) +G(k)W (k) (10)

where �(k) = I , is the 2� 2 identity matrix,

Q = EfWW
T
g =

�
�2V 0
0 �2�o

�
and

Qd(k) = G(k)Q(k)GT (k) (11)

As evident from the previous expressions, the covariance
Qd(k) for all sources of uncertainty and noise during
propagation is a time-varying matrix. The values of the
elements of this matrix depend on the measured velocity
Vm(k) of the robot and the estimate of its orientation �̂(k).
If we assume that the robot moves with constant velocity
and we average across all possible values of its orientation,
then the previous covariance matrix is given by

�Qd(k) = Æt
2 �

2
V + �2�oV

2

2
I (12)

in discrete time, and

�Qc(t) =
�2V + �2�oV

2

2
I = qI (13)

in continuous time.
When no relative positioning information is available,

the covariance for the position of the robot is propagated
using only odometric information. This is described by the
following Riccati equation

_P = FP + PF
T + �Qc = �Qc = qI )

P (t) = (qt+ p0) I (14)



where p0 is the initial positioning uncertainty of the robot
and I is the 2 � 2 identity matrix. As it is evident, the
covariance (uncertainty) for the position of a single robot
increases, on the average, linearly with time at a rate of
q determined by the accuracy of the absolute orientation
measurements and the robot’s odometry.

C. Relative Position Measurements

At this point instead of one robot, we consider the case
of a group of robots where each of them (i) estimates
its orientation by fusing rotational velocity measurements
with absolute orientation measurements, (ii) propagates its
position using the previous orientation estimates and linear
velocity measurements, and (iii) measures the relative
position zij of all other robots in the team
zij(k + 1) = i

~pj(k + 1) = C
T (�i) (~pj � ~pi) + nzij (15)

This additional relative position information can be used
to improve the localization accuracy in the group. In the
previous equation, ~pi symbolizes the xi and yi coordinates
of robot’s i position, i.e. ~pi = [xi yi]

T . The preceding
superscript denotes the frame of reference i attached on the
observing robot i that the position of robot j is expressed
to. For notation simplicity, when no preceding superscript
appears, this quantity is expressed with respect to the
global frame of reference. Finally, nzij is the noise in
the relative position measurement, assumed to be a zero-
mean white Gaussian process, and C(�) is the rotational
matrix

C(�) =

�
cos � � sin�
sin� cos�

�
By linearizing Eq. (15), the measurement error equation

is given byezij(k + 1) = zij(k + 1)� ẑij(k + 1)

= Hij(k + 1) eX(k + 1) + �(k + 1)nij(k + 1)

where
Hij(k + 1) = CT (�̂i)

�
0 : : : �I : : : I : : : 0

�
eX(k + 1) =

� epT1 : : : epTi : : : epTj : : : epTN �
T

�(k + 1) =
h
I �CT (�̂i(k + 1))Jc�p

ij
(k + 1)

i
c�p

ij
(k + 1) = p̂j(k + 1)� p̂i(k + 1)

nij(k + 1) =

�
nzij (k + 1)e�i(k + 1)

�
; J =

�
0 �1
1 0

�
The covariance for the measurement error is given by
Rij(k + 1) = �(k + 1)Efnij(k + 1)nTij(k + 1)g�T (k + 1)

= Rzij
(k + 1) +R~�ij

(k + 1) (16)

This expression encapsulates all sources of noise and un-
certainty that contribute to the measurement error ez ij(k+
1), the difference between the actual relative position mea-
surement zij(k+1) and the estimate for this measurement
(expected measurement) ẑij(k + 1). More specifically,
Rzij (k + 1) is the covariance of the noise nzij (k + 1)
in the recorded relative position measurement z ij(k + 1)
and R ~�ij

(k + 1) is the additional covariance term due to

the error ~�i(k+1) in the orientation estimate �̂i(k+1) of
the observing robot i. These two covariances are computed
by the following expressions:

Rzij
(k + 1) = Efnzij (k + 1)nTzij (k + 1)g (17)

and
R~�ij

= C
T (�̂i)Jc�pijEfe�2i gc�pTijJTC(�̂i)

= C
T (�̂i(k + 1)) i

R~�ij
C(�̂i(k + 1)) (18)

with
i
R~�ij

= �
2
�o

" c�y2
ij

�c�y
ij
c�xij

�c�xij c�yij c�x2ij
#

(19)

Note that the uncertainty �2�o
= Ef~�2i (k + 1)g in the

orientation estimate �̂i(k + 1) of the observing robot i is
amplified by the distance between the two robots i and j.
The further away the two robots are the more error-prone
is the measurement estimate ẑij(k + 1). In the previous
expression iR~�ij

is a function of the relative position of
robots i and j that varies over time. In order to produce
a time-invariant expression for iR~�ij

we approximate it
by its maximum average value. To this end we select for
c�xij , c�yij their r.m.s. value under the constraintc�x2ij + c�y2

ij
= �

2
o (20)

where �o is the maximum distance between any two
robots in the group: �o = maxij k~pj � ~pik. This yields
c�xij = c�yij =

p
2�o
2

, and by substituting in Eq. (19):

o �R~�ij
=

�2o�
2
�o

2

�
1 1
1 1

�
= o�r��1 (21)

If the relative position measurement is comprised of the
distance � and bearing � to another robot, that is z ij =

[� cos � � sin �]T then Eq. (17) is written as:

Rzij
=

�
�2� cos

2 � + �2�2� sin
2 �

�
�2� � �2�2�

�
sin � cos ��

�2� � �2�2�
�
sin � cos � �2� sin

2 � + �2�2� cos
2 �

�
For different values of �, the maximum average value for

the previous expression is:
o �Rzij

=
�2� + �2o�

2
�

2
I = o�rzI (22)

By substituting in Eq. (16) the expressions from Eqs.
(18), (21), (22), the total maximum average covariance for
the relative position measurement between robots i and j

is:
o �Rij = o �Rzij

+ C
T (�̂i(k + 1)) o �R~�ij

C(�̂i(k + 1))

= o�rzI +
o�r�C

T (�̂i(k + 1))�1C(�̂i(k + 1)) (23)

When each of the N robots measures its relative position
with respect to every other robot in the group, the total
information available to the estimator is

H
T
R
�1
H = �N

i=1�
N

j=1;i6=jH
T

ij

o �R�1
ij
H

T

ij (24)

with
H =

�
HT

12 : : : HT

1N : : : HT

N1 : : : HT

N(N�1)

�T
R = diagN

i;j=1; i6=j

�
o �Rij

�
where R is a block-diagonal matrix with N(N � 1)

diagonal matrix elements o �Rij . Note that



HT

ij

o �R
�1
ij

HT

ij
=

2
6666666666664

0 : : : 0 : : : 0 : : : 0

...
. . .

... � � �

... � � �

...
0 : : : o �R�1 : : : �

o �R�1 : : : 0

... � � �

...
. . .

... � � �

...
0 : : : �

o �R�1 : : : o �R�1 : : : 0

... � � �

... � � �

...
. . .

...
0 : : : 0 : : : 0 : : : 0

3
7777777777775

(25)

with
o �R�1 = (o�rzI +

o�r��1)
�1

=
1

o�rz
I �

o�r�
o�rz(o�rz + 2 o�r�)

�1

= r1I + r2�1 (26)

By substituting Eq. (25) in Eq. (24), it is shown [26] that
H

T
R
�1
H = 2NI(o �R�1)� 21(o �R�1)

From here on we use the notation I(A) to denote a matrix
composed of N diagonal submatrices A and N(N � 1)
non-diagonal submatrices 0 and 1(B) to denote a matrix
whose all N2 submatrix elements are equal to B.

D. Consecutive Relative Position Updates

Assume that at the time step k = 0 all robots know their
position with the same level of accuracy, that is P0 =
I(P0), P0 = p0I . The covariance matrix P0 is symmetric
with equal non-diagonal submatrices (here all zero) and
also equal diagonal submatrices (here all P0). We will
prove that after any number of steps the covariance matrix
sustains this structure. The discrete-time inverse Riccati
equation for the propagation and update of the information
matrix P�1 is
P
�1
k+1 =

�
�kPk�

T

k +GkQG
T

k

�
�1

+HT
R
�1
H

= (Pk +Q)�1 +HT
R
�1
H (27)

where since the robots move independently it is �k =
I(I) and Gk = I(I). Substituting P0 = I(P0) and Q =
I( �Qd), we have
P
�1
1 =

�
I(P0) + I( �Qd)

�
�1

+HT
R
�1
H

= I
�
(P0 + �Qd)

�1 + 2N o �R�1
�
+ 1(�2 o �R�1)

= I(A�11 ) + 1(B
0
�1
1 )

By employing the relations in the Appendix the covari-
ance matrix can be computed as:

P1 = I(A1) + 1(�(A
�1
1 +NB

0
�1
1 )�1B

0
�1
1 A1)

= I(A1) + 1(B1)

Note again that both the diagonal and non-diagonal
submatrix elements of this matrix are equal between them.
Assume that after a certain number of propagation and
update steps, at time step k = m the covariance matrix
has still equal diagonal and equal non-diagonal submatrix
elements. That is

Pm = I(Am) + 1(Bm) (28)

We will prove that the covariance matrix Pm+1 also has
equal diagonal and non-diagonal submatrix elements. By
substituting Eq. (28) in Eq. (27) we have:

P
�1
m+1 =

�
I(Am) + 1(Bm) + I( �Qd)

�
�1

+HT
R
�1
H

= I
�
(Am + �Qd)

�1 + 2No �R�1
�

� 1
�
(Am + �Qd +NBm)�1Bm(Am + �Qd)

�1 + 2o �R�1
�

= I(A�1m+1) + 1(B
0
�1
m+1)

By employing the relations in the Appendix once more,
the covariance matrix can be computed as:
Pm+1 = I(Am+1) + 1(�(A

�1
m+1 +NB

0
�1
m+1)

�1
B

0
�1
m+1Am+1)

= I(Am+1) + 1(Bm+1)

We have proven the following:
Lemma 3.1: The covariance matrix for a group of N

robots with the same level of uncertainty for their pro-
prioceptive and exteroceptive measurements when they
perform cooperative localization, is on the average a ma-
trix with equal diagonal and equal non-diagonal submatrix
terms.
A direct result of the previous lemma is the following:

Corollary 3.2: A group of N robots with the same level
of uncertainty for their proprioceptive and exteroceptive
measurements, when they perform cooperative localization
they experience the same level of positioning uncertainty
and they share the same amount of information.
The amount of information shared by two robots is cap-
tured in the cross-correlation terms (non-diagonal subma-
trices) of the covariance matrix.

IV. UNCERTAINTY BOUNDS FOR COOPERATIVE

LOCALIZATION

At this point we employ Lemma 3.1 to derive the main
result of this paper, an analytical expression for the rate
of increase in the localization uncertainty for a group of
N robots.

Lemma 4.1: For a group of N robots with the same
level of uncertainty for their proprioceptive and exte-
roceptive measurements, when they perform cooperative
localization their covariance at steady state grows, on the
average, linearly with time

Pii(t) =
�
1

N
qt+ 1

N
p0 +

N�1
N

a1c
�
I + N�1

N
�a1c�1

Pij(t) =
�
1

N
qt+ 1

N
p0 �

1

N
a1c

�
I � 1

N
�a1c�1 (29)

with i; j = 1 : : :N and

a1c =

r
qo�rz
2N

(30)

� = �
1

2

�
1�

r
1 + 2

o�r�
o�rz

�
(31)

Proof: In order to compute the time evolution of the
covariance matrix for a group of N robots, we employ the
continuous time Riccati equation

_P = FP+PFT +GQGT
�PH

T
R
�1
HP (32)

where F = I(0), G = I(I), Q = I( �Qc) and

H
T
R
�1
H = I(2N o �R�1) + 1(�2 o �R�1)

P = I(A) + 1(B) (33)



By substituting these terms in Eq. (32) it can be shown
[26] that

_P = I( _A) + 1( _B)

= I( �Qc � 2NA
o �R�1A) + 1(2A o �R�1A)

or
_A = �Qc � 2NA

o �R�1A (34)

_B = 2A o �R�1A =
1

N

�
�Qc �

_A(t)
�

(35)

with A(0) = P (0) = p0I , B(0) = 0I .
If A(t) was known then matrix B(t) can be determined

from Eqs. (13), (35) as

B(t) =
1

N
((qt+ p0)I �A(t)) (36)

In Eq. (34), due to the structure of matrices �Qc (from Eq.
(13)) and o �R�1 (from Eq. (26)), A can be written as

A(t) = a1(t)I + a2(t)�1 (37)

with a1(0) = p0, a2(0) = 0. Substituting in Eq. (34), one
can derive the following expressions:

_a1 = q � 2N
a21
o�rz

(38)

_a2 = �4N(r1 + 2r2)a
2
2 � 4N(r1 + 2r2)a1a2 � 2Nr2a

2
1 (39)

Solving these equations at steady state yields
lim
t!1

a1(t) = a1c (40)

lim
t!1

a2(t) = �a1c (41)

with a1c and � defined by Eqs. (30), (31).
Using the results from Eqs. (40), (41) in Eqs. (37), (36)

we have
A(t) = a1cI + �a1c�1 (42)

B(t) =
1

N
[(qt+ p0 � a1c)I � �a1c�1] (43)

Finally, by substituting from Eqs. (42), (43) in Eq. (33) for
the steady state values of a1(t), a2(t), given by Eqs. (40),
(41), the covariance for a group of N robots is computed
by Eq. (29).

Corollary 4.2: For a group of N robots performing
cooperative localization, the maximum expected rate of
positioning uncertainty increase at steady state is _Pii =

q

N
,

i.e. inversely proportional to the number of robots N .
Proof: Differentiation of Eq. (29) provides this

result.
The following significant remarks are evident:

� The rate of increase at steady state is inversely
proportional to the number N of robots and
proportional to the odometric and orientation
uncertainty of each robot (captured by q). The
above result is also supported by the simulation
study presented in [23] using a particle filter based
estimator. Appropriate curve fitting calculated the rate
of uncertainty increase proportional to N �0:948.

� The rate of uncertainty increase at steady state does
not depend on the accuracy of the relative position
measurements(captured by their covariance o �R).

� The time for the system to reach steady state is
determined by the largest time constant of the system
[26]

�1 =
1

2

r
o�rz
2Nq

Inaccurate relative position measurements o�rz will
delay the system reaching steady state. On the other
hand large teams N of robots with precise odo-
metric/orientation information q will quickly reach
steady state.

Up to this point, we have assumed that all robots have
the same odometric/orientation uncertainty q i = q and rel-
ative position measurement uncertainty i�rz = o�rz . These
assumptions were made in order to facilitate the previous
derivations and thus gain insight into the structure of the
cooperative localization problem. Nevertheless, Eq. (29)
can be used as an inequality to determine the upper bound
of the expected uncertainty growth with q = max i(qi),
o�rz = maxi(

i�rz).

V. SIMULATION RESULTS

We performed a series of experiments in simulation
to verify the performance of cooperative localization and
validate the theoretical analysis presented in the previous
section. The same setup was used in all experiments
conducted. N robots were placed inside a 40m by 40m
arena at random locations (see Fig. 1 for four robots). The
robots were kept inside the designated area thus limiting
the maximum inter-robot distance to the length of the
diagonal. During the experiment the linear velocity of all
robots was maintained constant (Vt = 0:25m=sec) while
the rotational velocity was changed randomly as follows:

!t = !max � n0;1 (44)

where !max = 0:2rad=sec and n0;1 is a random value
drawn from the normal distribution with zero mean and
� = 1.

0 5 10 15 20 25 30 35 40

0

5

10

15

20

25

30

35

40

walls
robot 1
robot 1 DR
robot 1 KF
robot 2
robot 2 DR
robot 2 KF
robot 3
robot 3 DR
robot 3 KF
robot 4
robot 4 DR
robot 4 KF

Fig. 1. Four robots move randomly inside a 40m by 40m arena. Starting
positions are marked by “*”.



The simulated robot motion was recorded along with the
dead reckoning (DR) and Kalman filter (KF) cooperative
localization estimates. The velocity measurements were
corrupted by additive zero-mean white Gaussian noise
with noise parameters measured on a iRobot PackBot
robot (�V = 0:0125m=sec, �! = 0:0384rad=sec). The
absolute orientation of each robot was measured by a sim-
ulated compass with �� = 0:0524rad. The robot tracker
sensor returned range and bearing measurements corrupted
by zero-mean white Gaussian noise with �� = 0:01m
and �� = 0:0349rad. The above values are compatible
with noise parameters observed in laboratory experiments
[24]. All measurements were available at 1Hz. The robots
performed random walks for 10 min at each trial while
continuously measuring their relative positions. Fig. 1
presents the ground truth (solid lines), the dead reckoning
based trajectories (dotted lines) and the KF (dashed lines)
for four robots from one trial.

Fig. 2 depicts the comparison between the theoretically
derived upper bound from the analytical expression in
Eq. (29) (black dashed lines) and the average, across N

robots, covariance along the x and y axes for ten different
trials (solid blue lines). Each figure (2(a)-2(d)) presents the
results for an increasing number of robots (N = 2; : : : ; 5)
and consists of two sub-plots: the top one for the x-
axis and the bottom one for the y-axis. As evident the
average covariance values (Px; Py) are consistently lower
compared to the theoretically derived upper bound, and
follow (on average) the same rate of increase.

It is worth noting that as the number N of robots
increases, the constant offset between the theoretically
derived covariance upper bound and the recorded average
covariance grows larger. This is due to the fact that the
parameter �o (maximum average distance between the
robots) decreases significantly as the number of robots
populating the same area increases. This in effect reduces
the constant term in the linear, with respect to time, ex-
pression for the maximum expected covariance in Eq. (29).

VI. CONCLUSIONS

The provable upper bound on the rate of position un-
certainty increase in Eq. (29) allows to draw the following
important conclusions. First, the uncertainty growth is
inversely proportional to the number of robots thus the
contribution of each additional robot follows a law of
diminishing return. Second, the rate of uncertainty growth
depends only on the number of robots and the odometric
and orientation uncertainty and not on the accuracy of the
relative position measurements. These results were verified
in simulation for robot groups of increasing size. The
estimated by the Kalman filter uncertainty, consistently
remained below the theoretical upper bound. It is worth
noting that the rate of uncertainty increase agrees with
independent experiments performed in previous work [23]
using a particle filter estimator.

From the form of the derivations we are confident that
these results can be extended to the case of motion in 3D,

thus providing upper bounds for the position uncertainty
of outdoor ground robots or autonomous aerial vehicles.
Finally, we intend to study the effect on cooperative local-
ization of different sensing modalities, motion strategies
and robot formations.
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Fig. 2. The covariance along x-axis and y-axis for ten experiments (solid thin blue lines) and the theoretical upper bound of uncertainty (dashed black
lines) for different number of robots (N = 2; 3; 4; 5).
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APPENDIX

Lemma 1.1: The inverse of a matrix C = I(A) +
1(B) that is comprised of N equal invertible diagonal
submatrices (9 B�1) and N(N � 1) equal invertible non-
diagonal submatrices (9 (A + NB)�1), with N � 2 is
C�1 = I(A�1)� 1((A+NB)

�1
BA�1).

Proof: Multiplying the previous two matrices and
employing the relation 1(X)1(Y ) = 1(NXY ) yields
CC�1 = I(I)


