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Abstract— This paper presents two strategies for simulta-
neous localization and uncertainty reduction on maps for a
team of robots. The proposed strategies differentiate between
homogeneous and heterogeneous multi-robot teams assigning
different roles based on risk and/or capabilities. We apply
the proposed algorithms to the Robot-Camera Sensor Network
localization problem, where a team of robots moves through
an environment equipped with a camera sensor network. Each
robot uses its own pose estimate to localize every camera it
encounters. This is achieved by using the camera observation of
the robot to extract a 6-DoF transformation between the camera
and the robot. The inverted transformation places the camera in
the robots global frame of reference, and map merging among
the multiple robots places the cameras and the team of robots
in a common frame of reference. At the core of the estimation,
an extended Kalman filter algorithm is used to estimate the
joint pose of robots and cameras. Experimental results from
realistic simulations are presented that validate the proposed
strategies. I. INTRODUCTION

The exploration of unknown environments is one of the
fundamental problems in robotics with multiple applications.
During exploration, there are two opposing objectives. On
one hand, the task should be completed as fast as possible,
guiding the robot(s) to always seek new areas to explore.
On the other hand, when robots move into new territory
their positional uncertainty increases, and consequently, the
resulting map becomes inaccurate. As such, there is a need
to return to already explored territory, refine the robot’s pose
estimate, and reduce the uncertainty in the produced map.
Introducing many robots into the exploration and mapping
task increases the efficiency as the task can be broken down
and each robot completes only one part of the task. In
addition, the overall robustness increases, as in the case
of a robot malfunction, the other robots can take over and
complete the task. However the complexity of the solution
increases as the robots have to coordinate with each other.

In this paper we address the problem of simultaneously
localizing a team of mobile robots and mapping a camera
sensor network [1]. The team moves inside an environment
equipped with a several cameras, connected in the same
network as the team of mobile robots; see Fig. 1. The goal
is to localize all the cameras in a global frame of reference,
and to maintain the pose estimate for each mobile robot
in the team as accurately as possible. This variant of the
mapping problem eliminates the data association concerns
which, though relevant, are not at the center of the decision
between exploration and relocalization. During exploration
we assume that the robots are in constant communication.
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Fig. 1. A sample office environment with the Generalized Voronoi Graph
(GVG) displayed, and five robots (R1, . . . ,R5). Without loss of generality
we assume the cameras are located at the junctions (vertices) of the GVG.

In general, an indoor environment equipped with a camera
sensor network, capable of communicating with a team of
robots, typically also provides inter-robot communication
infrastructure. As the team moves through the environment it
uses the robot’s pose estimate, every time a robot encounters
a camera, in order to place the camera in the common
frame of reference of the robots. By maintaining an ongoing
estimate of each robot’s pose, the robots can probabilistically
estimate, (and update) the position of any sensor that ob-
serves them, given the appropriate motion and measurement
models. Furthermore, the environment is represented as a
graph, where vertices are locations that can be seen by the
cameras and the edges represent accessible paths between
these areas; the cameras have no overlapping fields of view.

In the proposed exploration framework, where uncertainty
reduction is one of the fundamental concerns, different
choices are made in order to balance accuracy and efficiency.
In general, any robot exploring new territory and producing
a map makes the following decisions:
• Choice between exploring new territory or relocal-

izing: After each step, select with probability pexplore if
the robot should explore and with probability 1− pexplore
if the robot will relocalize; a strategy known as ε-
greedy[2], [3].

• Select Destination
– Explore: If the current location is a frontier, move to

new territory. Otherwise, select the closest frontier
territory. In the proposed work, during exploration
of new territory the ear-based exploration strat-
egy [4] is used to facilitate frequent loop-closures.

– Relocalize: Select as destination the node with the
highest uncertainty [3].

• Path plan to destination: An A* path-planning al-
gorithm considering a combination of distance and
uncertainty reduction as the cost function is utilized [5].

In other words, any multi-robot exploration strategy needs
to address several different components. At the core of the
proposed system is an EKF-based state estimation algorithm
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that computes the pose of every robot together with the pose
of the cameras in a common frame of reference. At each
step, for each robot, a planner makes first the choice of
where to go next: explore a new area or relocalize by visiting
a known part of the world; and then plans a path to the
selected goal. Both the goal selection and the final path to
the goal are computed using an A* planning algorithm with
a cost function that combines the distance travelled with the
projected uncertainty variation from such action; the A* uses
the known map to estimate the expected uncertainty of an
action as described in [5].

One key distinction among different multi-robot ap-
proaches is based on the composition of the team. When all
the robots are similar, in terms of cost and capabilities, then
each robot can exchange roles with any other robot if it is
appropriate. In contrast when the robots operate in dangerous
environments robots with different capabilities are deployed.
For example, in a search and rescue, or in a contamination
identification scenario, the less capable, therefore cheaper
robots, are used to explore unknown territory thus risking
damage [6], while the more capable/expensive robots operate
inside the explored area providing support. The main goal of
the more capable robots is to improve the overall accuracy of
the map. In this paper we present two strategies depending on
the variation of the robot capabilities, heterogeneous versus
homogeneous robot teams. The focus is on the heterogeneous
team with the homogeneous team performance presented
for comparison. Another way to describe the difference
between the two scenarios is to consider exploration and
relocalization as role assignments. In homogeneous teams,
employing ε-greedy strategy, the role assignment is dynamic.
In contrast, in heterogeneous teams the role assignment is
static, depending on the capabilities of each robot.

This paper also presents an extension of the map merg-
ing algorithm [7] from the 2D case, [x,y,yaw], to 6 DoF,
[x,y,z,roll, pitch,yaw], for a team of robots of arbitrary size.
Multiple observations of the same landmark by different
robots are fused together in a systematic manner using the
extended Kalman filter formulation.

II. RELATED WORK

Several different strategies have been proposed for the
problem of exploration. Frontier based exploration was ex-
tended to multiple robots in [8]. Zlot et al. [9] proposed
a market based scheme for exchanging exploration tasks
among the robots. In both cases the goal was to improve
the efficiency of the exploration with no concern for the
quality of the map. An alternative market based scheme was
proposed by Gerkey et al. [10]. Wurm et al. [11] used a
frontier based exploration to select destinations which were
then allocated to the robots using the Hungarian method of
task assignment. Earlier work [12] considered the gain in
information by exploring a new area and the cost to reach the
above mentioned area. A greedy approach to exploration was
proposed in [13] where the information gain from different
actions was explicitly modelled. The greedy approach was
also used in [14] where the task of mapping was considered
under the assumption of perfect localization. The Centibot

project was a DARPA sponsored program that demonstrated
the deployment of one hundred robots. In [15] the authors
proposed merging the information of the robot team members
into shared maps, and then generate tasks using a topological
decomposition of the environment. Semantic information has
also been used to identify locations and facilitate exploration
of multi-robot teams [16]. More recently, the problem of
selecting goals was formalized as a decentralized Markov
Decision Process [17], the goal is to minimize interference
among the robots. All of the above methods are concerned
with efficiency, that is, minimizing the total distance travelled
by the robot-team with minimal concerns on the accuracy
of the resulting map. Theoretical exploration algorithms on
graphs have been studied extensively [18] but they do not
address the positional uncertainty accumulated during edge
traversals. In a related topic Basilico and Amigoni [19]
proposed a strategy for exploring an unknown space with
efficiency as the main motivation. Their choice is based on
the Multi-Criteria Decision Making theory, and focuses on
maximizing the perceived information.

During exploration, different criteria can be used to select
the next frontier node from where to explore unknown
territory: the closest node, or a random node, or the node
with maximum or with minimum uncertainty; [3] presents a
study of the effect the above choices have on the performance
and the accuracy for the single robot case.

In [20] two measures from information theory, the trace
or the determinant of the covariance matrix, provided an
estimate for the overall uncertainty of the system. Very
recently, Carrillo et al. [21] proposed a new method for
quantifying the uncertainty using the D-opt criterion as the
metric. In this paper we use the more traditional metric of
the trace of the covariance matrix [22], [23]; E =

√
trace(P).

Where P is the state covariance composed of the pose of
the robot and the poses of all the discovered cameras. The
smaller the trace E the more accurate the estimate. We are
in the process of comparing the two metrics; however, such
a comparison is beyond the scope of this paper.

The trace of the covariance was also used in [24] in a
weighted linear combination of uncertainty and distance for
a path p; see (1).

C(p) = ωd length(p)+ωu trace(P(p)) (1)

In the cost function C(p), the trace of the covariance matrix P
is an approximation of the uncertainty in the map, while the
length of the path is another contributing factor on evaluating
the quality of path p. The same formulation has been used
more recently also in [5], [25], [26].

A. Hybrid Robot/Camera Sensor Network Localization

As mentioned earlier we extend the cooperative robot-
camera sensor network localization paradigm [26] to multi-
robot teams. For the sake of completeness a small overview
of the single robot case approach is presented next. A robot,
equipped with a unique detectable target, travels through
an environment which is equipped with a camera sensor
network. When the robot (R) is detected by a camera (C j) the
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Camera-Robot transformation T R
C j

is inverted and the pose of
the robot is used to localize the camera in a common frame
of reference. An EKF based scheme is used to propagate
uncertainty between the camera locations using the motion
model of the robot. In the multi-robot case, each robot
maintains their own state xi, see (2), which consists of the
position and orientation of the robot together with the map
of the camera poses:

xi = [xRi ,xC1 , . . . ,xCN ]
T (2)

where xRi = [xr
t ,y

r
t ,θ

r
t ] is the position and orientation of

the robot in 2D; xCi = [xi
t ,y

i
t ,z

i
t ,θ

i
t ,φ

i
t ,ψ

i
t ]

T is the pose of
the camera in 3D; xi

t ,y
i
t ,z

i
t represents the position of the ith

camera, and θ i
t ,φ

i
t ,ψ

i
t are the Euler angles roll, pitch, yaw

respectively.
The covariance matrix Pi, see 3, can be decomposed in

several blocks:

Pi =


PRiRi PRiC1 . . . PRiCNi

PC1Ri PC1C1 . . . PC1CNi
...

...
. . .

...
PCNi Ri PCNiC1 . . . PCNiCNi

 (3)

where PRiRi is the robot’s i uncertainty covariance; PC jC j

is the uncertainty covariance of the camera’s j pose. The
cross correlation between robot i and camera j is represented
by PRiC j and the cross correlation between two cameras is
represented by the matrix PCiC j . The cameras are represented
in the covariance matrix in the order they were discovered.

III. MULTI-ROBOT EXPLORATION

In this paper we expand the Simultaneous Localization
and Uncertainty Reduction on Maps (SLURM) strategy from
single robots [4] to teams of robots. Central to our approach
is the satisfaction of the conflicting goals of efficiency
and accuracy. Depending on the homogeneity of the robots
capabilities two strategies are proposed. When every robot
has the same capabilities, the robots spread through the envi-
ronment and each robot operates inside its own space, using
a Voronoi decomposition of the explored space. When the
team comprises of robots with different qualities, especially
in the presence of hazardous conditions, the more capable
robots refine the map staying in the safe explored area,
while the least capable/expensive robots drive through the
unknown and explore the environment. In both cases the team
selectively explores and relocalizes in a balanced manner that
ensures a high quality map as the end result.

Different exploration strategies can be employed by each
individual robot. At any point each robot has knowledge of
a partial map, in our case in the form of a sub-graph, and
a set of destinations, in our case a set of vertices, termed
frontiers [8] which provide access to the unexplored part of
the environment. At the core of each strategy is how to select
the next frontier node from where to continue the exploration.
In this work we utilize the ear-based exploration [27]. The
proposed strategy works as following: the robots explore
the environment one cycle at the time, for each robot. In

the graph model used in this work, after reaching a frontier
node each robot takes the first edge clockwise, and continues
selecting the next edge clockwise until the robot returns
to an already explored vertex. During edge traversals the
odometric error is propagated using an extended Kalman
filter (EKF). The pose of the mapped camera, in the already
explored vertex, is used in the EKF update step. This strategy
deliberately ensures loop closure regularly, by returning to
explored areas, thus reducing the map uncertainty at regular
intervals.

Another important consideration relates to the commu-
nication capabilities of the robot team and the frequency
at which they exchange information. The more often the
robots exchange information, the more accurate the results
will be, however, frequent updates will also place a heavy
computational load on the system. In this work we consider
each trajectory for exploring a new part or for refining the
map as an atomic action and only after it is completed the
robots exchange information and merge their maps. The next
subsections describe the two approaches in detail.
A. Homogeneous team – Voronoi Task Decomposition

When all robots have similar capabilities, the explored part
of the map is partitioned using the Voronoi decomposition
on the geodesic distance of the graph. In other words, each
robot considers as candidates for exploration or relocalization
all the nodes that are closest to it than to any other robot.
This strategy minimizes the travelling distance by guiding the
robots to visit frontier nodes at nearby locations, and letting
the distant nodes to be handled by robots closer to them.
This area allocation is dynamic and varies as robots move to
new areas. In addition if a robot has no frontier nodes inside
its allocated area, then it either uses its time to refine the
map by relocalizing or after a few attempts, it travels to the
closest frontier node. It is worth noting that the uncertainty
reduction spreads to the rest of the map during the merge
map operation, see section IV, due to the cross-correlation
terms of the covariance matrix.

Figure 2 presents two annotated time snapshots of the
exploration of an environment by three robots. In Fig. 2a
the robots are placed at a frontier node, and an arrow points
to the selected frontier edge each robot has selected. In
Fig. 2b, each robot has explored an ear and has return
to a known node, effectively performing loop closure. The

(a) (b)

Fig. 2. Homogeneous team exploration. (a) The three robots are at
a different frontier vertex each. The arrow points to the frontier edge
(unexplored edge) they will follow next. (b) Each robot performed ear-
based exploration adding a new loop in the map. The hand drawn solid
lines indicate the Voronoi boundaries assigning the explored vertices to the
individual robots based on proximity.
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hand-drawn lines indicate an approximation of the Voronoi
decomposition.

B. Heterogeneous team – Explorers and Map Refiners

When the exploration of unknown environments is com-
plicated by the presence of hazardous conditions, it is worth
considering an alternative strategy to minimize the cost from
potential robot failures. The main idea is to use a heteroge-
neous team in which inexpensive robots, termed explorers,
with limited sensing and computing capabilities are used
to explore into the unknown territory, risking encounters
with hazardous conditions, while expensive robots, termed
map-refiners, with accurate localization capabilities traverse
through the safe, explored space [6].

Figure 3 presents an annotated example of the heteroge-
neous exploration strategy in action. In Fig. 3a there are three
explorer robots positioned at different frontier nodes, and two
map-refiners that are going to stay inside the explored world.
In Fig. 3b each of the three explorers has followed an ear in
the environment until returning to an already explored node.
The two refiners traverse the known world in order to reduce
the uncertainty. The robots continue exploring and refining
the map in parallel, until there are no unexplored edges left.

C. Exploration versus Exploitation

An important component of the proposed approach is the
allocation of resources to the task of map refinement. In
addition to relocalizing as the robots traverse known territory
on their way to unexplored areas, the robots deliberately
select paths that will take them through the known map of
the environment with the express purpose of reducing the
overall map uncertainty. In order to generate better paths
which balance the distance and uncertainty objectives we
have to combine them into a single cost function. Unfor-
tunately, the two are not compatible; in other words, they
do not share common units for comparison. Equation 1
is used to combine distance and uncertainty at a common
cost function. Choosing the weighting factors ωd and ωu
represents the compromise between distance travelled and
mapping uncertainty or efficiency versus accuracy. We use a
flexible approach based on varying one intrinsic parameter;
the contribution of each quantity is normalized by a rough
estimate of its maximum possible value. When each quantity
is normalized, a single free parameter α in the range [0,1]
is used to specify the participation of each factor. Based on

(a) (b)

Fig. 3. Heterogeneous team exploration: Explorers and Map Refiners. (a)
The arrows indicate the chosen frontier edge. (b) Each explorer performed
an ear-based exploration, adding a loop in the graph. The two map refiners
travelled inside the known graph (solid lines).

this approach, the weights used in the proposed cost function
are:

ωd =
α

maxdistance
, ωu =

1−α

maxuncertainty
(4)

By setting α low during map refinement the robot selects
the path that should result to the best uncertainty reduc-
tion. During exploration α is set close to one, resulting to
short/efficient exploration paths.

In the heterogeneous algorithm, the robots have distinct
roles of exploring and refining the map. In the homogeneous
case though each robot has to make the decision, in each
round, if it should go and explore new territory or if it should
plan a path that will improve map accuracy. We employ the
ε-greedy strategy in which: with probability Pexplore the robot
moves to a new area, and with probability 1−Pexplore the
robot plans a path through the explored area.

Pi j =



PRiRi PRiC1 . . . PRiCNi
0 . . . 0

PC1Ri PC1C1 . . . PC1CNi
0 . . . 0

...
...

. . .
...

...
. . .

...
PCNi Ri PCNiC1 . . . PCNiCNi

0 . . . 0
0 0 . . . 0 PR jR j . . . PR jCNj

0 0 . . . 0 PC1R j . . . PC1CNj
...

...
. . .

...
...

. . .
...

0 0 . . . 0 PCNj R j . . . PCN jCN j


(5)

IV. MAP MERGING

In order to merge the maps the robots employ an aug-
mented version of the algorithm proposed by Zhou and
Roumeliotis [28]. In particular the pose of each camera in
our map is equivalent to the landmarks in [7], however,
each camera pose is represented by six variables, xC =
[x,y,z,θ ,φ ,ψ]T . Currently the robots synchronize in pairs.
As such, for every two robots, Ri and R j an update operation
is performed for every camera mapped by both robots. First
we join the covariance matrices of the two robots (Pi and
P j; see (3)) in a joint covariance matrix Pi j; see (5). Where
the cross-correlation terms between the two robots are set
to zero. Ni (N j) is the number of cameras seen by robot Ri
(R j) respectively. As discussed earlier the data association
problem is addressed by the unique id of each camera.
However, the cameras are visited (discovered) in different
order by each robot and thus, their placement inside the state
vector and the covariance matrix is different.

The cameras that have been observed by both robots pro-
vide an implicit measurement since their global coordinates
are unique and their difference is equal to zero. If x̂i

Ck
(xi

Ck
)

is the estimate (actual pose) of the kth camera as observed
by robot Ri and x̂ j

Ck
(x j

Ck
) is the estimate (actual pose) of

the same camera as observed by robot R j, then the implicit
measurement from the dual observation of the kth camera is:

Zk = xi
Ck
−x j

Ck
= 06×1 (6)

Ẑk = x̂i
Ck
− x̂ j

Ck
(7)
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and the residual is:

rk = Zk− Ẑk =−Ẑk (8)

The observation matrix H for this measurement is:

Hk = [06×306×6(m−1)I6×606×6(Ni−m)06×6(n−1)− I6×606×6(N j−n)] (9)

where m is the position of the kth camera in the state vector
of robot Ri and n is the position of the kth camera in the
state vector of robot R j. Ni (N j) is the number of cameras
in the state vector of robot Ri (R j). 0m×n is a m by n matrix
of zeros

The update using the mutual observation of the kth camera
is performed using the standard Kalman filter equations [29].
After the update the second appearance of the kth camera is
removed, both from the state vector and from the covariance
matrix, together with the cross-correlation terms. The above
describe update is performed sequentially for every camera
that is observed by both robots. In robot teams of more than
two robots the merge operation is performed as following.
First, a merge is performed between the first and the second
robot (R1 and R2), then the result is used in a merge with
the third robot, and so on. After the kth successive merge,
the state and covariance are populated with the robots R1
to Rk+1 and all the unique landmarks observed by the k+1
robots; see (10) for a block depiction of the covariance.

P1−k =


PRL1 PRL1RL2 . . . PRL1RLk+1

PRL2RL1 PRL2 . . . PRL2RLk+1

...
...

. . .
...

PRLk+1RL1 PRLk+1RL2 . . . PRLk+1

 (10)

where PRLi contains the state of robot i and the landmarks
associated with it, the structure for the covariance matrix of a
single robot with it’s observed landmarks is presented in (3).
When all the maps are merged, then the final result contains
information for each robot and for all the landmarks without
any duplicates. It is worth noting that the merge operation is
computationally expensive, and we are currently investigate
options that will improve the efficiency of the operation.

Figure 4 illustrates the merge map operation between two
robots; Fig. 4(a) presents the map of robot R1 before the
merge, Fig. 4(b) presents the map of robot R2, and Fig. 4(c)
presents the updated map containing all the mapped cameras
(landmarks). V. EXPERIMENTAL RESULTS

Several experiments were performed in simulation using
realistic parameters collected during our previous experi-
ments [30]. In particular we have tested the proposed algo-
rithms for environments with different number of vertices,
and varying graph densities. It is worth noting that when
the environments have denser connectivity, the frequency
of loop-closures increases resulting in reduced uncertainty
accumulation. In addition, as the number of robots increases
so does the number of multiple observations of the same
landmark.

Figure 5 presents uncertainty accumulation and distance
travelled results for the two proposed strategies, for a varying

(a) (b)

(c) (d)

(e) (f)

Fig. 5. A comparison between the homogeneous team strategy and the
heterogeneous team strategy. Each graph presents average over five trials.
The first column presents the average distance travelled per robot; the second
column presents the map uncertainty as described by the square root of the
trace of the covariance. In all experiments we used a world with sixty
cameras; with varying graph density. (a,b) presents results from a sparse
graph (almost a spanning tree) where the number of edges was 1.1 times
the number of vertices. (c,d) a fairly dense graph, the number of edges is
equal to 2.1 times the number of vertices. (e,f) a complete triangulation.

number of robots and for graphs with different densities.
In order to ensure the fairness of the comparison between
the two techniques, we set up the probability Pexplore in
the homogeneous case to be 70% and in the case of a
heterogeneous team, two in three robots (66%) are explorers.
In all the experiments we used the same number of vertices
with varying map density. The map density is given as a
function between the number of vertices and the number
of edges. In Fig. 5(a,b) the structure of the environment
is similar to a spanning tree (|V | = 1.1 ∗ |E|); where |V |
is the number of vertices and |E| the number of edges. In
Fig. 5(c,d), there where twice as many edges as vertices,
and finally, in Fig. 5(e,f) a complete triangulation was used.
The first column presents the average distance travelled per
robot, averaged over five trials. The second column presents
a measure of the accumulated uncertainty in the form of the
square root of the trace of the map covariance.

As can be seen in Fig. 5, the heterogeneous team has
systematically lower distance travelled without suffering a
significant loss in accuracy. It is worth noting that when
the graph is dense the uncertainty variation is negligible.
This is due to the fact that in a complete triangulation, each
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(a) (b) (c)

Fig. 4. Map merging of two robots. After an initial exploration each robot has a partial map with high uncertainty. (a) Robot 1 performed depth first
exploration; (b) Robot 2 performed breadth first exploration; (c) the joint map after the merge.

robot traverses at most two edges and closes the loop; as
such it is nearly-irrelevant if there will be any time spend
explicitly refining the map. In addition a denser map means
more edges to be traversed while covering the same number
of landmarks. Therefore, the uncertainty accumulation is
insignificant.

VI. CONCLUSIONS

In this paper we presented two new strategies for team-
based exploration. The differentiating factor is the homo-
geneity of the robots capabilities.

The choice between exploring new territory or refining the
existing map is at the center of the proposed methodology.
The desired accuracy of the map, often dictated by the
intended application, is what guides the selection of the
exploration strategy. In addition, in dangerous environment,
ensuring the safety of the most expensive/capable robots
will enable deployment of robot teams in search and rescue
scenarios.
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