Proceedings of the 2012 IEEE
International Conference on Robotics and Biomimetics
December 11-14, 2012, Guangzhou, China

Simultaneous Localization and Uncertainty Reduction on Maps
(SLURM): Ear based Exploration

Ioannis Rekleitis

Abstract— Efficient exploration and accurate mapping are
two conflicting goals. Efficient exploration requires minimizing
traversal of previously mapped territory, accurate mapping
necessitates that the robot goes through previously mapped
areas to reduce the accumulated uncertainty. This problem
has many parallels with the exploration versus exploitation
problem. In this paper a new algorithm is proposed that
explicitly aims to facilitate loop closure in a systematic way. The
problem of localizing a camera sensor network by employing
a mobile robot will be used to demonstrate the effect that
different parameters of the ear-based exploration strategy have
on the speed of exploration and the accumulated uncertainty.
Simulation results using a realistic noise model are presented
for different environments.

[. INTRODUCTION

In this paper a new algorithmic approach to the explo-
ration of unknown environments is presented. The proposed
method explicitly guides the robot into trajectories that would
facilitate loop closure and thus improve the quality of the
resulting map in terms of accuracy. In many applications
robot(s) enter an unknown environment and have to explore
it while simultaneously constructing a map. One important
question is how much time should be spend on improving the
map quality versus exploring new areas. In this paper we use
the paradigm [1] of simultaneously localizing a mobile robot
and mapping a camera sensor network. The mobile robot
navigates through an environment equipped with a camera
sensor network; see Fig. 1. The robot’s goal is to localize all
the cameras in a global frame of reference, and to maintain
its own pose estimate.

Planning trajectories in the face of conflicting goals such
as accuracy and efficiency, in terms of distance travelled, in
combination with the high dimensional uncertainty estimates
of the underlying simultaneous localization and mapping
(SLAM) solution results in a challenging problem. In earlier
work we examined the problem of localizing the cameras [1]
and also performing autonomous calibration [2]. This formu-
lation of the problem eliminates the data association problem
which, though relevant, is not at the centre of the decision
between exploration and relocalization. In this scenario, the
robot’s motion through the network places the cameras in
the same frame of reference of the robot. By maintaining
an ongoing estimate of the robot’s location, the position
of any sensor that it observes with can be probabilistically
estimated, (and updated), given the appropriate motion and
measurement models. Furthermore, the environment is rep-
resented as a graph, where vertices are locations that can be
seen by the cameras and the edges represent accessible paths
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Fig. 1. The experimental setup used throughout this paper. The robot
carries a calibration target which can be easily detected in images taken by
the cameras in the network.

between these areas; the cameras have no overlapping fields
of view.

In general, after an initial phase of exploration, which can
be as short as moving to the nearest unexplored territory,
the robot is in possession of a partial map that indicates
the known areas, and the borders to unexplored territory,
usually called frontiers [3]. In the camera sensor network
localization, the known map is a graph G, = [V;,E;] with
an additional set of directed edges Elf that have a starting
vertex but no ending vertex, because the end is unknown.
The exploration and map construction process can be divided
conceptually into three components:

1) Explore or Relocalize: In regular intervals choose be-

tween the two options.

2) Where to go next?

« Explore: Visit unexplored nodes.
o Uncertainty Reduction: Go and relocalize a node
that has high uncertainty.

3) How to go there?: Use an A* based algorithm that
guides the robot to the goal via an optimal path in
terms of distance and uncertainty; see [4].

The choice between exploration and uncertainty reduction
resembles the strategies that provide an approximate solu-
tion to the multi-armed bandit problem [5]. In the robot
exploration problem, the reward derives from reducing the
map uncertainty, while exploring new edges on the map can
provide shorter paths and reduce uncertainty by loop closing.
The main difference is that the robot has to explore the
complete map, and the degree of relocalization is flexible.
In this paper we use an adaptive strategy that increases



the frequency of relocalization during the later phases of
the exploration; a strategy similar to “Epsilon-decreasing
strategy”.

A novel exploration strategy with the implicit goal to
close loops is proposed in this paper. This strategy resembles
the algorithm proposed in [6]; where a graph-like world is
explored one face ! at the time. The earlier work abstracted
the problem of localization to a vertex labelling problem,
and addressed it by dropping a pebble as a marker. The
strategy of exploring one face at a time, is extended here
to an actual loop closing strategy which drastically improves
the accuracy of the map. A major difficulty of the earlier
work was to identify when a vertex was revisited; as the
vertices represent areas seen by cameras with known labels,
the data association problem is solved, and thus the proposed
algorithm has a clear stopping condition.

This paper is structured as follows. The next section
discusses related work. In Section III the new exploration
strategy is discussed. Next an outline of the different test en-
vironments is described together with extensive experimental
results of the proposed exploration strategies. An analysis of
the effect of the graph connectivity to the accuracy of the
resulting graph is also included. The paper concludes with
future work and a description of lessons learned.

II. RELATED WORK

Localizing a sensor network of cameras with a mobile
robot has many similarities with the Simultaneous Localiza-
tion and Mapping (SLAM) problem. Both require estimating
the poses of landmarks (in our case the pose of cameras) and
the robot for sensor readings corrupted by noise. In order to
achieve that several estimation approaches are feasible, for
example particle filters, Kalman filters, information filters,
and Markov Chain Monte Carlo techniques. The extended
Kalman filter (EKF) [8] used for SLAM has been adapted for
camera network localization and is used in this paper. Many
other alternative solutions [9] are possible, but the EKF is
used here for ease of analysis and computational efficiency.
The problem of path planning through known areas in order
to increase the accuracy of the map by collecting additional
information is well studied, e.g. [10], [11], [12], [13].

Numerous authors have studied the problem of planning
paths through the already known map in order to gather
additional information and to increase mapping accuracy, e.g.
[10], [11], [12], [13]. Many approaches have attempted to
reduce the uncertainty in the map estimates [14], [15], [16].
Sim and Roy [10] presented two measures from information
theory for which either the determinant or the trace of the
covariance matrix provides an estimate for the uncertainty.

Early work proposed a greedy choice of the action, with
one step look-ahead, which maximally minimizes the entropy
because optimal planning of multi-step paths claims compu-
tational cost exponential in the path length. Consequently,
Sim and Roy [10] have proposed pruning loops during

'For a planar graph a face is a area bounded by edges please note, there
is also an outer infinitely-large face. Each face is described by a cycle, also
called an ear [7].

breadth first search in order to ensure manageable complex-
ity even when planning longer paths under conditions of
idealized sensing and a rough initial estimate of landmark
locations. In addition, [11] has proposed a simulation-based
strategy which has the potential to produce multi-step paths
at the cost of significant computation. More recently the
more general solution was proposed using Gaussian pro-
cesses which is computationally heavy for a robotic planning
application [17]

In contrast, the proposed approach considers the more
general problem of an unknown environment where the robot
dynamically decides if more time should be spent improving
positional accuracy by revisiting nodes of high uncertainty,
or a route to unknown parts of the world should be selected.
This is achieved by employing A* search for efficient plan-
ning and by selecting future actions based on the condition
of the map. Variations of the A* search have been used in
the past for path-planning in dynamic environments without
any consideration for the resulting pose uncertainty, such
as the D* algorithm proposed by Stentz [18]. Uncertainty,
was not considered in D*, so our work extends this method
by explicitly planning to reduce the uncertainty accumulated
while mapping an environment.

As mentioned above, efficiency and accuracy are conflict-
ing goals during exploration. In order to generate paths that
balance between the goals, distance and uncertainty have to
be combined into one cost function. Unfortunately, the two
are incommensurable; that is, they lack common units for
comparison, so care must be taken in combining their values.
Makarenko et al. [15] have proposed previously a weighted
linear combination of distance and uncertainty for path p:

Clp) =

In this cost function, P is the covariance matrix resulting
from the EKF and its trace is an approximation of the
uncertainty in the map. The choice of weighting factors
oy and @, represents the compromise between mapping
uncertainty and distance travelled or efficiency versus accu-
racy . A flexible method is produced based on varying the
one intrinsic parameter, the contribution of each quantity is
normalized by a rough estimate of its maximum possible
value. Once each quantity has been normalized, a single
free parameter « in the range [0,1] is able to specify the
contribution of each factor. Based on this formulation, the
weights used in our cost function are:

®g length(p) + w, trace(P(p)) (1)

o 1—a

d — . .
maxdistance maxuncertainty

By setting a to the two extremes, zero and one, it is
possible to consider only one of the factors at a time: distance
only, by setting & = 1, and uncertainty only, by setting ot = 0.
In [4] the effect of varying « on the quality of the resulting
paths was discussed.

Several authors have considered the collaboration between
a sensor network and a mobile robot in different sensing

502



scenarios and in some cases with much more capable robotic
agents [19], [20]. The importance of loop closing was iden-
tified early on [21] but the structure of the environment was
not utilized to enforce loop closure. Theoretical exploration
algorithms on graphs have been extensively studied [22]
but without taking into account the positional uncertainty
accumulated during edge traversals.

III. SIMULTANEOUS LOCALIZATION AND UNCERTAINTY
REDUCTION ON MAPS

There are different ways to measure the uncertainty of a
node; in this work it is calculated by the map uncertainty in
the 3D position (no orientation uncertainty) of the i camera.
This uncertainty is encoded in the state covariance matrix P
and is represented by the trace of the covariance matrix:

3+6x(i—1)+3
trace(PS) = Z Pjj @
J=34+6%(i—1)+1;
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Fig. 2. The flowchart of the Ear based Exploration algorithm.

Figure 2 presents an overview of the proposed algorithm.
Many different strategies can be used to decide between
exploration and relocalization (explore vs. exploit). Among
them the most common are to select with probability peypiore
to explore and with probability 1 — peypiore to exploit. In order
to make this choice a random number is drawn uniformly
distributed between zero and one. If the number is below
Dexplore then the robot proceeds to apply the exploration
strategy of its choice; ear-based exploration. Otherwise, the
robots selects a goal node and then plans a path through the
known graph to the goal node using the A* algorithm [23].
If the robot is at a node with no frontier edges, then the robot
plans a path to the closest frontier node.

A. A* based path planning

The A* based path planning algorithm presented in [2],
[23], [4] takes into account both distance travelled and
accumulated uncertainty. Because the planning is happening
through the known world, an EKF simulator is capable to
predict the effect of different paths in the resulting map un-
certainty. Dramatic improvements on the quality of the map
were observed when uncertainty affected the cost function,
even with a very small weight. In the results presented in
this paper every time the robot travels to a new location, a
frontier node or a node to relocalize, the A* algorithm is
used, thus its influence is omnipresent.

B. Explore vs. Exploit

The choice of the threshold pepiore is very important
in order to control the amount of time spent relocalizing.
Traditionally, four different strategies have been used [5]:

Epsilon-greedy strategy: The threshold p..piore is constant
throughout the experiment. This has the disadvantage that
at the beginning there is not enough information (known
map is small) the robot chooses to relocalize with the same
frequency as later.

Epsilon-first strategy: The robot first explores the world,
and then moves through it to reduce uncertainty. This strategy
is very hard to justify because errors in the map can result in
inconsistencies that would be very hard to correct later on.

Epsilon-decreasing strategy: This is the preferred strategy
used in this paper. The robot adapts the threshold peypiore
as a function of the percentage of the map covered. We
know the total number of cameras in the environment, so
this adaptation is modelled as the ratio of mapped over the
total number of cameras.

| Vina pped ‘
|thal |

Adaptive epsilon-greedy strategy based on value differ-
ences (VDBE): The threshold ppior changes as a function
of the performance. This strategy was not selected because
there is no way to know if exploring a new edge would lead
to a loop closure, drastically reducing the uncertainty.

A key difference is the fixed number of trials in the bandit
problem, and the fixed nature of rewards. In the exploration
and map refinement problem one exploration path could
drastically reduce the uncertainty by facilitating an early loop
closure.

When the robot chooses to relocalize it travels through the
known graph using the A* based algorithm with a = 0.01
that is only one percent of the cost is contributed by distance
and the remaining by the uncertainty reduction. The goal
node is also important; selecting the node with the highest
uncertainty resulted in high uncertainty reduction at high
distance costs. We chose the node that minimized a distance
and maximized uncertainty:

D;
Vi= -
; = argmax ( ( Dmux) +

Pexploit = (1 - pexplare) (3)

trace(P;) @
Uncertaintymay
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where the D; and D,,,, are calculated through the known
map (mapped edges) and the Uncertaintyyg, = trace(P) :
trace(Py) > trace(P),l = 1,..., Niwown-

w0 Distance vs Graph Size Total Uncertainty vs Graph Size
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Fig. 3. Results averaged over 15 trials: Distance travelled (a) and map

uncertainty (b) for different number of nodes, different number of edges
and for different exploitation strategies. We compare the results for applying
a version of: Epsilon Greedy, Epsilon-Decreasing, Epsilon first, Adaptive
epsilon-greedy, and no exploitation.

Figure 3 presents a comparison for the above strategies,
for complete triangulations of fifteen to sixty five nodes. The
results labelled “No Exploitation” are shown as a baseline
when no exploitation (relocalization) was performed. The
exploration problem does not have a fixed number of trials,
as the bandit problem has, as such the Epsilon-first strategy
applied, run the relocalization procedure for half the total
number of nodes. Given that each exploration run on average
explored more than one node this biased the results in favour
of the Epsilon-first strategy; however, as can be seen in Fig.
3b the uncertainty reduction was minimal.

C. Ear-based Exploration

Different strategies can be selected for exploring the un-
known part of the environment. Selecting the closest frontier
node; the node with the highest, or lowest uncertainty; or
even a random frontier node are all possible strategies. In
this work we propose a strategy that takes into account
the planar nature of the environment, and guides the robot
into exploring trajectories of multiple nodes, instead of a
single node, which end with loop closure when possible. This
algorithm was first proposed for mapping an abstract graph-
like world [6] with minimal information available. The robot
left a marker in the starting node and then followed edges
by always selecting the next edge clockwise (or counter-
clockwise) until it returned to the node with the marker. This
method explored the graph one face at a time, by following
a series of cycles termed “ears” [7]. Because of the limited
available information there was a specific configuration that
resulted into incorrect representations.

In the current paradigm each location (vertex) is associated
with an observing camera with a unique label. As such, the
data association problem is absent. For a known map G; =
[Vi,E;] with a frontier edge set (E[ ) the modified algorithm
behaves as follows: starting from a frontier node V;, select a
frontier edge (V;; € E,f ); follow the frontier edge; if the robot
arrives to a known vertex (V; € V;) then stop; otherwise add
V; to the map and then select the next edge clockwise; if V;
has degree one, stop.

Ear Based Exploration
50 T T T

Aot E

a0 4 7

20F q

¥ (m)
fa))

20k 4

a0t 4

a0 4

_50 L 1 L 1 1 1 L 1 1

®{(m)

Fig. 4. Ear based exploration. Robot after mapping Camera 1, explores an
ear adding the nodes 1-9 to the map.

This algorithm traverses an ear until loop closure or until
the robot reaches a leaf (a node of degree one). Figure 4
presents the path taken at the first step; the robot started
at node 1 and then followed a nine edge path, adding eight
new vertices into the map. An alternative terminating strategy
would be to continue traversing the next edge clockwise until
the return to the starting vertex. However, in this case the
robot would be travelling though explored territory, which is
not the most efficient strategy.

IV. EXPERIMENTAL RESULTS
A. Environment Representations

Environment representations based on graphs are quite
common in robotics, e.g., visibility graphs [24]; generalized
Voronoi graphs [25]; Reeb graph [26]; triangulations [27].
In particular, in many cases random graphs can, and have,
been used to validate proposed algorithms and also to test
scalability and robustness. In this paper we employ a family
of random planar graphs with varying density. As a starting
point a set of N random points are chosen on a plane. In
order to eliminate the effect of the starting point on the
exploration the first point is selected at the origin and the rest
are uniformly distributed on the x and y axis, ensuring they
are inside a fixed radius. Another consideration is to reject
any points that are closer than a threshold, 10 m in the results
presented in this paper. The rationale for this rejection is that
decisions and landmarks that are located too close together
are not really effective. The choice of points inside a radius
was selected in order to ensure that starting from the origin
there will be no bias when moving in any direction.

From the set of random points the Delaunay triangula-
tion [28] is generated. The resulting triangulation represents
the denser graph used in this experiments; see Fig. 5d. In
order to produce random graphs of varying density, each
edge in the triangulation is assigned a random weight and
then a minimum spanning tree (MST) is constructed; number
of edges |E| = N — 1. The graph density is measured as a
function of the number of vertices |V| = N, ranging from the
sparsest (MST), to the triangulation |E| = 3% |V|—3—k 2.

2Where k is the number of vertices on the convex hull [28]
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Fig. 5. Random graphs based on the Delaunay triangulation with 25 vertices, and varying density: (a) Almost a spanning tree (|V|=25,|E| = |V]); (b)
(V] =25,|E| = 1.7x|V]); (c) (V| =25,|E| =2.2%|V|); (d) the complete triangulation.
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Fig. 6. Exploring a 30 vertices, 51 edges graph: (a) First face (ear) mapped; (b) third ear mapped; (c) continuing the exploration (fourth ear); (d) goal

node has no more frontier edges, travelling to the closest frontier node; (e) exploring part of the outside face until encountering a mapped vertex; (f)
reducing uncertainty by travelling through the known graph; (g) exploring the remaining part of the outside face; (h) most of the graph is explored, reducing

uncertainty by travelling through the known graph (exploit); (i) the whole environment is explored.

B. Ear based exploration

This section presents an illustrative example of the ear-
based exploration proposed in this paper. In Figure 6a the
beginning of the exploration can be seen; the world is a graph
(dash-dotted thin lines) G = (V,E) : |[V| =30, |E| = 51. The

robot started at the origin and explore one face, by traversing
an ear forming a triangle. After two steps the robot explores
a bigger face, outlined by a seven-edge ear; see Fig. 6b. The
exploration continues until in Fig. 6d the robot terminated
at a vertex with no more frontier edges; the closest frontier
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edge was selected, and the robot travelled there (dash-dotted
line).

It is worth noting that the outside part of the graph
represents also one face, in Fig. 6e the robot followed an
ear that marks the outside of the graph until it arrived at
a known vertex, at which point the ear-exploration halted.

With probability p =0.5x% %‘;’;dl the robot selects to exploit
the known map by relocalizing; see Fig. 6f dashed red line.
The uncertainty reduction procedure selects the target node
based on a combination of distance and uncertainty of that
node, in this case the goal node was an immediate neighbour.
The uncertainty reduction A*-planning algorithm [4] though
selected the best route that minimized the overall map
uncertainty.

Exploration continued in Fig. 6g with the robot travelling
through the other half of the perimeter of the graph. In Fig.
6h the robot traversed through the graph in order to reduce
the uncertainty; please note that the resulting path passed
through the first node thus further reducing the uncertainty.
Finally, the robot completed the exploration by traversing
through every edge and visiting every vertex several times;
see Fig. 6i.

C. Uncertainty versus Distance evaluation

Uncertainty and distance measurements are presented here
for graphs of different sizes and also for different edge
densities. In all the plots in Figure 7 the number of vertices
varied from ten to eighty, in increments of ten; for a specific
number of vertices ten random graphs were constructed. The
plots show average distance travelled (averaged over the ten
random graphs each time) and average uncertainty in the
form of the square root of the trace of the map covariance:

E = trace(P) )

The graph density was also varied as a function of the
number of vertices. Figure 7a,b present results from very
sparse graphs where the number of edges was slightly above
the number of vertices |E| = 1.1x|V|;. The next plots present
results from two times the number of vertices, see Fig. 7c.d;
and finally for the full triangulation O(3 % |V|—3 —k) order
of edges where k is the number of vertices on the convex
hull; see Fig. 7e.f.

For every random graph two basic exploration strate-
gies were executed, together with the ear-based exploration
strategy run while varying the exploitation threshold, over
three different values. The simplest strategy is to always
select a random frontier node, and then plan an uncertainty
reduction path to it. This strategy, quite often, sends the
robot across the graph and the A* algorithm ensures that
low uncertainty nodes are visited, as a result in all cases
this strategy produced the most accurate maps but at a high
cost on the distance travelled, more than twice the distance
travelled than the other strategies.

The second strategy is to go to the closest frontier node
(including the current node) and then take a random frontier
edge. This greedy algorithm produced the shortest paths, but

Distance vs Graph Size Total Uncertainty vs Graph Size
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Fig. 7. Ten trial averages of distance travelled (a,c,e) and map uncertainty
(b,d,f) for different number of nodes, different number of edges and for
different exploration strategies.

with the highest uncertainty. The three ear-based exploration
strategies differ in the frequency they perform uncertainty
reduction traversals. In all cases exploration was favoured at
the early stages and exploitation at the later part. As noted
earlier, with probability 1 — pecpiore at the end of each ear-
exploration, an uncertainty reducing path is selected. The

three strategies use [0.1,0.3,0.6] * M

i probabilities. As
expected the more often the robot performed uncertainty
reducing traversals the lower the final uncertainty but the
higher the overall distance travelled. The severity of the dis-
tance penalty varied though with the density of the graph. In
very sparse environment with not many loops, the uncertainty
reduction produced low uncertainty with half the distance
travelled. Even better were the results for medium sparsity
graphs, more similar to indoor environments; see Fig. 7c.d.

Figure 8 presents similar results from single trials for
much bigger graphs. The size varies from twenty five to
one hundred seventy five vertices, for edge densities of
1.3%|V| and 2.0 %|V|. As can be seen as the number of
vertices increases, the efficiency of random strategy degrades
rapidly, while the ear based exploration, even with frequent
relocalizations is much more efficient. For 175 vertices the
distance travelled of the ear-based exploration is one third of
the random node strategy; while uncertainty stays at similar
low levels.

V. CONCLUSION

In this paper we present a new algorithm for exploring
an unknown environment. The contributions of this work

506



Distance vs Graph Size Total Uncertainty vs Graph Size

8 2 8
Shortest Unexplored K4 -+ Shortest Unexplored o

o
Earo.1 B Earo.1 .
100 4
Ear0.3 O Ear0.3
Earo6 <A Ear0.6
110" Random

opovR

Random

Total Distance Traveled (m)
Square oot o 1race of Map Lovariance
8

8
oRv ¥

m @ ew w  mw @ w w0 I R R = R VR =R}
Number of Landmarks ([El=1.3"[V]) Number of Landmarks (E|=1.3"[V)

(a)

Distance vs Graph Size Total Uncertainty vs Graph Size

% Shortest Unexplored
<P Earo.1 -
~8Ear03 P
A CEar06 e

O 'Random

Shortest Unexplored
Ear0.1
Ear0.3
Ear0.6

& 8 &

opovR

Random

Total Distance Traveled (m)
B R 8 &

Square Root of Trace of Map Covariance

s
m @ @ @ o @ w0 e w0 ™ @ @ @ 0 w0 0 0
Number of Landmarks (EVI=2"[V]) Number of Landmarks (|E|-2*VI)

©

Fig. 8. Single trial results: Distance travelled (a,c) and map uncertainty
(b,d) for different number of nodes, different number of edges and for
different exploration strategies.

are twofold: first a systematic way of addressing the prob-
lem of efficient exploration and uncertainty reduction was
introduced drawing from the classical exploration versus
exploitation paradigm; second a pure exploration strategy
that explicitly forces loop closure during exploration was
implemented.

Augmenting a standard frontier-based [3] or generalized
Voronoi graph (GVG)-based [25] exploration strategy with
the algorithm presented in this paper is in the immediate
future plans. We are currently working on such an imple-
mentation using a laser equipped iCreate robot running robot
operating system (ROS) 3.

We presented distance travelled and uncertainty accumu-
lated results from random graphs with varying edge densities,
illustrating the effect the number of vertices and the edge
density has on the frequency of map refinement. In addition,
the scalability of the approach was tested by running the
proposed algorithm on graphs of different sizes and of
different densities.
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