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Abstract— In this paper we propose a hierarchy of techniques
for performing loop closure in indoor environments together
with an exploration strategy designed to reduce uncertainty
in the resulting map. We use the generalized Voronoi graph
to represent the indoor environment and an extended Kalman
filter to track the pose of the robot and the position of the
junctions (vertices) of the topological graph. Every time a vertex
is revisited, the robot re-localizes and updates the uncertainty
estimate accordingly. Finally, since the reduction of the map
uncertainty remains one of the main concerns, the robot will
optimize its schedule of revisiting junctions in the environment
in order to reduce the accumulated uncertainty. Experimental
results from a mobile robot equipped with a laser range-finder
and results from realistic simulations that validate our approach
are presented.

I. INTRODUCTION

This paper presents a solution to the problem of mapping
an indoor environment by combining local sensor data into
a hybrid topological/metric representation. The presented
approach includes an exploration strategy, an environment
representation, and a hierarchical approach to the loop clo-
sure problem. More specifically, it is assumed that the envi-
ronment is static and that the robot has no prior knowledge
of its starting position or the space layout. The environment
is completely GPS-denied and the only sensory information
available to the robot are scans from a laser range-finder and
odometry information; see Fig. 1. The proposed algorithm
presents a robust way of mapping an unknown environment
by performing loop closure in a systematic manner. The
main building block of this work is the efficient on-line
construction of the 2D generalized Voronoi graph (GVG) [1]
based on local laser scans taken by the robot.

Many different environments can be mapped adequately
using a topological (graph) representation. The most com-
mon ones are indoor areas with long corridors, such as those
found in office buildings, but underground mines and cave
systems are also good candidates. The main advantage of
topological representations is that they encode path-planning
guidance for the vehicle through a roadmap representation,
without using high-dimensional representations of the envi-
ronment. In other words, the robot can move through the
environment by simply following a path in the roadmap
graph. In addition, the nodes in the graph provide distinct
places which can be used for localization. In this paper, the
topological representation used is the generalized Voronoi
graph (GVG), a graph that encodes all the points in free
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Fig. 1. The experimental setup used throughout this paper. The robot,
a TurtleBot 2, is equipped with a Hokuyo laser range-finder used for
navigation. The robot was used to explore the corridors of the Centre for
Intelligent Machines, McGill University.

space that are equidistant to at least two obstacles. Nodes
in the graph represent points that are equidistant to three
or more obstacles, whereas edges contain points that are
equidistant to exactly two obstacles. As the robot navigates
through space, it can employ any known technique [2], [3],
[4], [5] to keep track of its pose; when it reaches a vertex
it will perform a high-level location matching in order to
further reduce the pose uncertainty. In this work we employ
an ear-based exploration strategy', mapping the environment
and populating the graph one cycle at a time. This method
ensures frequent loop-closure, thus further reducing the lo-
calization error.

In the proposed exploration framework, where uncertainty
reduction is one of the fundamental concerns, different
choices are made in order to balance accuracy and efficiency.
In general, when a robot explores an unknown environment
to produce a map, the following decisions are made:

+ Choice between exploring new territory or re-lo-
calizing: After the robot completes an exploration or
re-localization step, the robot chooses to explore new
territory with probability pexpiore OF to re-localize with
probability 1 — peypiore- In addition, when the robot’s
pose uncertainty grows above a threshold, the robot
will return to a distinctive location whose uncertainty is
low in order to re-localize and reduce the robot’s pose
uncertainty.

« Destination selection

— Explore: If the current location is a frontier node,
the robot explores new territory. Otherwise, the
closest frontier node is selected for exploration
from the current location. In this work, explo-

'An ear is a cycle in a graph that only contains consecutive edges, i.e.
no edges in the area enclosed by the cycle [6].



ration of new territory is done via the ear-based
exploration strategy [7], facilitating frequent loop-
closures by always choosing the left-most edge; see
Section IV.

— re-localization: Select a nearby node with high
uncertainty as the next destination to have the max-
imum uncertainty reduction, which is a technique
that has been explored in [8]. By re-visiting a node
with high uncertainty the robot will attempt to
reduce the uncertainty of that node.

« Plan a path to destination: If the robot is re-localizing,
we compute the shortest path, using Dijkstra’s algo-
rithm, through the known graph to guide the robot to
the chosen destination. Otherwise, we need to compute
the shortest path through the known graph to reach the
closest frontier node to further explore new territory.

II. RELATED WORK

The use of topological maps can be traced back to the
seminal paper by Kuipers and Byun [9]. Later work includes
the first GVG presentation [1] and the pure topological
results in [10], [12], [11]. More recent work includes [13]
on exploration strategies on a graph-like world. The use of a
hybrid topological and metric representation of the world in
order to achieve loop-closure is not a novel idea in the field
of robotics. Werner et al. [14] proposed a particle filtering
technique for loop-closure whereby a robot traverses a GVG
representation of the environment and attempts to disam-
biguate its location by using a sequence of signatures corre-
sponding to the appearance of the visited GVG meetpoints.
The approach assumes prior knowledge of the environment
in order to compare the sequence of signatures of the recently
visited meetpoints with the local GVG neighborhood around
the estimated robot position. Furthermore, the paper contains
no mention of how to construct signatures of the meetpoints
since it depends largely on the available sensory information.

A similar idea was explored by Tapus and Siegwart [15],
who overlaid a rich gamut of sensory information, such as
corners extracted from laser scans, visual features and color
information on top of a topological representation of the
environment. As a result, their approach provides highly
distinctive fingerprints of distinct locations, which they
managed to exploit in their topological SLAM algorithms.
Essentially, this approach turns the loop-closure problem into
a sequence alignment problem of the fingerprints of visited
locations.

Tully et al. [16] proposed a hypothesis tree approach
for loop-closing where the branches that are deemed to be
unlikely based on metric and topological GVG information
are pruned. Among their pruning tests, it is worthwhile to
mention the planarity test which ensures that once a loop-
closure has been accepted, the resulting GVG graph has to
be planar. The utility of this test has been studied extensively
by Savelli [17]. The purely topological variant of these
approaches had been previously examined by [18]

Kuipers et al. [19] proposed the use of a framework, re-
ferred to as hybrid spatial semantic hierarchy, whereby metric

SLAM methods for the creation of small-scale maps are
combined with the incremental construction of topological
large-scale maps. Their approach makes no use of a global
frame of reference and uses a multi-hypothesis approach to
represent possible loop-closures.

Brunskill et al. [20] followed a different approach from
the ones described above. Spectral clustering was used in
order to separate a graph representation of the world into
distinct sub-graphs to maximize the connectivity among
nodes that are similar and to minimize connectivity among
those that are different. Using an AdaBoost-trained classifier
(constructed off-line), they managed to compare the sub-
graph resulting from recent laser scans against the existing
sub-graphs obtained from spectral clustering, thus doing sub-
graph matching on-line. The classifier and the combination
of metric and topological features used were inspired by the
work of Mozos et al. [21].

Carlone and Lyons [22] have approached the problem
of autonomous exploration of an unknown environment by
considering a simple linear framework to estimate the robot’s
position. Their formulation leads to a mixed-integer linear
program (MILP) which they have shown to plan effective
collision-free trajectories.

Choset and Nagatani [23] used the GVG representation
of the environment by overlaying metric information at
meetpoints and used a number of heuristics to eliminate
candidate GVG meetpoints when attempting to do loop-
closure. Thus, the approach followed in their paper is most
similar in spirit to the work done in this project.

The work of Choset et al. [1], [24], [25] has been the main
proponent of the GVG in the existing literature. Beeson et al.
[26] extended their work in cases where the operating range
of the robots sensors is too small compared to the distance
of the objects in environment. The GVG has been also used
to guide rendezvous strategies for multiple robots, using the
visible area as the deciding factor [27].

III. GENERALIZED VORONOI GRAPH

In two-dimensional environments, the GVG is the locus of
points that are equidistant to at least two distinct objects in
the environment. The points that are equidistant to exactly
two distinct objects form GVG edges, while the ones that
are equidistant to more than two distinct objects define
the GVG vertices, also called “meetpoints”. In addition to
representing the environment, the GVG also dictates the
rules for robot navigation from which simple control laws
can be formulated. For instance, the navigation between
meetpoints simply follows the equidistant point between the
two distinct obstacles. As the robot constructs the GVG, it
will check if it has previously visited the meetpoints that it
encounters. If the current meetpoint has never been visited,
a new vertex is created and added to the representation.
The meetpoint encodes the degree of the vertex and the
direction from which the robot arrived. Essentially, we are
adding bi-directional edges to the graph, connecting the last
meetpoint visited to the current one. The remaining unvisited
directions are marked as frontier edges and similarly, the
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Fig. 2. Ear-based exploration using the GVG representation.
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meetpoint is marked as a frontier vertex. In other words, the
robot knows that new areas can be visited by exploring the
frontier edges. During the robot’s navigation, if the current
meetpoint has been fully explored, then the vertex is marked
as completed. From that location, the robot searches through
the graph to find the closest frontier vertex to explore next.
Since the chosen frontier vertex has previously been visited,
there exists a path through the existing graph to the frontier
vertex. If there are no frontier vertices left, then the whole
environment has been mapped and the algorithm terminates.

From a purely topological standpoint, the GVG is a
graph consisting of vertices and edges which provides a
topological representation of the environment. However as
the robot traverses through a real environment, additional
metric information can be associated with the topological
representation to facilitate loop-closure. The flowchart of the
algorithm for the exploration and mapping of an unknown
environment using the GVG representation is presented in
Fig. 2. The basic operations of the on-line construction of
the GVG are the following:

Access GVG: This is the initial part where the robot has
to reach a position on a GVG edge. First, the robot detects
the closest obstacle point. Then, the robot heads towards the
opposite direction of that point until it arrives at the midpoint
between the two obstacles.

Orient Along Edge: this method assumes that the robot
starts on a GVG edge, but its orientation may not be
aligned with the orientation of the GVG edge. Therefore,
this procedure rotates the robot towards the direction that is
perpendicular to the line joining the two closest obstacles.
Intuitively, this direction of heading can be regarded as the
tangent vector of the curve that defines the GVG edge.

Follow Edge: this method is the backbone of the nav-

igation algorithm. It operates under the assumption that
the robot is on the GVG and is properly oriented with
respect to a GVG edge. It commands the robot to traverse
the GVG edge (without making U-turns) by continuously
locating the current pair of distinct closest obstacles and
guiding the robot to stay equidistant to them. PD-controllers
are employed to reduce the robot’s distance from the GVG
and to continuously fix the robot’s orientation. The obstacle
detection is performed by detecting the closest laser point
at distance d,,;;. Then all the laser points that are further
than d,,;, + € are filtered out. The remaining points inside the
annulus centered at the laser range finder, are radially ordered
and grouped in distinct obstacles. When only two obstacles
are detected the robot is using the two closest points to guide
the navigation along the GVG edge. When three or more
obstacles are detected, the algorithm checks for the existence
of a meetpoint. When the robot approaches a meetpoint, the
robots velocity is reduced to facilitate its detection.

Detect Meetpoint: This method is constantly evaluated
to check if there are at least three distinct and equidistant
obstacles from the current position of the robot. If it is, then
the meetpoint is mapped and added to the graph. Using the
laser scans, all the different edge-orientations are calculated
and stored.

Select Edge: Using the ear-based exploration, this method
selects the next frontier edge; see Section IV.

Fig. 3. (a) The pure Voronoi graph of an indoor-like environment. (b) The
generalized Voronoi Graph with spurious edges eliminated.

Detect Endpoint: while the robot follows a GVG edge,
the robot may reach a dead end. Endpoints are identified by
three equidistant obstacles which are fully connected with
nowhere for the robot to traverse. Connectivity is detected
when consecutive points are too close to each other for
the robot to pass through. Whenever the robot reaches an
endpoint, it will store information in the graph, turn around



and head away from the endpoint. Endpoints are treated just
like meetpoints; hence, they are considered as GVG vertices
with degree one. In addition to marking the endpoints, this
method also eliminates spurious edges in the pure Voronoi
graph.

One of the fundamental weaknesses of Voronoi-based
representations is the generation of spurious edges. Small
structures or small amounts of sensor noise in the environ-
ment may give rise to meetpoints with edges leading into the
wall.

Figure 3 illustrates the elimination of noisy edges; the pure
Voronoi graph of an indoor-like environment contains up to
twenty edges leading to blocked areas (obstacles); see Fig.
3a. By eliminating these edges, the topological representation
contains only two meetpoints; see Fig. 3b. In practice, we
avoid spurious edges by checking if the openings between
the obstacles are less than the diameter of the robot. In that
situation, we ignore the edges that lead into obstacles and
follow the GVG through the unobstructed edges.

IV. EAR-BASED EXPLORATION

Fig. 4. Ear-based exploration: The robot accessed the GVG (from start)
then followed the edge up to the first meetpoint Vj. It selected the first edge
clockwise and visited the meetpoints V; — V4. At meetpoint, V4 started on
the first edge clockwise which will lead it back to Vj. In light blue is the
unexplored graph for illustration.

Ear-based exploration was first used for mapping an
abstract graph-like world [28] with minimal information
available. A marker was left by the robot on the starting
vertex and then the robot followed edges by always selecting
the next edge clockwise until it returned to the vertex with the
marker. This method explored the graph one face at a time by
following a series of cycles termed “ears” [6]. The algorithm
was also employed to map a camera-sensor network [29]
deployed in an indoor environment with the help of a mobile
robot [7]. In this paper, the robot traverses through the GVG
edges and, upon arriving at a meetpoint, always selects the
next edge clockwise; see Fig. 4. The main idea behind ear-
based exploration is that the robot will explore frontier nodes
in a systematic way until it arrives at a previously mapped
vertex, ensuring that loop-closures occur on regular intervals.

, \\
/ | p
/ (*-,/
| /
A~/
( e
\ ~

.
~

L

©) (d)

Fig. 5. Loop closure and the effect on uncertainty: (a) The robot approaches
the previously visited node. (b) After re-localizing on the node, the robot
selects the remaining frontier edge and continues the exploration. (c) Just
before closing the loop, the robot’s uncertainty has grown. In this example,
only the odometry measurements of the robot were used. (d) After re-
localization, the uncertainty reduces both for the explored meetpoints and for
the robot. Please note that the first node discovered has very little uncertainty
because it is considered the start of the map, as such only the sensing
uncertainty is used.

During the exploration of the GVG, when the robot selects an
unexplored edge to follow, it always performs the selection
in the same (clockwise) order, which guarantees a return to
a mapped area; see Fig. 5. When the robot arrives to a new
vertex, the first operation is to check if this vertex already
exists in the graph. This check for loop-closure relies on the

accuracy of localization and will be discussed next.

V. LOCALIZATION

One important aspect of the GVG-based navigation is its
reactive nature. The robot is guided by the current sensor
readings, moving on a trajectory equidistant to the nearest
obstacles. The graph encodes the possible trajectories and
the robot localizes at the meetpoints. The range data used
for navigation can be also used to improve the estimate
of the state of the robot. In this paper, we have not used
a laser-based localization in order to verify the efficiency
of the proposed approach in the face of large odometric
error. Any additional information improving the accuracy
of the localization will also further improve the accuracy
of the proposed algorithm. Laser based localization can be
achieved using any of the different graph-SLAM algorithms
available, for example iSAM2 [30] or g20 [31]. in this paper
the extended Kalman filter algorithm is used in order to
provide an efficient measure of the uncertainty accumulation
in the form of the trace of the uncertainty Covariance.
Future extensions of this work will use the EKF to simulate



uncertainty build-up in potential paths, selecting the path that
minimizes a combined metric of distance and uncertainty, as
in [32]. During the traversal of each edge, the EKF esti-
mates the uncertainty accumulation using only the odometry
information by repeatedly applying equation Eq. 1.

Xt+1 X+ Vey1dt cos 6
X1 = Y1 | = | Ye+videsin6;
611 6, + wdt
1 = PP®, +G10G],
where )
1 0 _Vf+1dt sin 6[
(I)H-l = 0 1 V[+1dt Ccos 6[
1 00 1
[ —dtcos6, 0
GI+1 == 7dt Sin 91 0
i 0 —dt
2
o 0
Q = 0 o2 M
L 0]

The first time a meetpoint (mzp) is encountered, the filter
stores its position X"” = [x"7 y!"P]T together with the
uncertainty of the robot at that point PJ. Since there could
be uncertainty about the orientation of the meetpoint based
on the orientation of the adjacent edges, only the position of
the meetpoint is used in the current implementation. Every
time meetpoint i is revisited, an update is performed using
the update equation in Eq. 2.
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where r is the difference between the recorded value of
the meetpoint and the latest estimate and R is the noise
characteristic from the laser sensor.

VI. LOOP-CLOSURE

A hierarchical approach to loop-closure in combination
with the exploration strategy results in a robust algorithm
for identifying self-similar environments. For instance, in
an abstract graph, a vertex is characterized by only one
value: its degree. In GVG terms, that is equivalent to the
number of objects equidistant from the meetpoint. This view
ignores the additional information that can be exploited; for
example, the distance of the meetpoint to the obstacles or
the angles between GVG edges. Maintaining this sort of
information proves to be useful in creating more distinctive
signatures/ characterizations for each meetpoint, which helps

®)

Fig. 6. Ear-based exploration with delayed loop-closure and the effect on
uncertainty; see Fig.5a for the environment. (a) The robot makes left hand
turns, thus following the outer perimeter of the environment, accumulating
large amounts of uncertainty. Hence, the robot has visited 8 meetpoints
consecutively without closing the loop, causing no uncertainty reduction
through an EKF update operation. (b) The final map after the whole
environment is explored. Uncertainty is reduced. Taking into account the
uncertainty build-up addresses the above problem.

to answer the question: “Have I seen this GVG vertex
before?”. In addition, each meetpoint is a unique location
in metric space and there are only a finite number of them
distributed in the environment. Therefore, when the robot
approaches a meetpoint, the robot’s spatial certainty (the
area inside the robot’s uncertainty ellipse as computed from
the covariance matrix) reduces the candidate meetpoints to
a very small subset, usually containing only one meetpoint.
When more than one candidates are present, the potential
candidates undergo a hierarchy of tests to determine the
correct matching vertex. Those tests currently consist of a set
of manually-tuned thresholds using different metrics such as
the total distance of the previous edge and the orientations of
the different obstacles at the current location. The following
tests are employed for loop-closure:

« Existing meetpoint is inside the 30 ellipse describing
the uncertainty of the robot’s pose estimate.

o The potential meetpoint candidates have the same de-
gree.

« The meetpoint distance to obstacles is similar, up to a
noise factor.

o Departing angles of the GVG edges, or equivalently the
relative bearing to the closest obstacles.

o Edge signature. The minimum information used is the
total distance travelled to traverse the edge. The shape
of the edge as recorded by the odometry provides
another weak indication. In our experiments, each vertex
was uniquely identified before reaching this level of
distinction.

The last item requires further discussion: when the robot
traverses an edge, it records the actual GVG point on that
edge. In addition, the starting and ending orientation can also
be used in the signature. Finally, the distribution of distances
to the closest obstacles as recorded along the edge traversal
provide a much richer signature. However, it has not been
used in this paper. Additional information can be used to
augment a vertex’s signature. Potential information includes:
Wi-Fi signal strength, laser scan signature at the meetpoint,
visual data. In particular, Wi-Fi signal strength and laser scan
data are currently under investigation.
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Fig. 7. The exploration of a regular grid with many self-similar locations; the exploration algorithm depended mainly in the uncertainty criterion in order
to select and eliminate nodes. (a) The simulation environment with the robot path after closing the first loop. (b) Partial map of the regular grid world;
loop-closure. (c) Complete map of the exploration. The blue ellipses represent the positional uncertainty of each meetpoint and the red ellipse represents

the pose uncertainty of the robot.

VII. EXPERIMENTAL RESULTS
A. Experimental setup

The software framework for the proposed approach was
implemented using the ROS? environment. The simulated
tests were performed in the Stage® simulation package. The
experiments were executed using a TurtleBot 2* mobile robot
equipped with a Hokuyo® laser range finder with 30 m range.

B. Simulated world

Several different simulated worlds were constructed for
testing the proposed approach. Figure 5a presents an irreg-
ular grid-like world with high connectivity. The irregularity,
similar to a cave environment, resulted in a few places to
have two meetpoints very close to each other. In each case,
the use of the extended signature facilitated the loop-closing.
A regular grid is presented in Fig. 7. The majority of the
meetpoints are self-similar. The simulated robot used the
criterion of inclusion inside the 30 uncertainty ellipse to
enable vertex matching. The further the robot navigates away
from the starting node, the higher the uncertainty. It is worth
noting that self-similar worlds present the biggest challenge
in loop-closure, thus the grid-worlds were select to challenge
our approach.

C. Real world experiments

Two different floors of the McConnell Engineering Build-
ing, McGill University were used as the testing ground
for our approach. Both floors are approximately 30 by 50
meters. The first experiment Fig. 9 was conducted on the
3rd floor housing the School of Computer Science. This
environment consisted of two small loops near the center of
the environment, and two long branches. Figure 9a presents
the odometric traces together with the resulting map. Due
to the localization update operations at the meetpoints, the
odometry is drastically corrected when the same place is
revisited. As can be seen from the resulting maps, while

Zhttp://wiki.ros.org/
3http://wiki.ros.org/stage
“http://turtlebot.com/
Shttp://www.hokuyo-aut.jp/

the odometric estimates drifted over the long traversals, the
meetpoint detection successfully closed the loops present
in the environment. Figure 9b presents the resulting map
overlaid on top of a metric map constructed off-line using
the gmapping package from ROS. The error at the end of the
long corridors was large (approximately 2m) compared with
the cycles at the center of the environment. The 4th floor
housing the Centre for Intelligent Machines was mapped in
Fig. 8. This floor contains three larger loops and a single
long branch. In Fig. 8 and 10b, the odometry estimates are
plotted in red, demonstrating the drift over time. Every time
the robot revisits an explored node the odometry is reset to
the correct value.

In Fig. 8a the robot traversed a loop and returned at
the starting node. The robot’s estimate of its position was
erroneous, however, still inside the uncertainty ellipse. The
loop-closure update of the EKF operating on the meetpoints
of the environment reset the pose of the robot and reduced the
uncertainty. The red line represents the odometric estimates
and thus is reset after re-localization. Figure 8b illustrates the
effect of travelling long distances without no re-localization.
Note that the large uncertainty ellipse at the right side of the
environment together with the erroneous trajectory estimate
was quickly corrected when the robot returned to the middle
of the environment. In the final part, the robot moved on a
single corridor and returned. The uncertainty accumulated
during the long traversal was not feasible to be reduced
due to the absence of nearby loops. While the odometry-
based trajectories are unchanged, the meetpoint locations are
updated and thus drift during the experiment. The result is
two different trajectories for the edge connecting the center
part with the rightmost loop, and the meetpoints at the top
of the map to be away from the odometric trace.

During the experiments the laser and odometric infor-
mation was also recorded. The results were processed off-
line using the gmapping software package and a map of
the environment was produced for comparison. Figure 10a
presents the resulting map and is given here for comparison
with the GVG-based topological map; see Fig. 10c. Please
note that in the EKF formulation, only the location of the
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Ilustrating the progress of the exploration process, by plotting the meetpoints poses and uncertainty and the odometry trace. (a) The first loop

of the environment was closed. The robot traversed along a long corridor and explored a second loop. (c) The last corridor is explored. The final map is

presented in Fig. 10b.

Fig. 9. Exploring the main floor of the School of Computer Science, McGill
University. (a) The vertices of the topological map with the odometry traces
(in red). (c) The meetpoint locations with uncertainty ellipses overlaid on
top of a metric map constructed by gmapping for visualization purposes.

meetpoints is recorded and updated. Moving along an edge
is robustly handled by the GVG navigation algorithm using
local sensing information only, thus no edge information is
recorded. In Fig. 10c the edges are drawn connecting the
meetpoints for illustration purposes only (in dotted lines). It
is worth noting that similar accuracy was achieved by em-
ploying loop-closure only at the meetpoints while navigating
through the environment as when computationally expensive
scan matching operations were employed throughout the
exploration.

A comparison between figures 9b and 10c demonstrates
the improvement resulting from the frequent loop-closure,
when possible from the environment.

Fig. 10. (a) The map of the Centre for Intelligent Machines, McGill
University constructed using the ROS package gmapping. This map serves
as a comparison to the GVG based map presented in subfigure 10c. (b)
The vertices of the topological map with the odometry traces (in red). (c)
The final topological map of the Centre for Intelligent Machines constructed
using the GVG exploration algorithm presented in this paper.

VIII. CONCLUSION

This paper presented a complete solution for the ex-
ploration and mapping of an unknown indoor environment
using a hybrid metric/topological representation. The map
is based on the generalized Voronoi graph, and the ear-
based exploration strategy is used to perform loop-closure in
regular intervals. Finally, place identification restricted to the



meetpoints is achieved by measuring a hierarchy of similarity
measures among candidate nodes.

Extending the Simultaneous Localization and Uncertainty
Reduction on Maps (SLURM) applied to a camera sensor
network [8], [7] to operate on the topological structure of the
GVG is currently a work in progress. In particular, making a
choice between exploring new areas and revisiting already
mapped territory in order to re-localize will increase the
accuracy of the resulting map and improve the robustness of
the approach. Deploying the proposed algorithm to multiple
robots is another extension currently under consideration.

The proposed approach can be easily extended to other
robotic platforms that have similar sensors and capabilities.
In this paper, we presented results from simulation and
from the TurtleBot 2 platform, but we have successfully
deployed our method on the Husky® robot, in the same indoor
environments presented here. The integration of our method
on the new system was effortless, thanks to the modularity
of ROS and ease of code re-use. The code developed for this
work is available on-line 7.

The developed solution provides an efficient alternative
to the frontiers based exploration on occupancy grid maps.
Mapping the corridors of the Centre for Intelligent Machines,
McGill University with a laser carrying robot illustrates our
approach.
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