
Robust Environment Mapping Using Flux Skeletons

M. Rezanejad†, B. Samari†, I. Rekleitis‡, K. Siddiqi†, and G. Dudek†

Abstract— We consider how to directly extract a road map
(also known as a topological representation) of an initially-
unknown 2-dimensional environment via an on-line procedure
which robustly computes a retraction of its boundaries. While
such approaches are well known for their theoretical elegance,
computing such representations in practice is complicated when
the data is sparse and noisy. In this paper we present the online
construction of a topological map and the implementation of a
control law for guiding the robot to the nearest unexplored area.
The proposed method operates by allowing the robot to localize
itself on a partially constructed map, calculate a path to unex-
plored parts of the environment (frontiers), compute a robust
terminating condition when the robot has fully explored the
environment, and achieve loop closure detection. The proposed
algorithm results in smooth safe paths for the robot’s navigation
needs. The presented approach is an any-time-algorithm which
allows for the active creation of topological maps from laser-
scan data, as it is being acquired. The resulting map is stable
under variations to noise and the initial conditions. The key
idea is the use of a flux-based skeletonization algorithm on
the latest occupancy grid map. We also propose a navigation
strategy based on a heuristic where the robot is directed
towards nodes in the topological map that open to empty space.
The method is evaluated on both synthetic data and in the
context of active exploration using a Turtlebot 2. Our results
demonstrate complete mapping of different environments with
smooth topological abstraction without spurious edges.

I. INTRODUCTION

This paper addresses on-line topological mapping and
navigation using a robust skeletonization mechanism that is
computationally efficient and provides smooth maps without
spurious edges. Our approach is based on computing a flux
based skeleton from two dimensional, dense, laser data. This
fundamentally one dimensional structure (embedded in 2D)
constitutes an efficient and elegant representation that can be
used for a range of navigation and localization tasks.

Topological representations have been proposed and em-
ployed in robotics for over 25 years [1], [2], [3] because of
the potentially simple ensuing control laws, their relevance
to human cognitive mapping, and their compactness. At the
core of many approaches to extracting such abstractions from
real environments is the calculation of points that are locally
maximally distant from sensed obstacles, yielding the medial
axis. Such topological structures result in safe areas where
robots can navigate without collisions. Indoor environments
with long corridors, like those found in malls and office
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Fig. 1. The experimental platform used, a Turtlebot 2, with a Hokuyo
laser range finder. This image is taken at the junction next to the triangular
obstacle in the center of the map; see Fig. 4.

buildings, underground mines, and dry or underwater caves,
are ideal candidates for using a topological representation as
are waterways such as in the Florida Everglades.

Traditionally, pragmatic topological mapping approaches
have been proposed using local sensor-based data [4] to
guide the robot from one vertex to the next. As such, loop
closure and global reasoning is challenging requiring addi-
tional information for verification [5], [6], [7]. The main con-
tribution of this paper is an any-time-algorithm that returns
the topological map based on all the available information
up to execution time, enabling reliable loop closure. The
second contribution of this paper is the development of an
active exploration strategy based on the heuristic that at any
given time the robot will be guided towards a node, computed
from the present skeleton, whose local neighborhood remains
relatively unexplored. In addition, an effective skeleton graph
pruning strategy is used which leads to topological maps
that are far simpler than those obtained from related Voronoi
based methods.

In the following section we review related work. Section
III presents the flux-based skeleton algorithm for the online
construction of a topological map. The exploration strategy
of the robot for the complete mapping of an unknown envi-
ronment is outlined in Section IV. Experimental results from
simulated and real environments are presented in Section V.
We then summarize our contributions and discuss directions
for future work in Section VI.

II. BACKGROUND

Medial axes are among the most fundamental geometric
structures in computer vision and robotics since they relate
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to local axes of mirror symmetry. One of the first formal
definitions for the medial axis was introduced by Blum based
on the analogy of a “grassfire” [8]. Here, the boundary is
set on fire and as the front advances inward at a constant
speed, skeletal points are created where fire fronts meet and
quench one another [9]. It turns out that this formalism is
equivalent to computing skeletons by finding local maxima
of the Euclidean distance function to the boundary [10]
or by finding locations where its gradient is multi-valued
[11]. Other than these two classes of approaches, there
are a number of methods that use Voronoi diagrams for
skeleton computation [12], [13], [14] due to the theoretical
relationship between them [15]. In particular, the vertices of
the Voronoi diagram of a set of boundary points converges
to the exact skeleton as the sampling rate increases under
some appropriate smoothness conditions [16].

The major weakness with traditional skeletonization al-
gorithms is that they suffer from high sensitivity to noise
(perturbations of the boundary data). A small perturbation in
the sensed data can drastically change the skeleton structure
and its abstraction. This has led to a number of different
results on the stability of medial axis, including approaches
which try to remove those skeletal branches that are likely
to be generated due to boundary noise [17], [18], [19]. In
the present article we opt for a Hamilton-Jacobi formulation
of the eikonal equation (grassfire transform) [11] because it
yields a direct and robust manner for finding skeletal points,
since it utilizes an average outward flux computation involv-
ing integrals rather than derivatives. Here skeletal points are
associated with locations where the average outward flux of
the gradient of the Euclidean distance function through a
shrinking circular neighborhood is non-zero.

The appeal of topological representations for mapping,
exploration and human-robot interaction has been noted
by several authors who suggested they be used directly,
computed from 2D data [1], [2]. The Voronoi diagram, a
classic structure in computational geometry that has appeared
in many fields, and the Generalized Voronoi Graph (GVG)
was exploited in robotics as a mechanism for computing
topological maps [20], [21]. Pure topological results have
been studied in [22], [3], [23] for mapping a graph-like world
with minimal sensor input. More recent work includes [24]
on exploration strategies on a graph-like world.

The full employment of the GVG in a SLAM framework
was proposed in [25], and extended for use in hybrid
metric/topological maps in [26], [27]. Tully et al. [28]
recommends a hypothesis tree method for loop-closure where
the branches that are considered to be unlikely based on
topological and metric GVG information are pruned. Among
the pruning tests, it is worth mentioning the planarity test
which ensures that when a loop-closure has been decided,
the resulting GVG graph remains planar. The utility of this
test has been examined extensively in [29]. The exploration
of a hybrid metric-topological map based on the GVG taking
into account both the uncertainty of the map and the distance
traveled was accomplished using the A* algorithm in [30].
The purely topological variant of these approaches had been

previously examined on [23].
Kuipers et al. [31] recommend the use of a framework,

termed a hybrid spatial semantic hierarchy, where the in-
cremental construction of topological large-scale maps is
employed in conjunction with metric SLAM methods for the
creation of maps of small-scale. No use of a global frame of
reference is made and a multi-hypothesis approach is used
to represent potential loop-closures.

III. MAPPING ENVIRONMENTS USING FLUX SKELETONS

Our system takes laser scanned data from a 2D laser
line scanner and generates an abstraction of the scanned
environment. This is done through a number of modules:
GMapping/binarization, flux skeleton computation, pruning
and simplification, and path planning for further exploration;
see Fig. 2. These modules are executed in a serial pipeline
where the output of each module is the input to the next
module.

Fig. 2. System overview. The system consists of four independently running
modules along with a robot which is exploring the environment. Each of
these modules is a component of a feedback chain system. The main four
modules are explained in detail in Subsections: III-A, III-B, III-C, and IV.

A. GMapping and Binarization

The system first receives 2D laser scan data in a format
where each scan is a single line containing range measure-
ments. These laser scan data serve as input to the GMapping
module. GMapping is one of the most used laser-based
SLAM algorithms [32]. It takes raw laser scan range data
and odometry and produces gridmaps of the considered en-
vironment, where each gridmap is a probability distribution
of cells (regions) being covered by the laser scan. The
algorithm uses a highly efficient Rao-Blackwellized particle
filter in which each particle has an individual map of the
environment. The generated gridmap at the end of this stage
is an intensity image where higher intensities show higher
probabilities of being covered by the laser scanner (white
regions), grey cells with lower intensities represent points
which have not been covered yet by the robot, and where
black cells usually represent walls where the range scanner
has faced a physical obstacle. The top raw of Fig. 4 shows
an example of a gridmap obtained after several scans have
been incorporated.

Gridmaps must be binarized before they can be fed as
input to our flux based skeletonization algorithm. To do
this we apply the following sequence of steps: a) all pixels
on gridmaps that are not scanned (grey regions) are set
to background regions. Pixels that have high probability of
being obstacles (e.g. walls - black pixels) are stored as the
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foreground regions. b) Gaussian blurring is applied to smooth
the structure that remains. c) The smoothed image is then
thresholded to yield a binary one. d) The contours of all
foreground regions in this image are extracted and sorted
according to their area; regions having very small area are
considered outliers. During this process, we keep track of the
transformation needed to translate the final output to world
coordinates. The second row in Fig. 4 depicts a binarized
version of the grid map in the top row.

B. Flux Skeletons

We now review the computation of the skeleton using
the average outward flux of the gradient of the Euclidean
distance function to the boundary through a limiting circular
region as developed in [11], [33]. We begin with some
definitions.

Definition 1: A 2-D object Ω is a set of geometrical loci
that the projection of a 3D object occupies in 2-D space.
Its boundary, ∂Ω, consists of a finite number of mutually
disjoint closed curves, each being a connected path in this
space that does not intersect itself.

The Euclidean distance between two n-dimensional points
P = (p1, p2, ..., pn) and Q = (q1, q2, ..., qn) is the length
of the line segment that connects these two points, and the
Euclidean metric d(P,Q) : Rn × Rn → R is a function
that represents this distance: d(P,Q) = ||Q − P || =√∑n

i=1(qi − pi)2. For each point P , and a given object
Ω, a distance metric, dΩ(P ), can be defined as follows:
dΩ(P ) = infQ∈∂Ω d(P,Q).

The signed Euclidean distance function within Ω specifies
how close a given point P is to the boundary ∂Ω:

DΩ(P ) =


dΩ(P ) if P is inside Ω

0 if P ∈ ∂Ω

−dΩ(P ) if P is outside of Ω

Let us define the projection Π(P ) as the set of closest
points on the boundary ∂Ω to P , i.e., Π(P )

4
= {P ′ ∈

∂Ω : ‖P − P ′‖ = min{‖P − P ′‖∀ P ′ ∈ ∂Ω}}. Assume
that on the boundary ∂Ω, there exists only one point Q
of minimum distance to P (ΠΩ(P ) = {Q}). The distance
function gradient vector for point P is q̇Ω(P ) = Q−P

||Q−P || .
In the case |ΠΩ(P )| > 1, there is more than one closest

boundary point and the distance function gradient vector
can not uniquely be defined. In fact the Euclidean distance
function gradient vector q̇ = ∇D is multivalued at skeletal
points. Except at skeletal points, q̇ is continuous everywhere
on its domain and it satisfies the equation: |q̇| = 1. Figure 3
shows an example of the distance function gradient vector.

By exploiting the relationship between the integral of
the divergence of a vector field within a simply-connected
region and the outward flux of that vector field through the
boundary of that region, a modified divergence theorem leads
to characterization of skeletal points by average outward flux
[11], [33]. Let R be a region with boundary ∂R a simple
closed curve, and let N be the outward normal at each point
on ∂R.

Fig. 3. An illustration of the Euclidean distance function gradient
vector field q̇ for a sample environment where the black regions represent
obstacles.

Definition 2: The outward flux of q̇ through ∂R is defined
as

∫
∂R
〈q̇,N〉ds, and the average outward flux of q̇ through

∂R is defined as AOF =
∫
∂R
〈q̇,N〉ds∫
∂R

ds
.

It can then be shown that the limiting behaviour of the
average outward flux of the distance function gradient field
through a circular region, as the radius of that region shrinks
to zero, is zero at non-skeletal points and non-zero at skeletal
points. Furthermore, at skeletal points the value of the
average outward flux is related to the angle made between
the tangent to the skeleton and the vector in the direction
of the closest boundary points on each side, as illustrated in
Fig. 3.

C. Pruning the Skeleton

Algorithm 1 Pruning Algorithm
1: procedure ITERATIVE PRUNING(Skeleton S, BinaryImage I)
2: list: source node← ∅
3: size← S.nodes.SIZE
4: for ∀ EndPoint E ∈ S do
5: if IS FEASIBLE(S,E) == false then
6: S.nodes.REMOVE END POINT(E)
7: end if
8: end for
9: if S.nodes.SIZE == size then . No reduction has been made

10: return
11: end if
12: ITERATIVE PRUNING(S,I)
13: end procedure
14:
15: procedure IS FEASIBLE(EndPoint E, BinaryImage I)
16: T ← EmptyImage
17: for ∀ ContourPoint P ∈ I do
18: if !P .IS OBSTACLE & E.DISTANCE TO(P ) < τ then
19: T.ADD POINT(P )
20: end if
21: end for
22: C ← T.GET ALL CONTOURS
23: for ∀ c ∈ C do
24: if c.AREA > τ ′ then . τ and τ ′ are certain thresholds.
25: return true
26: end if
27: end for
28: return false
29: end procedure

As illustrated in Fig. 4 (third row), the skeletonization
process yields some branches that can be pruned without
altering the skeleton’s topology. To prune such branches with
the goal of topological mapping, we suggest a fairly simple
but effective algorithm where the robot explores unseen
regions and avoids getting too close to obstacles. Algorithm
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Fig. 4. Top row: an example of a grid map of an environment. Second
row: the binarization of the grid map in the top row. Third row: the
full skeletonization process applied to the binarization of the environment.
Although, the skeleton is very smooth, there are still branches that can be
removed without altering its topology. Fourth row: the skeleton in the third
row is pruned and simplified in a way that makes robot navigation safe.
Bottom row: the topological map resulting from the abstraction in row four.

1 summarizes this process which works as follows: it looks
for all branches that have one branch point connected to
an end point. If that end point is surrounded by walls of
obstacles then there is no possibility for further exploration
in that direction. In such a case, the branch connecting the
branch point to the end point is removed and the skeleton is
simplified.

IV. PATH PLANNING

The last step of the proposed process is to guide the robot
through the environment to explore new territory. As we
showed in subsection III-C, at each time, there is a partial
abstraction of the environment generated by utilizing the
GMapping package, discretizing the output map of GMap-
ping, and then extracting the flux-based skeleton. These steps

Fig. 5. The environment has been partially explored and the robot now
selects an edge (green) leading into unexplored space.

produce an up to date topological map of the environment
at each time step. The system keeps track of the visited
nodes in a list. This enables the system to explore novel
territory for its next move. At each time step as the robot
moves from one of the visited nodes to a frontier node the
new nodes traversed on-route to the frontier node are added
to the list of visited nodes. Each connecting edge between
nodes is then weighted by the length of the path through
the skeleton. This weighting strategy results in a selection of
good candidates for future exploration. The algorithm then
selects the direction towards the nearest frontier node to the
current node. To find the nearest frontier node, we use the
Bellman Ford algorithm which computes shortest paths from
a single node to all of the other nodes in a weighted directed
graph; see Fig. 5.

V. EXPERIMENTAL RESULTS

Several experiments were performed, both in simulation
and with a real robot. The proposed methodology was
implemented under the ROS framework1. During the non-
simulation experiments the Turtlebot 2 platform was used
with a Hokuyo laser range finder; see Fig. 1. The laser sensor
has a range of 30 m and a 270◦ field of view, and returns
a dense cloud of 1080 coplanar points. During simulated
experiments the Stage simulator 2 was used with a different
environment.

Figure 6 presents an experiment in the Stage cave simu-
lated world. The robot started at the middle of the environ-
ment, and created a skeleton based on the current information
it had (Fig. 6a). After moving to the nearest frontier node,
more of the environment became visible and the topological
map was updated (Fig. 6b). The lower left obstacle was not
fully mapped, however, enough information was available to
produce a loop. The robot then proceeded to explore the top
left corner (6c) and then continued exploration towards the
branching nodes at the right side of the environment (Fig.
6d,e). Finally, the robot finished with a complete topological
map of the environment, as illustrated in Fig. 6f.

Figure 7 presents the proposed algorithm in action using
the Turtlebot 2 robot within the corridors of the fourth
floor of the McConnell Engineering building at McGill

1http://www.ros.org/
2http://wiki.ros.org/stage
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(a) (b)

(c) (d)

(e) (f)

Fig. 6. Six steps of the exploration algorithm, using the Stage cave
simulated world, are shown here. At each step the robot’s position, the
skeleton of the mapped environment, obstacles, and the future path is shown.
The green disk represents the robot, and the red path is where the robot will
traverse next. (f) The pose of the robot is drawn in blue to indicate that the
robot has now fully explored the map.

University. Here the scale of the map changes as the explored
environment grows. The robot starts with a very limited view
of the environment and the resulting skeleton is a simple
curve, the concave part results from the limited field of view
of the laser sensor (Fig. 7a). The robot identifies one side as
a dead-end and proceeds down the corridor (Fig. 7b), until it
detects a junction (Fig. 7c) where the robot decides to follow
the right side. Figure 7d shows the robot closing a loop, and
then continuing down the corridor selecting the left edge,
based on proximity (Fig. 7e). Finally, Fig. 7f presents the
completed map of the environment.

VI. CONCLUSION

A new methodology for the exploration and mapping
of an unknown environment was presented in this paper.
The algorithm belongs to the family of sensor-based topo-
logical maps. In contrast to the Voronoi based topological
representations, the proposed approach employs flux-based
skeletons which have a smoothing effect on boundary noise,
resulting in the elimination of spurious edges. Utilizing all

(a) (b)

(c) (d)

(e)

(f)

Fig. 7. Six snapshots from an exploration in the corridors of the McConnell
Engineering Building at McGill University. This experiment was conducted
using the Turtlebot 2 robot. Similar to Fig. 6, the green disk indicates the
position of the robot and the red curves the planned trajectory. The blue disk
indicates the robot’s pose upon termination and successful construction of
the skeleton-based topological map.

the recorded data up to the current step results in efficient
loop closures and elimination of the side effects of noise.
Experimental results from synthetic as well as live data from
an exploring robot demonstrated the efficiency and robust-
ness of the proposed framework. The proposed algorithm
utilizes all available information collected up to the point of
execution, and as such, loop closure is accomplished via the
laser mapping step. As an anytime algorithm, the resulting
roadmap can be used to guide the exploration to frontier
areas while avoiding spurious edges that lead to dead-ends.

We are currently investigating 3D structure reconstruction
using a stereo camera inside an underwater cave, depicted
in Fig. 8. The 3D structure will be further utilized for the
construction of a topological map which will aid in cave
exploration and mapping. The flux skeleton method proposed
in this paper is very promising as it extends to 3D and results
in smooth reconstructions that emphasize the major bounding
surfaces in the environment while ignoring debris and small
obstacles.

Future extensions of this work will consider the adaptation
of the motion planning technique to deploy on aerial vehicles,
such as quadrotors, where smoothness of the trajectory is of
paramount importance.
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Fig. 8. Left image from a stereo pair of an underwater cave in Mexico.
Future work includes online construction of the skeleton of its interior.
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