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Abstract— In multirobot exploration under centralized con-
trol, communication plays an important role in constraining
the team exploration strategy. Recurrent connectivity is a way
to define communication constraints for which robots must
connect to a base station only when making new observations.
This paper studies effective multirobot exploration strategies
under recurrent connectivity by considering a centralized and
asynchronous planning framework. We formalize the problem
of selecting the optimal set of locations robots should reach,
provide an exact formulation to solve it, and devise an approx-
imation algorithm to obtain efficient solutions with a bounded
loss of optimality. Experiments in simulation and on real robots
evaluate our approach in a number of settings.

I. INTRODUCTION

Research on multirobot exploration showed how commu-
nication constraints represent a critical issue in a number
of real-life applications. This holds true especially when
exploration is performed in disaster mitigation domains [1],
where centralized situational awareness is often required
for the effective supervision of the mission. One important
consequence is that robots not only have to efficiently
explore, but also need to report and share the data they
gather by communicating with each other and with a base
station. The literature proposes multirobot exploration strate-
gies that take into account different types of communication
constraints [2]–[5]. Among them, recurrent connectivity is
a method that can be applied to ensure situation awareness
without excessively constraining the exploration task. In this
method, robots are required to be connected each time they
gather new information. Under such a scheme, the constraints
can be thought in an online fashion, allowing robots to be
disconnected for arbitrarily long periods, provided that they
are able to report to a base station as soon as new information
is collected.

This work addresses the problem of multirobot exploration
under recurrent connectivity in an asynchronous fashion,
meaning that new plans can be submitted to arbitrary groups
of robots as soon as they become ready. Our approach
leverages a variant of the Steiner tree problem (i.e., given a
subset of vertices, find a minimum-cost subtree that connects
them [6]) that appears as a particular case of different known
graph optimization problems, and that, to the best of our
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Fig. 1: An experimental setup used in this paper.

knowledge, has never been adopted for this kind of settings.
In particular, we formulate the problem of selecting the
optimal set of locations robots should explore, propose an
exact Integer Linear Programming (ILP) formulation, and
discuss its applicability scope. To overcome the limits of
such an exact formulation, we define a novel approximation
algorithm that introduces significant quality guarantees in
the robotic scenario considered. Then, given the best set
of connected locations, the most efficient robot assignment
is easily computed by minimizing the cumulative travel
distance. Simulation results validate our method against a
state-of-the-art technique. Finally, we validate the proposed
approach using a team of Turtlebot2 robots; see Fig. 1.

The paper is structured as follows. Section II provides a
short review of communication-constrained multirobot ex-
ploration. Section III formalizes our multirobot exploration
framework. Section IV describes our solution methods for
finding optimal connected configurations while Section V
addresses the optimal robot deployment. Section VI discusses
the concept of robot readiness. Section VII presents our
experimental results and Section VIII concludes the paper.

II. RELATED WORK

Exploration is the task of building a complete map rep-
resenting the structure of an environment. A number of
works in the literature addressed the problem of multirobot
exploration under communication constraints by focusing
on continuous connectivity (direct or multi-hop) to a Base
Station (BS). This conveniently applies to situations where
two-way communication with each robot must be contin-
uously maintained, e.g., in applications like teleoperated
search with continuous real-time image streaming. To this
aim, [2] proposes a local search algorithm, while [7] relies on
a depth-first procedure to build the skeleton of the connected
network. Clearly, guaranteeing continuous connection can in-
troduce non-negligible costs for the exploration performance.
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Therefore, if such requirement is not strictly needed, a more
flexible approach should be selected.

Another class of approaches addresses central situation
awareness by considering periodic connectivity. Robots are
allowed to temporarily disconnect from the BS to explore
autonomously, but are required to regularly regain connec-
tion. In particular, some works cast periodic connectivity as
a “soft” requirement, trying to comply with it under a best-
effort perspective [4], [8]. Here, the periodic reconnection
is distributedly obtained, with no strict guarantees, as a
collective emerging behavior. Other solutions embrace a
“hard” constraining approach. One significant work falling
in this category is [9], where regaining connectivity under
a strict frequency constraint is addressed by resorting to a
scalable local search algorithm.

The above works model the communication constraint in
an offline fashion, meaning that the communication require-
ments are fixed and mostly do not depend on how exploration
unfolds. A different method taking an online view is that of
recurrent connectivity, where robots need to be connected
only at their deployment positions, namely at the loca-
tions where they gather new information. This method can
provide up-to-date situational awareness to the BS without
excessively constraining robots in their movements. Indeed,
robots are allowed to disconnect for an arbitrarily long time,
while reaching a desired deployment. Solutions based on
this method are proposed in [3], [5], [10]. In particular, the
problem setting addressed in [5] shares some basic features
with the one considered in this paper. That work proposes an
approach that takes into account bandwidth constraints over
the robots relay chain under the unit disk communication
model, and new plans are computed once the whole network
has been formed. The general optimization problem is split
into sub-problems: explorers placement, relays placement,
and robot path generation. In particular, given a set of can-
didate locations to be connected, relay placement is achieved
by solving variations of the Steiner minimum tree problem
with minimum number of Steiner points and bounded edge
length [11]. However, this choice is intimately related to
the adoption of the unit disk communication model under a
synchronous planning setting. The contributions of our paper
lie on a complementary direction: bandwidth constraints
are not considered, but a method is devised not depending
on a specific communication model and not requiring syn-
chronous coordination among robots.

III. EXPLORATION MODEL

A two-dimensional, continuous, and bounded environment
Env ⊂ R2 is considered, whose points belong either to the
free space, Envf , or to obstacles of any shape, Envo. A
supervising facility termed Base Station (BS) is present in
Env at a known location. BS will act as a central planning
entity supervising the mission and computing new plans for
a team of m robots R = {r1, r2, . . . , rm}. Each mobile
robot is equipped with finite-range sensors to perceive the
surrounding free space and outer boundaries of obstacles
(e.g., a laser range scanner or a RGB-D sensor) and is

capable of exchanging data with other robots or with the
BS over an ad hoc network. Following a standard approach,
we work on a graph-based representation of the environment
G = (V,C) where vertices in V encode some discretization
of Env. Each vertex v ∈ V is associated with a location,
and BS vertex is marked as b. To each pair (i, j) of vertices,
a value dij is associated, representing (an estimate of) the
geodesic distance between them. Finally, the edge set C
encodes the availability of communication links between
pairs of vertices. In particular, we assume that, if the BS
and one or more robots form a connected component in C,
then any of such robots can exchange data with the BS under
some protocol. (Experimental verification using real robots
proves the validity of such an assumption.)

The exploration mission develops as follows. Robots ex-
plore and discover the environment in an incremental way,
by taking local perceptions and repeatedly transmitting the
collected data to the BS where a global map of the currently
explored space is maintained. Plans are dictated by the BS
and happen at discrete stages t = 1, . . . , T , where T denotes
the time of the last plan of the mission. We denote with
Gt = (V t, Ct) the portion of G known by the BS at stage t.
This graph can be defined as a subgraph of G whose structure
depends on the exploration mission up to the present time.
In particular, set V t is obtained from the perceptions robots
have taken and reported to the BS. A set F t ⊆ V t denotes the
frontiers, that is, vertices corresponding to locations of Envf
lying on the boundary between explored and unexplored
portions of Env. Finally, set Ct ∈ C is determined by
some link-detection mechanism in charge of recognizing
the availability of a communication link between any two
known vertices. Link-detection methods range from simple
visibility-based criteria to more sophisticated approaches
where the signal decay through obstacles is modeled. The
standard assumption [3], [5], [9] that network C is static
and that the link-detection mechanism is not affected by false
positives is used; see Section VII for more details.

At any planning stage t a new vector 〈pt1, pt2, . . . , ptm〉
(where ptr ∈ V t) is computed, denoting the goal vertices each
robot r is headed to. More specifically, a plan is formally
represented by a configuration Qt and a deployment πt(·). A
configuration is the subset of vertices Qt ⊆ V t containing m
vertices to be occupied: Qt = {qt1, . . . , qtm}. A deployment
specifies an assignment of each robot to one of the vertices,
where πt(r) ∈ Qt. When a plan is computed the assignment
ptr = πt(r) is performed and the robot r is instructed to reach
its goal vertex ptr. Once reached, if ptr ∈ F t then r must
take a new range scan, e.g., execute a complete rotation to
maximize the explored area, and transmit the newly gathered
data (and/or forward data received by others) towards the BS.
Note that the robots flush to the BS also the sensing data
acquired while going to the assigned locations. Moreover,
we characterize a robot r as ready if (a) it has reached its
goal vertex ptr and, in case such a vertex is a frontier, it has
completed sensor measurements, and (b) it has transmitted
to the BS its new perception data and no other robot still
requires it as a relay. We denote with Rt the set of ready
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Fig. 2: Exploration snapshot. Blue and red: not ready and
ready robots. Black-edge squares: vertices of Gt. Green:
current communication links. Purple: frontiers of the last
issued plan.

robots at time t. The following constraints are posed in the
framework just described:

(I) Qt∩F t 6= ∅, that is at least one frontier must be reached
by a robot;

(II) Qt ∪ {b} must form a single connected component in
Gt;

(III) for each robot r /∈ Rt it must hold that ptr ∈ Qt;
(IV) πt must not change the robot-goal assignments for

non-connected robots (robots momentarily not able to
exchange data with the BS).

Constraint (I) requires a minimum exploration progress
rate: if no frontier can be further visited, then no additional
space can be explored and the mission ends. Recurrent
connectivity is enforced by Constraint (II) forcing robots to
be able to exchange data with the BS when they occupy
their goal vertices. Constraints (III) and (IV) define feasible
asynchronous replanning. Specifically, Constraint (III) allows
to overwrite goals only for ready robots. That is, preemption
at configuration level for unreached goals is forbidden. On
the other side, we allow robots preemption in favor of
a new deployment which, in presence of the new goals,
might be preferred. By Constraint (IV), to change a robot’s
deployment this must be able to receive data from the BS.

Notice that, by definition, ready robots are connected to the
BS, which can keep track of them. So, in principle, the BS
can decide to replan over them as soon as some replanning
condition is verified. We allow for arbitrary replanning
conditions generalizing the approach adopted in [5] where
new plans are issued for each robot when each of them
reached the respective goal location. During the execution
of a plan, some robots can become ready before others,
hence becoming able to receive and execute a new plan. As
we will discuss later, plans involving only part of the robot
team are allowed to exploit communication links that will be
made available by other robots (those currently not ready)
to establish communication links with the BS. Fig. 2 shows
a representative snapshot of the exploration process.

Given the setting described above, our objective is to
compute plans for a given set of ready robots Rt to it-
eratively achieve efficient exploration of the environment.
We decompose this into two sub-problems. The first one is
the optimal configuration problem, where the set of robot
locations Qt that maximizes a utility function defined on

frontier vertices under recurrent connectivity constraints is
computed (Section IV). The second one is the optimal de-
ployment problem, where a robot-location assignment πt(·)
minimizing traveling costs is computed (Section V).

IV. OPTIMAL CONFIGURATIONS

A configuration is evaluated using the cumulative in-
formation gain achievable by acquiring sensor data from
the reached frontiers. The utility U(·) of a frontier node
f combines the estimated information gain g(f) (usually
proportional to the area associated to f when the environment
is discretized) and its minimum traveling cost (see [4], [5]):

U(f) =
g(f)

min
j∈Rt

d2
ptjf

. (1)

Non-frontier vertices have null utility and, with a slight
overload of notation, U(Q) =

∑
v∈Q U(v) denotes the utility

of any configuration Q as defined in the previous section.
The goal is to find a configuration of size at most |Rt|

on Gt that maximizes the above utility function while
maintaining connectivity with the BS. This problem can be
seen as a particular case of known problems such as:
• Constrained Maximum-Weight Connected Graph

(CMCG) [12], i.e., given a weight function V → R, a
root vertex, and a positive integer k, find a connected
subgraph containing the given root of exactly k vertices
maximizing the cumulative weight. In our case all
weights are non-negative, and the constraint on the
number of vertices is not tight.

• Rooted Maximum Node-Weight Connected Subgraph
Problem with Budget Constraint (B-RMWCS) [13], i.e.,
given a weight function V → R, a cost function V →
R+

0 , a cost budget, a root vertex, and a (possibly empty)
subset of terminal vertices, find a connected subgraph
connecting the given root to the terminals maximizing
the cumulative weight, without exceeding the budget. In
our case all the weights are non-negative, there are no
terminals, and each vertex consumes one unit of budget.

• Rooted Budget Prize-Collecting Steiner Tree (B-
RPCST) [14], i.e., given a reward function V → R+

0 , an
edge cost function C → R+

0 , a cost budget, and a root
vertex, find a tree containing the given root maximizing
the cumulative reward, without exceeding the budget.
In our case, edge costs are unitary, and the budget limit
is |Rt|.

Our problem can be shown to be NP-Hard with a
simple adaptation of the reduction outlined in [15] for the
unconstrained version of CMCG.

A. Exact formulation

A simple ILP formulation can be derived from one dis-
cussed in [13] for solving B-RMWCS. The idea is to find the
best connected configuration in the form of an arborescence
computed on the directed version of Gt. In fact, a second
formulation is presented in [13], including only vertex binary
variables: in presence of dense graphs, it could provide lower
planning times. We leave its study to future works.
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First, in order to encode the fact that some robots may
already have a goal assigned, and hence could be able to
behave as relays for the currently replanning robots, we
modify Gt by substituting the vertices assigned to non-
ready robots with ficticious communication edges directly
connecting the neighbors of the removed vertices with the
BS. Moreover, we double each undirected communication
edge, except for the set of edges incident to the BS, for
which we keep only the outgoing arcs. With a slight abuse of
notation, let us denote again as Gt = (V t, Ct) the modified
graph derived as described above. We define the following
binary variables:
• yf , taking value 1 if and only if frontier f ∈ F t is

chosen in the solution;
• xij , taking value 1 if and only if arc (vi, vj) ∈ Ct is

included in the solution.
We denote with δ±(S) the directed cuts induced by the set

of vertices S ⊆ V t. The exact ILP model reads as follows:

maximize
∑
f∈F t

U(f)yf s.t. (2)

∑
(i,j)∈Ct

xij ≤ |Rt| (3)

∑
(i,j)∈δ−(S)

xij ≥ yf ∀f ∈ F t,∀S ⊆ V t \ {b}, f ∈ S (4)

The objective function (2) maximizes the configuration
utility. Constraint (3) limits the size of the configuration to
the available number of robots. If frontier f is occupied,
Constraints (4) require a connected sequence of links from f
to the BS. Given the model optimal solution, the connected
component containing b represents the optimal solution of
our problem. Despite the exponential multiplicity of the last
constraints, the model can still be solved to optimality in
instances of moderate size by a Branch&Cut algorithm which
iteratively adds the violated inequalities found in the current
solution (see Section VII and [13] for details).

B. Approximation algorithm

Real operational conditions require computational effi-
ciency and to keep the problem tractable at higher dimen-
sions. We now discuss an approximation method, able to
introduce efficiency with a bounded loss of optimality. The
literature presents different studies on the approximation of
CMCG [12], B-RMWCS [16], and B-RPCST [17]: the best
result applicable to our problem that we were able to find
is the 4 + ε approximation algorithm of [17]. However,
differently from the standard approach followed in optimiza-
tion literature, we do not seek an effective solution for any
instance. Instead, we try to leverage our domain knowledge
for which vertices are physical locations and budget is the
number of robots, which do not typically come in very
large quantities. In this section we show how, by exploiting
such features, a different approximation algorithm can be
developed. Our approach, despite not being competitive
with the best known general one, achieves a non-constant

approximation factor and is able to outperform it in our
typical settings. The rationale is twofold. For any δ ∈ N:
• if the number of vertices to connect is upper bounded by
δ + 1 then the optimal Steiner tree can be computed in
polynomial time; let us call (δ+1)-Steiner an algorithm
performing such a task; for any instance with up to
δ+ 1 terminals the (δ+ 1)-Steiner algorithm computes
efficiently the optimal solution; obviously, this does not
imply an efficient algorithm for the general case (any
number of terminals) for which (δ + 1)-Steiner cannot
be applied [6];

• the enumeration of the subsets of at most δ frontiers
can be done in polynomial time.

Our method works on the original version of Gt after
vertices assigned to non-ready robots have been removed
as previously done. Also, it operates by fixing to δ the
maximum number of frontiers that can be occupied by the
configuration (thus allowing suboptimalities). Then, for each
subset F δ of at most δ frontiers it searches for the optimal
Steiner tree T ∗ connecting F δ∪{b} by employing the (δ+1)-
Steiner algorithm. If the number of edges in T ∗ does not
exceed |Rt| then T ∗ is considered a feasible configuration
and checked against the best configuration found so far.
If, otherwise, T ∗ exceeds the budget, then, being T ∗ the
cheapest tree, no feasible configuration exists for F δ .

Algorithm 1 formally presents the steps of the method. The
genNewSubset() function is used to retrieve the next subset
of frontiers to examine (Step 2). It returns a subset F of
at most δ frontiers such that no other F ′ ⊆ F has already
been determined as non-feasible; this simple pruning rule is
applied by maintaining a list of discarded solutions in Steps 7
and 13. We heuristically rank subsets by decreasing utility
and increasing size.

For each returned subset F , we perform two simple tests
to determine if it can be discarded without running (δ + 1)-
Steiner on it. First, we check the largest minimum frontier-
frontier or frontier-BS distance in Gt (Step 6): subtracting
1, this is a simple lower bound on the minimum dimension
of the Steiner tree connecting F and b. If the value com-
puted exceeds |Rt|, we discard F . Then, U(F ) is evaluated
(Step 10). This is a simple lower bound of the total price
possible, if it does not exceed the current best solution
F is discarded. The Steiner tree problem on F ∪ {b} is
solved in Step 11 and in Step 12 budget feasibility is
checked. At the end of the while loop, it may be possible
that some unoccupied frontiers are still reachable from the
newly created connected configuration T ∗ with the remaining
budget of robots. In this case, the completeConfiguration()
function (Step 20) greedily adds branches from T ∗ to the
unoccupied frontier with the highest utility, until no other
frontier can be reached.

Theorem 4.1: For δ ∈ N, Algorithm 1 is a k/δ-
approximation algorithm for the problem of finding the new
connected configuration, where k = min (|Rt|, |F t|). Its run-
ning time is bounded by O(|F t|δ[3δ+1|V t|+2δ+1e log |V t|]).

Proof: For our definition of the genNewSubset() func-
tion, it is ensured that all the candidate feasible solutions can
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Algorithm 1 Compute approximate optimal configuration.
1: while True do
2: F = genNewSubset(F t, u, δ, closedList)
3: if F = ∅ then
4: break
5: end if
6: if lowerbound(Gt, F, b) > |Rt| then
7: closedList.add(F )
8: continue
9: end if

10: if U(F ) > z∗ then
11: T = (δ + 1)-Steiner(Gt, F ∪ {b})
12: if |T | > |Rt| then
13: closedList.add(F )
14: else if z(T ) > z∗ then
15: z∗ = z(T )
16: T∗ = T
17: end if
18: end if
19: end while
20: completeConfiguration(Gt, b, F t, U , |Rt|, T∗)

be generated. Therefore, at the end of the while loop, we are
guaranteed to have found a tree T ∗ connecting, within the
budget limit, the BS vertex b with F δ-BEST, i.e., the set of
frontiers with size ≤ δ collecting the maximum utility. Let
FOPT = {f1, f2, . . . , f|FOPT|} be the set of frontiers included
in the optimal solution where OPT = U(FOPT). Clearly, if
δ ≥ |FOPT|, then the algorithm finds the optimal solution.

If instead δ < |FOPT|, let us assume, without loss
of generality, that frontiers in FOPT are labeled such as
U(fi) ≥ U(fi+1) and let β = b|FOPT|/δc and γ =
|FOPT| mod δ. Moreover, to ease notation, rename frontiers
fβδ+1, . . . , f|FOPT| as f̄1, . . . , f̄γ , respectively (these are the
γ least-utility frontiers in FOPT). Then we have

OPT =

β−1∑
i=0

[U(fiδ+1) + . . .+ U(f(i+1)δ)] +

γ∑
i=1

U(f̄i),

where the first summation iterates over subsets of frontiers
of size δ and the second summation covers the possibly
remaining frontiers. Since terms are ordered according to
non-increasing utilities, we have that

OPT ≤ βU(F δ-BEST) + γU(fδ)

by definition of F δ-BEST and since U(fδ) ≥ U(f̄1). If
γ = 0, then the first part of the claim directly follows
since |FOPT| ≤ min (|Rt|, |F t|). Otherwise, notice that
[U(f1) + . . .+ U(fδ)]/δ ≥ U(fδ). This implies that

OPT ≤ βU(F δ-BEST) + (γ/δ)U(F δ-BEST) =

=
|FOPT|
δ

U(F δ-BEST)

and the first part of the claim again follows. The asymp-
totic running time is obtained by noticing that the while
loop performs at most

∑δ
i=1

(|F t|
i

)
= O(|F t|δ) calls to

the algorithm of [6], whose running time is bounded by
O(3δ+1|V t| + 2δ+1e log |V t|). The greedy completion of
T ∗ performed by completeConfiguration() does not influence
neither the approximation nor the running time bound.

Clearly, we have a meaningful bound only for δ ≤
min (|Rt|, |F t|). Notice that this is always verified since
we interpret δ as the maximum number of frontiers we can
occupy by robots. Moreover, it is easy to see how such an
approximation bound can yield an approximation better than
the one provided by the best general algorithm presented
in literature [17], with an approximation factor of 4 + ε.
For example, with a team of 10 robots and δ = 5 an
approximation factor of 2 can be obtained.

V. OPTIMAL DEPLOYMENTS

Given a new connected configuration, it must be decided
which robot goes to which new vertex. Instead of minimizing
the maximum distance a robot has to travel, as in [5],
since we are not only interested in completing the whole
deployment in the shortest time, in this paper we minimize
the cumulative travel distance, as in [3], by means of the
Hungarian algorithm. Actually, since some non-ready robots
may be in communication with the BS when replanning
takes place, we compute a new allocation taking into account
also these robots and their previous destinations, in order
to reduce possible path overlaps between ready and non-
ready robots. Notice that the newly computed connected
configuration might reserve less than |Rt| vertices for a
new deployment. In this case, we use again the Hungarian
algorithm to allocate the remaining robots to the vertices
adjacent to the connected configuration w.r.t. Ct: these
vertices will be treated as “fake” frontiers in the forthcoming
definition of robot readiness.

VI. READINESS AND ASYNCHRONICITY

As introduced in Section III, robots can take part in new
plans as soon as they become ready, i.e., when they have
reached their goal positions and possibly served as relay to
other robots. In order to declare a robot to have completed its
service as relay, several formal conditions could be defined,
either offline or online (i.e., specified at the moment of
issuing a plan or during its execution), and/or by taking
into account the routing rules of a specific communication
protocol. In this work, a communication protocol able to
dynamically discover multi-hop paths between frontiers and
BS is assumed to be in place, such as the Optimized Link
State Routing Protocol [18]. Accordingly, we now provide
a more formal definition of readiness that enables the BS
to receive the data from the chosen frontiers in minimum
expected time, under the assumptions of sufficient bandwidth
along each communication link and negligible transmission
times. First, notice that, although in Section IV we focused
on finding a connected tree on Gt, many other links not
explicitly considered in the solution could be available to
transmit data between the vertices of Qt. Intuitively, the
definition will bind the robots placed on the first forming
link path between a frontier and the BS to remain available
for serving as relays until all the frontier data have been
transmitted to the BS (possibly, by taking other routes).
Formally, given a deployment πt, for each frontier f ∈
F t ∩ Qt, call Pf the first path connecting f and the BS in
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Gt that will be built according to the time that each robot j
has to travel from its current position to reach ptj . We define
a robot j to be ready if (a) it has reached its destination
vertex ptj , and (b) for each f ∈ F t ∩Qt whose Pf contains
qtj , the data of f has been received at the BS, and every
other robot j′ for which ptj′ ∈ Pf is at its goal position. For
each frontier f , the corresponding Pf can be conservatively
computed offline (thus not considering possible other links
discovered throughout the plan execution) by means of the
following algorithm: order the robots in increasing order of
traveling times; for each robot j, build a restricted version of
Gt containing only the vertices of Qt associated with robots
expected to reach their destination not after j; if a path exists,
take the shortest, otherwise examine the next robot.

As soon as a robot becomes ready, it is available to receive
a new plan from the BS. Several options may be taken in
consideration for triggering a new plan computation, e.g.,
replan when a fixed threshold θ of ready robots is reached,
or as soon as a sufficiently interesting region is discovered.
In our experiments, we study the effect of choosing different
θ, i.e., replanning as soon as at least θ robots become ready.

VII. EXPERIMENTAL EVALUATIONS

In our implementation robots maintain local grid maps
representing the portion of environment they explored. On
top of the BS global grid map, the exploration graph Gt is
iteratively built by adding as vertices locations representing
a sufficiently big cluster of frontier cells. Robots receive
from the BS vertices of Gt (goals) to reach. Visited frontiers
become candidate relay locations for future plans. We build
Ct with the conservative limited line-of-sight model of [3].

A. Simulation activity

We choose the MRESim [4] simulator for its focus on
the communication aspects and select three environments as
shown in Fig. 3. Office and Open are from the Radish repos-
itory [19] (“sdr site b” and “acapulco convention center”),
while Cluttered is from the MRESim repository (“grass”).
We simulate 12 Turtlebot-like robots equipped with a depth
camera with a maximum range of 50 pixels (cells), a 60◦

FOV, and an angular resolution of 1◦. The limit distance
for the line-of-sight model is set to 150 pixels. Note that
the sensor and communication ranges could realistically
correspond to 5 m and 15 m, respectively, considering 10 cm
a pixel. Robot speeds are set to 4 pixels/timestep (40 cm/s,
assuming 1 second per timestep). For each experimental set,
we execute 5 runs of 900 steps for each environment, varying
the starting positions of BS and robots. Fig. 2 shows an
experiment running on MRESim on the Office environment
and the video accompanying the paper shows example runs
of the experiments with simulated and real robots.

A first set of experiments gives some insights on the
performance obtainable without considering asynchronous
plans (i.e., θ = 12) and evaluates the approximation algo-
rithm (APX) against its optimal counterpart. The GUROBI
solver [20] is used for solving the ILP on a laptop equipped
with a i5-4310M processor and 8 GB of RAM as follows:

initially, the model contains only Constraints (3); viola-
tions of Constraints (4) are checked, for each node of the
Branch&Bound tree, by means of the standard separation
procedure involving the resolution of a max-flow problem
in the underlying graph, combined with the usage of nested
cuts to find more violated cuts at each node (see [13]). APX
is run with δ = 4 to obtain an approximation of 3.

For space reasons, Fig. 4 shows only the results obtained
for the Cluttered environment (the other two present a
similar trend). Fig. 4a shows the evolution of the average
explored area when considering replanning time in counting
the simulation steps. The results obtained are very similar:
the better configurations obtained by means of the ILP are
compensated by the faster replanning time of APX. All the
instances, containing up to ≈ 200 vertices and ≈ 2000 edges,
are always solved within 40 and 6 seconds, respectively.
(Most of the times, the ILP is able to produce the optimal
solution within few seconds.) Fig. 4b reports the evolution of
the explored area when considering planning instantaneous:
APX empirically shows basically no quality losses w.r.t. the
exact method, given the online nature of the problem.

We now report on the effect of choosing different θ.
Preliminary experiments showed that solving the ILP model
in an asynchronous setting becomes not practical (at least
in our current implementation) given the frequency with
which robots may become ready, especially in early phases
of the exploration, and given the increased size of the
exploration graph. Therefore, we test only APX, again with
δ = 4, and compare our approach against the Utility method
of [4], a distributed strategy in which each robot chooses
autonomously which frontier to explore in a greedy fashion
and returns to the BS as soon as the ratio between the area
supposed to be known at the BS and that known by the robot
goes below a predefined value 0 ≤ r ≤ 1 (here set to 0.5 to
obtain a balanced behavior). Note that this strategy does not
embed the recurrent connectivity constraint, so robots can
remain disconnected from the BS for an unpredictably long
amount of time. Fig. 5 shows the percentage of explored area
known at the BS in the three environments. A low replanning
threshold provides a statistically significant increment in the
explored area across the mission (e.g., for Cluttered, in one-
way ANOVA p-value < 10−9 considering θ = 1 and θ = 12
at the end of the simulation). In particular, replanning as
soon as at least one robot becomes ready offers competitive
performance w.r.t. the Utility method, even if the latter seems
to strongly depend from the starting positions of robots and
BS. Recall that running APX with θ ≤ δ is guaranteed
to return the optimal solution. Fig. 6 shows the average
time in which robots and BS are not in communication.
Our approach, although allowing temporary disconnections,
allows a greater situational awareness at the BS than Utility.

B. Implementation on real robots

Our method is also validated in a real scenario, with a
laptop (the BS) and 6 TurtleBot 2 mobile robots equipped
with a netbook and a Microsoft Kinect. An ad hoc network
is set through the WiFi interfaces of the computers and
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Fig. 3: Simulation environments, approximate size 80 x60 m.
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Fig. 5: Explored area for different replanning thresholds (θ = 1, 3, 6, 9, 12) and Utility method [4].
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Fig. 6: Time not in communication for different replanning thresholds (θ = 1, 3, 6, 9, 12) and Utility method [4].
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Fig. 4: Comparison between ILP and approximation algo-
rithm in the Cluttered environment, with (a) and without (b)
replanning time.

the Optimized Link State Routing Protocol is run to allow
multihop topology of the network [18]. ROS [21] is used
to control the multirobot system. One part of the floor of
the Swearingen Engineering Center at the University of
South Carolina is used as testing ground for our approach;
see Fig. 7. The size of the portion of the environment is
approximately 75 by 35 m. There is a long corridor, with
some other intersecting corridors/halls, thus requiring the
robots to form a chain to guarantee communication with
the BS. After some preliminary tests, we assume that two
locations can communicate if they are within 15 m range in
line of sight. We run APX with δ = 4 and θ = 1 and θ = 6.
For θ = 6, initially two coalitions of robots are formed,
each one going towards the frontiers of the corridors. Fig. 7
shows the partial map known by the BS and the robots. It is
possible to observe that some noise is introduced, due to, e.g.,
perception and motion errors. One immediate consequence is
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Fig. 7: Partial map built by the TurtleBots (blue squares) and
known by the BS (green square) for θ = 6.
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Fig. 8: Area explored by the real TurtleBots.

that, in order to let the exploration proceed, a relaxed version
of the communication model should be adopted: given the
current known map, two locations can communicate if they
are in line of sight, with some tolerance. Without this relax-
ation, many destination locations could not be connected,
resulting in a premature end of the exploration task. As
the robots in one branch of the corridor cannot proceed
further without violating the communication constraint, they
become ready and are allocated to the other branch of the
corridor to form a longer chain. Note that, with real robots,
recovery mechanisms are necessary. For instance, some of
the robots could not find a path to the assigned destination
locations or some of the frontiers are found behind a wall
because of the noisy map. In such cases, the robot aborts
the motion to the location, notifying the BS. To guarantee
that the communication topology always contains a tree, all
the robots belonging to the branches to which the aborted
robot belongs are preempted and become ready for a new
assignment. Fig. 8 shows the trend of the explored area
during the mission. At some time interval, we observed that
the robots basically do not move. This can be explained by
two facts. One is that the BS is computing a new plan for the
robots. The second cause is that, with a noisy map, several
frontiers could be generated in non-reachable areas, leading
to a sequence of plan re-computations. Differently of the
simulation results, setting θ = 1, while initially providing
some benefits, leads to a worsening in the performance and
no candidate location available. With frequent replanning,
robots tend to interfere in the motion of each other: this
possibly results in collisions, and, given the low quality of
the map, eventually all the locations become non-valid.

VIII. CONCLUDING REMARKS

In this work, we proposed a multirobot exploration strat-
egy operating under recurrent connectivity constraints in a
centralized and asynchronous framework. Our simulation
results suggest that frequent replanning can offer a good

situation awareness at the base station without significantly
limiting the explored area. However, experiments on real
robots revealed a tradeoff between frequent replanning and
the need for more robust path planning and map building
methods to cope with emerging robots interferences.

Currently, we are studying extensions of our exploration
strategy to account for robot heterogeneity, that could result
in preferential placement of robots as relays. Moreover, we
are investigating the use of topological representations such
as skeletons to guide the robots through the free space during
the exploration process.
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