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Abstract—During exploration of an unknown environment
by a single robot, the robot is driven by two conflicting goals:
to explore as fast as possible; and to produce the most accurate
map. While fast exploration necessitates minimizing traversal
of already mapped territory, accurate mapping requires that
the robot passes over previously explored areas to reduce
the localization and map uncertainty. This problem has been
labeled as exploration versus exploitation. In this paper the
problem of mapping a camera sensor network by a mobile
robot has been used to demonstrate the effect that differ-
ent exploration strategies have on uncertainty and speed of
exploration. Simulation results using a realistic noise model
are presented for different environments and for different
strategies.

Keywords-Mobile Robotics; Sensor Networks; Localization;
Uncertainty Reduction.

I. INTRODUCTION

In this paper the problem of exploring an unknown
environment and at the same time maintaining the quality
of the resulting map is addressed. In many applications
robot(s) enter an unknown environment and have to explore
it while at the same time constructing a map. One key
question is how much time they should spend improving
the quality of the map versus exploring new territory. We
use the paradigm of a mobile robot navigating through an
environment equipped with a camera sensor network; see
Fig. 1. The robot’s goal is to produce a map with the
locations of all the cameras, and to maintain its own pose
estimate. Such a scenario is quite common in the case where
a service robot (vacuuming, patrolling, etc.) operates inside
a building equipped with security cameras. The pose of
each camera is unknown; the robot is carrying a target that
can be detected when it enters a cameras field of view.
In addition, by moving in-front of the camera, the robot
is able to perform autonomous calibration [1] and also
recover the six degree of freedom coordinate transformation
between the target and the camera [2], thus localizing the
camera in the robot’s frame of reference. This formulation of
the problem eliminates the data association problem which,
though relevant, it is not at the centre of the decision between
exploration and relocalization. In this scenario, the robot’s
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Figure 1. The experimental setup used throughout this paper. The robot
carries a calibration target which can be easily detected in images taken by
the cameras in the network.

motion through the network facilitates localization by explic-
itly transferring pose information between sensor locations.
By maintaining an ongoing estimate of the robot’s location,
the position of any sensor that it interacts with can be prob-
abilistically estimated, (and updated), given the appropriate
motion and measurement models. Planning trajectories in the
face of conflicting goals such as efficiency and accuracy, in
combination with the high dimensional uncertainty estimates
of the underlying SLAM solution results in a challenging
problem. Furthermore, the environment is represented as a
graph, where vertices are locations that can be seen by the
cameras and the edges represent accessible paths between
these areas; the cameras have no overlapping field of views.

In general, after an initial phase of exploration, which can
be as short as moving to the nearest unexplored territory,
the robot is in possession of a partial map that indicates
the known areas, and the borders to unexplored territory,
usually called frontiers [3]. In the camera sensor network
localization, the known map represented by a graph G; =
[Vi, Et] where each vertex v; € V; represents the centre of
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a camera’s field of view where the robot would visit. Every
edge e;; € I represents a path between the vertices v; and
v; observed by camera C; and C; respectively. In addition
we consider an additional set of directed edges Etf that have
a starting vertex but no ending vertex termed frontier edges,
these are unexplored edges. The exploration process can be
divided into two parts: first, “where to go next?” and second,
“how to go there?”. In [1], [4] an A* based algorithm was
proposed that addressed the question of “how to go there?”
by returning a path through G;. It was shown [5] that by
allowing uncertainty to influence the cost function of A*,
big improvements in the uncertainty of the resulting map
were realized even when uncertainty had a small influence.
In this paper we build on top of the A* path-planner to
answer the question “where to go next?”. In general, there
are three options when selecting the next action:

1) Pure Exploration: Follow the closest unexplored edge

e € Etf .
Uncertainty Driven Exploration: Select a frontier
vertex based on the vertex’s uncertainty; then follow a
random unexplored edge originating from that vertex.
Uncertainty Reducing Path Planning: Pay a visit to
a vertex with high uncertainty in order to reduce its
uncertainty.

The above choices, resemble the strategies that provide an
approximate solution to the multi-armed bandit problem [6].
In particular selecting to explore, and then exploit falls under
the general term of “Epsilon-first strategy”, while electing
with probability pezpiore to explore a random vertex is
the “Epsilon-greedy strategy”. In the localization problem
discussed in this paper, the reward stems from reducing the
map uncertainty, while exploring new edges on the map can
provide shorter paths and reduce uncertainty by closing the
loop.

This paper is structured as following. The next section
discusses related work. In Section III the different explo-
ration strategies are presented. Next an outline of the differ-
ent test environments is described together with extensive
experimental results of the proposed exploration strategies.
An analysis of the effect of the graph connectivity to the
accuracy of the resulting graph is also included. The paper
concludes with future work and a description of lessons
learned.

2)

3)

II. RELATED WORK

The problem of localizing a camera sensor network using
a mobile robot is similar to Simultaneous Localization and
Mapping (SLAM) since both problems require estimating
the pose of the robot and the positions of environment
features (landmarks or camera nodes) from acquired sensor
data. Hence, numerous similar estimation approaches are
appropriate. In this paper, the extended Kalman filter (EKF)
as described in [7] for SLAM is adapted for camera network
localization. The EKF computes the mean y and covariance
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P for each map quantity. Many other solutions are possible,
but the EKF is used here for computational simplicity and
ease of analysis.

Numerous authors have studied the problem of planning
paths through the already known map in order to gather
additional information and to increase mapping accuracy,
e.g. [8]-[11]. Many approaches have attempted to reduce
the entropy in the map estimates [12]-[14], which is the
measure of the uncertainty in a distribution and is defined
as:

(€)= - [ O os(p(©)de (1)

For the Gaussian distributions used by an EKF repre-
sentation of the environment, entropy can be expressed in
closed form. Sim and Roy [8] discuss two different measures
from information theory for which either the trace or the
determinant of the covariance matrix provides the final
measure for entropy.

Early work proposed a single-step, greedy choice of the
action which maximally minimizes the entropy because opti-
mal planning of multi-step paths requires computational cost
exponential in the path length. Recently, Sim and Roy [8]
have proposed pruning loops during breadth first search in
order to ensure manageable complexity even when planning
longer paths under conditions of idealized sensing and a
rough initial estimate of landmark locations. In addition,
[9] has considered a simulation-based approach which has
the potential to generate multi-step paths at the cost of
significant computation.

In contrast, the proposed approach considers the more
general problem of an unknown environment where the
robot dynamically decides if more time should be spent
improving positional accuracy by revisiting nodes of high
uncertainty, or a route to unknown parts of the world should
be selected. This is achieved by employing A* search for
efficient planning and by selecting future actions based
on the condition of the map. Variations of the A* search
have been used in the past for path-planning in dynamic
environments without any consideration for the resulting
pose uncertainty, in the form of the D* algorithm proposed
by Stentz [15]. Uncertainty, was not considered in D*, so our
work extends this method by explicitly planning to reduce
the uncertainty accumulated while mapping an environment.

As mentioned earlier, accuracy and efficiency are con-
flicting goals during exploration. In order to produce paths
that compromise between the goals, distance and uncertainty
have to be combined into a single cost function. Unfor-
tunately, the two are incommensurable; that is, they lack
common units for comparison, so care must be taken in
combining their values. Makarenko et al. [13] have previ-
ously proposed a weighted linear combination of distance
and uncertainty for path p:



C(p) @

In this cost function, P is the covariance matrix resulting
from the EKF and its trace is an approximation of the uncer-
tainty in the map. The choice of weighting factors w, and
w,, represents the compromise between distance travelled
and mapping uncertainty or accuracy versus efficiency. We
would like to produce a flexible method based on varying the
one intrinsic parameter, so we normalize the contribution of
each quantity by a rough estimate of its maximum possible
value. Once each quantity has been normalized, a single
free parameter « in the range [0, 1] is able to specify the
contribution of each factor. Based on this formulation, the
weights used in our cost function are:

wq length(p) + w, trace(P(p))

« 11—«

Wq =

maxDistance maxUncertainty

By setting « to the two extremes, zero and one, it is
possible to consider only one of the factors at a time:
distance only, by setting o = 1, and uncertainty only, by
setting = 0. In [5] the effect of varying o on the quality
of the resulting paths was discussed.

Several authors have considered the collaboration between
a Sensor Network and a mobile robot in different sensing
scenarios and in some cases with much more capable robotic
agents [16], [17].

III. EXPLORATION VERSUS EXPLOITATION

As discussed in [5], the localization and map uncertainty
reduction process involves inferring the positions of each
sensor node m;, which is part of the map of the sensors
m™ = [m1 my ... my], based on measurements obtained by
a robot; see Fig. 1. These positions can only be measured
relative to the position of the robot at a given time, s,
which is the most recent component of the robot’s path,
st = [s1 8o st), and so both quantities must be
estimated simultaneously. The measurements available are
the position of a sensor node relative to the robot at time ¢,
denoted z; and the position of the robot at time ¢ relative
to its position at time ¢ — 1, denoted w;. Different state
estimation algorithms have been used in the past, Rao-
Blackwellized Particle Filters (RBPF) and Markov chain
Monte Carlo (MCMC) [18], as well the classical extended
Kalman filter [19], with varying degrees of accuracy and
efficiency; MCMC being the slower but most accurate. In
this work the EKF filter is used both for efficiency’s sake
and for the clear description of uncertainty resulting from
the map’s covariance matrix. In the EKF formulation the
state vector contains the pose of the robot and the map with
the poses of the cameras, it has the form of:

C
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Figure 2. The flowchart of the Simultaneous Localization and Uncertainty
Reduction on Maps (SLURM) algorithm.

where x"°° = [z} yT' 07] is the position and orientation of
the robot in 2D, and x{" = [z{, y}, 2{, 0}, ¢}, ¢{]" is the pose
of the camera in 3D where xj, y;, z; represents the position
of the camera and 6}, ¢¢, ¢ are the roll, pitch, yaw Euler
angles respectively.

For the rest of the paper, the measure of uncertainty
for node ¢ is calculated by the map uncertainty in the 3D
position of the i*"* camera. This uncertainty is encoded in
the state covariance matrix P and is represented by the trace
of the covariance matrix

3+6%(i—1)+3

>

J=3+46%(i—1)+1;

trace(PY) = Pj; “)

Please note, the trace only uses the position uncertainty
and not the attitude in order to ensure unit compatibility. As
mentioned earlier during exploration there are two major
planning processes running in turns. First select what to do
next, that is where to go next (select goal); and second, plan
a path through known space to reach the selected goal. For
planning through known space, the A* algorithm presented
in [5] is used with different values of «, which determines
the trade-off between accuracy and efficiency.

Figure 2 presents an outline of the proposed algorithm.
At the beginning with probability pegpiore €xploration of



a random frontier edge is selected. Otherwise, the frontier
node with the most uncertainty is selected. The robot uses
the A* path planning method to reach there favouring a path
that minimizes the cumulative uncertainty. If the uncertainty
on that node on arrival is more than an acceptable thresh-
old, then, instead of exploring, the robot plans a path to
another high uncertainty node, thus reducing the total map
uncertainty. The relocalization process continues as long as
the frontier node with the most uncertainty keeps having
high uncertainty. The random exploration decision at the
beginning of the loop ensures that, with probability pexpiore,
new edges are explored, and the robot is not stuck on a
local minima of the search space. Finally, when all edges
have been explored the robot goes through a relocalization
process to ensure that uncertainty is kept at acceptable levels.

IV. EXPERIMENTAL RESULTS
A. Environment Representations

Graph based representations are quite common in
robotics, e.g., visibility graphs [20]; Spatial Semantic Hi-
erarchy [21], [22]; generalized Voronoi graphs [23]; Reeb
graph [24]; triangulations [25]; and networks of reusable
paths [26]. In many cases random graphs have been used to
validate the proposed algorithm and also to test scalability
and robustness. In the localization problem discussed in
this paper different types of random graphs have been used
in order to explore the trade-offs between exploration and
exploitation. In all cases we start with planar embedding of a
graph such that the graph representation used is compatible
with the physical properties of the robots used. For example,
there is no point trying to simulate the motions of an one
meter square robot inside an environment of radius one.
First we create the vertices, two different approaches can
have been explored: a set of random points, Fig. 3a, or
points on a regular grid. Next, an initial graph is generated
either as a triangulation or ,when the vertices are arranged
in a regular grid as a four or eight connected complete
grid. Finally, edges are randomly removed while ensuring
that the graph stays connected. In addition, obstacles can
be utilized that restrict the vertex and edge placement; see
Fig. 3b. When the starting graph is a grid then the resulting
graph is termed the “Montreal Graph” [27]; see Fig. 3c. The
results presented here are based on triangulation graphs (with
edges removed). Preliminary results on the other graphs
indicated similar performance. The noise statistics for the
odometry and the camera estimates used in the simulations
were experimentally derived from [5].

B. Simultaneous Localization and Uncertainty Reduction on
Maps

Figure 4 presents an illustrative example of the proposed
algorithm. The environment consists of 15 cameras (nodes)
which are connected by 22 edges. At the beginning the
robot is performing exploration while always selecting a

217

frontier node of high uncertainty, after a sufficiently large
number of nodes are detected, the robot selectively performs
relocalization when a node’s uncertainty rises above a certain
threshold. Please note that the uncertainty ellipses are plotted
where the cameras are located, which are approximately a
meter off the robot’s position. The robot started at [0,0] then
moved to the next node [15,12] (increased uncertainty) and
then planed a path (green dashed line) back to the starting
node from where moved and explored a new edge (solid cyan
line). In Fig. 4b the robot followed a new edge and closed
the first cycle (uncertainty reduced). The robot continued
exploring new edges and mapped 8 nodes; see Fig. 4c.
It is worth noting that when the robot travels to the next
node A* is called with @ = 0.01, see eq. 3, which means
the cost is mainly influenced by the uncertainty build up.
This is apparent in the path taken which passes through
the most accurate nodes, even though it is longer. The
uncertainty grew and the robot reverted to an uncertainty
reduction procedure by traversing repeatedly through the
known graph targeting nodes with high uncertainty; see Fig.
4d. The A* is called with « 0.01 giving priority to
uncertainty reductions, as can be seen from the resulting
path. The majority of the environment is explored, there
are only three remaining unexplored edges, again the A*
planner guided the robot (dashed green line) in a path that
minimized uncertainty; see Fig. 4e. Finally after all edges are
explored the robot moves through the known map, reducing
the uncertainty to a pre-specified value; see Fig. 4e.

C. Performing exploration with bounded Uncertainty

A major advantage of the proposed methodology is the
ability to produce maps of bounded uncertainty by setting a
specific threshold for the relocalization procedure. During si-
multaneous exploration and uncertainty reduction, when any
landmark’s uncertainty rises above a prespecified threshold,
the robot is guided through a pure relocalization procedure.
Relocalization is achieved by moving to the nodes with
the highest uncertainty via trajectories that improve the
localization accuracy. As can be seen, even though the
number of nodes increased the uncertainty was maintained
almost constant, at a level similar or lower than the set
threshold. There is a clear cost for the higher accuracy
as can be seen in figure 5a, where maintaining the lowest
uncertainty resulted in an ever-increasing distance.

D. Distance and Uncertainty Results

In this section uncertainty and distance measurements are
plotted for different number of landmarks (vertices in the
graph) and also for different density of edges. In all the plots
in figure 6 the number of vertices varied from ten to hundred,
in increments of ten; for a specific number of vertices ten
random graphs were constructed. The plots show average
distance travelled (averaged over the ten random graphs each
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by travelling through the completed map.

time) and average uncertainty in the form of the square root
of the trace of the map covariance:

E =

race(P) 5)

In addition the density of the graph was also varied as
a percentage of the number of vertices. Figure 6a,b present
results from very sparse graphs where the number of edges
was equal to the number of vertices; this was one edge
more than the minimum requirement of a spanning tree. The
following plots present results from 1.3 times the number of
vertices, see Fig. 6¢,d; 2.1 times the number of vertices, see
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Fig. 6e,f; and finally a full triangulation O(3N — 3 — k)
order of edges where IV is the number of vertices and k is
the number of vertices on the convex hull; see Fig. 6g,h.

For every random graph four different exploration strate-
gies were selected to run as a way for comparing. The
simplest strategy is to always select a random frontier node,
and then plan an uncertainty reduction path to it. The second
is to go to the closest frontier node (including the current
node) and then take a random frontier edge. The third is
to select the frontier node with the minimum uncertainty
and then follow a random frontier edge from it. Finally,
the fourth is to select the maximum uncertainty node and
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follow the algorithm described in section III. As expected
the fourth algorithm gave the most accurate results albeit at
ever increasing costs. To a large extend the majority of the
time was spend relocalizing to maintain the uncertainty at the
predefined threshold, thus it is not a fair comparison with the
rest of the algorithms as they did not perform any relocaliza-
tion explicitly. The rationale behind selecting as a departing
point to the unknown the node with the minimum uncertainty
was to start each time the exploration from the most accurate
position. The surprising result was that selecting a random
frontier node was similar in performance with selecting the
node with minimum uncertainty. In practise, most of the
time the random node resulted in a good relocalization path
and improved the overall accuracy of the map.

V. CONCLUSION

In this paper a systematic way of addressing the problem
of localization and uncertainty reduction was presented. By
drawing from the multi-armed bandit problem solutions,
we proposed an algorithm for systematically exploring an
unknown environment while at the same time maintaining
map uncertainty at the desired levels.

We presented results from random graphs with varying
densities, illustrating the effect edge density has on the
frequency of map refinement. In addition, the scalability of
the approach was tested by running the proposed algorithm
on graphs of different sizes and of different densities.

Currently, the proposed method is being tested on a
variety of random graphs. Of particular interest are graphs
embedded in a physical environment with obstacles because
the choice of where to explore next can lead away from
low uncertainty areas. Furthermore we are extending this
work on the multi-robot domain by examining the benefits
of distinct roles (explorer versus localizer).

The problem of maintaining bounded uncertainty while
exploring an unknown environment is crucial for enhancing
the autonomy capabilities of robotic agents. Though the
problem is challenging the analysis presented in this paper
will provide significant guidelines for future research.
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