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Abstract—During exploration of an unknown environment
by a single robot, the robot is driven by two conflicting goals:
to explore as fast as possible; and to produce the most accurate
map. While fast exploration necessitates minimizing traversal
of already mapped territory, accurate mapping requires that
the robot passes over previously explored areas to reduce
the localization and map uncertainty. This problem has been
labeled as exploration versus exploitation. In this paper the
problem of mapping a camera sensor network by a mobile
robot has been used to demonstrate the effect that differ-
ent exploration strategies have on uncertainty and speed of
exploration. Simulation results using a realistic noise model
are presented for different environments and for different
strategies.

Keywords-Mobile Robotics; Sensor Networks; Localization;
Uncertainty Reduction.

I. INTRODUCTION

In this paper the problem of exploring an unknown

environment and at the same time maintaining the quality

of the resulting map is addressed. In many applications

robot(s) enter an unknown environment and have to explore

it while at the same time constructing a map. One key

question is how much time they should spend improving

the quality of the map versus exploring new territory. We

use the paradigm of a mobile robot navigating through an

environment equipped with a camera sensor network; see

Fig. 1. The robot’s goal is to produce a map with the

locations of all the cameras, and to maintain its own pose

estimate. Such a scenario is quite common in the case where

a service robot (vacuuming, patrolling, etc.) operates inside

a building equipped with security cameras. The pose of

each camera is unknown; the robot is carrying a target that

can be detected when it enters a cameras field of view.

In addition, by moving in-front of the camera, the robot

is able to perform autonomous calibration [1] and also

recover the six degree of freedom coordinate transformation

between the target and the camera [2], thus localizing the

camera in the robot’s frame of reference. This formulation of

the problem eliminates the data association problem which,

though relevant, it is not at the centre of the decision between

exploration and relocalization. In this scenario, the robot’s

Figure 1. The experimental setup used throughout this paper. The robot
carries a calibration target which can be easily detected in images taken by
the cameras in the network.

motion through the network facilitates localization by explic-

itly transferring pose information between sensor locations.

By maintaining an ongoing estimate of the robot’s location,

the position of any sensor that it interacts with can be prob-

abilistically estimated, (and updated), given the appropriate

motion and measurement models. Planning trajectories in the

face of conflicting goals such as efficiency and accuracy, in

combination with the high dimensional uncertainty estimates

of the underlying SLAM solution results in a challenging

problem. Furthermore, the environment is represented as a

graph, where vertices are locations that can be seen by the

cameras and the edges represent accessible paths between

these areas; the cameras have no overlapping field of views.

In general, after an initial phase of exploration, which can

be as short as moving to the nearest unexplored territory,

the robot is in possession of a partial map that indicates

the known areas, and the borders to unexplored territory,

usually called frontiers [3]. In the camera sensor network

localization, the known map represented by a graph Gt =
[Vt, Et] where each vertex vi ∈ Vt represents the centre of
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a camera’s field of view where the robot would visit. Every

edge eij ∈ Et represents a path between the vertices vi and

vj observed by camera Ci and Cj respectively. In addition

we consider an additional set of directed edges Ef
t that have

a starting vertex but no ending vertex termed frontier edges,

these are unexplored edges. The exploration process can be

divided into two parts: first, “where to go next?” and second,

“how to go there?”. In [1], [4] an A* based algorithm was

proposed that addressed the question of “how to go there?”

by returning a path through Gt. It was shown [5] that by

allowing uncertainty to influence the cost function of A*,

big improvements in the uncertainty of the resulting map

were realized even when uncertainty had a small influence.

In this paper we build on top of the A* path-planner to

answer the question “where to go next?”. In general, there

are three options when selecting the next action:

1) Pure Exploration: Follow the closest unexplored edge

e ∈ Ef
t .

2) Uncertainty Driven Exploration: Select a frontier

vertex based on the vertex’s uncertainty; then follow a

random unexplored edge originating from that vertex.

3) Uncertainty Reducing Path Planning: Pay a visit to

a vertex with high uncertainty in order to reduce its

uncertainty.

The above choices, resemble the strategies that provide an

approximate solution to the multi-armed bandit problem [6].

In particular selecting to explore, and then exploit falls under

the general term of “Epsilon-first strategy”, while electing

with probability pexplore to explore a random vertex is

the “Epsilon-greedy strategy”. In the localization problem

discussed in this paper, the reward stems from reducing the

map uncertainty, while exploring new edges on the map can

provide shorter paths and reduce uncertainty by closing the

loop.

This paper is structured as following. The next section

discusses related work. In Section III the different explo-

ration strategies are presented. Next an outline of the differ-

ent test environments is described together with extensive

experimental results of the proposed exploration strategies.

An analysis of the effect of the graph connectivity to the

accuracy of the resulting graph is also included. The paper

concludes with future work and a description of lessons

learned.

II. RELATED WORK

The problem of localizing a camera sensor network using

a mobile robot is similar to Simultaneous Localization and

Mapping (SLAM) since both problems require estimating

the pose of the robot and the positions of environment

features (landmarks or camera nodes) from acquired sensor

data. Hence, numerous similar estimation approaches are

appropriate. In this paper, the extended Kalman filter (EKF)

as described in [7] for SLAM is adapted for camera network

localization. The EKF computes the mean μ and covariance

P for each map quantity. Many other solutions are possible,

but the EKF is used here for computational simplicity and

ease of analysis.

Numerous authors have studied the problem of planning

paths through the already known map in order to gather

additional information and to increase mapping accuracy,

e.g. [8]–[11]. Many approaches have attempted to reduce

the entropy in the map estimates [12]–[14], which is the

measure of the uncertainty in a distribution and is defined

as:

H(p(ξ)) ≡ −
∫
p(ξ) log(p(ξ))dξ (1)

For the Gaussian distributions used by an EKF repre-

sentation of the environment, entropy can be expressed in

closed form. Sim and Roy [8] discuss two different measures

from information theory for which either the trace or the

determinant of the covariance matrix provides the final

measure for entropy.

Early work proposed a single-step, greedy choice of the

action which maximally minimizes the entropy because opti-

mal planning of multi-step paths requires computational cost

exponential in the path length. Recently, Sim and Roy [8]

have proposed pruning loops during breadth first search in

order to ensure manageable complexity even when planning

longer paths under conditions of idealized sensing and a

rough initial estimate of landmark locations. In addition,

[9] has considered a simulation-based approach which has

the potential to generate multi-step paths at the cost of

significant computation.

In contrast, the proposed approach considers the more

general problem of an unknown environment where the

robot dynamically decides if more time should be spent

improving positional accuracy by revisiting nodes of high

uncertainty, or a route to unknown parts of the world should

be selected. This is achieved by employing A∗ search for

efficient planning and by selecting future actions based

on the condition of the map. Variations of the A∗ search

have been used in the past for path-planning in dynamic

environments without any consideration for the resulting

pose uncertainty, in the form of the D∗ algorithm proposed

by Stentz [15]. Uncertainty, was not considered in D∗, so our

work extends this method by explicitly planning to reduce

the uncertainty accumulated while mapping an environment.

As mentioned earlier, accuracy and efficiency are con-

flicting goals during exploration. In order to produce paths

that compromise between the goals, distance and uncertainty

have to be combined into a single cost function. Unfor-

tunately, the two are incommensurable; that is, they lack

common units for comparison, so care must be taken in

combining their values. Makarenko et al. [13] have previ-

ously proposed a weighted linear combination of distance

and uncertainty for path p:
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C(p) = ωd length(p) + ωu trace(P (p)) (2)

In this cost function, P is the covariance matrix resulting

from the EKF and its trace is an approximation of the uncer-

tainty in the map. The choice of weighting factors ωd and

ωu represents the compromise between distance travelled

and mapping uncertainty or accuracy versus efficiency. We

would like to produce a flexible method based on varying the

one intrinsic parameter, so we normalize the contribution of

each quantity by a rough estimate of its maximum possible

value. Once each quantity has been normalized, a single

free parameter α in the range [0, 1] is able to specify the

contribution of each factor. Based on this formulation, the

weights used in our cost function are:

ωd =
α

maxDistance
, ωu =

1− α
maxUncertainty

By setting α to the two extremes, zero and one, it is

possible to consider only one of the factors at a time:

distance only, by setting α = 1, and uncertainty only, by

setting α = 0. In [5] the effect of varying α on the quality

of the resulting paths was discussed.

Several authors have considered the collaboration between

a Sensor Network and a mobile robot in different sensing

scenarios and in some cases with much more capable robotic

agents [16], [17].

III. EXPLORATION VERSUS EXPLOITATION

As discussed in [5], the localization and map uncertainty

reduction process involves inferring the positions of each

sensor node mi, which is part of the map of the sensors

mn = [m1 m2 ... mn], based on measurements obtained by

a robot; see Fig. 1. These positions can only be measured

relative to the position of the robot at a given time, st,
which is the most recent component of the robot’s path,

st = [s1 s2 ... st], and so both quantities must be

estimated simultaneously. The measurements available are

the position of a sensor node relative to the robot at time t,
denoted zt and the position of the robot at time t relative

to its position at time t − 1, denoted ut. Different state

estimation algorithms have been used in the past, Rao-

Blackwellized Particle Filters (RBPF) and Markov chain

Monte Carlo (MCMC) [18], as well the classical extended

Kalman filter [19], with varying degrees of accuracy and

efficiency; MCMC being the slower but most accurate. In

this work the EKF filter is used both for efficiency’s sake

and for the clear description of uncertainty resulting from

the map’s covariance matrix. In the EKF formulation the

state vector contains the pose of the robot and the map with

the poses of the cameras, it has the form of:

xt = [xrobot,xC
1 , . . . ,x

C
N ]T (3)
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Figure 2. The flowchart of the Simultaneous Localization and Uncertainty
Reduction on Maps (SLURM) algorithm.

where xrobot = [xrt , y
r
t , θ

r
t ] is the position and orientation of

the robot in 2D, and xC
i = [xit, y

i
t, z

i
t, θ

i
t, φ

i
t, ψ

i
t]
T is the pose

of the camera in 3D where xit, y
i
t, z

i
t represents the position

of the camera and θit, φ
i
t, ψ

i
t are the roll, pitch, yaw Euler

angles respectively.

For the rest of the paper, the measure of uncertainty

for node i is calculated by the map uncertainty in the 3D

position of the ith camera. This uncertainty is encoded in

the state covariance matrix P and is represented by the trace

of the covariance matrix

trace(PCi) =

3+6∗(i−1)+3∑
j=3+6∗(i−1)+1;

Pjj (4)

Please note, the trace only uses the position uncertainty

and not the attitude in order to ensure unit compatibility. As

mentioned earlier during exploration there are two major

planning processes running in turns. First select what to do

next, that is where to go next (select goal); and second, plan

a path through known space to reach the selected goal. For

planning through known space, the A* algorithm presented

in [5] is used with different values of α, which determines

the trade-off between accuracy and efficiency.

Figure 2 presents an outline of the proposed algorithm.

At the beginning with probability pexplore exploration of
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a random frontier edge is selected. Otherwise, the frontier

node with the most uncertainty is selected. The robot uses

the A* path planning method to reach there favouring a path

that minimizes the cumulative uncertainty. If the uncertainty

on that node on arrival is more than an acceptable thresh-

old, then, instead of exploring, the robot plans a path to

another high uncertainty node, thus reducing the total map

uncertainty. The relocalization process continues as long as

the frontier node with the most uncertainty keeps having

high uncertainty. The random exploration decision at the

beginning of the loop ensures that, with probability pexplore,

new edges are explored, and the robot is not stuck on a

local minima of the search space. Finally, when all edges

have been explored the robot goes through a relocalization

process to ensure that uncertainty is kept at acceptable levels.

IV. EXPERIMENTAL RESULTS

A. Environment Representations

Graph based representations are quite common in

robotics, e.g., visibility graphs [20]; Spatial Semantic Hi-

erarchy [21], [22]; generalized Voronoi graphs [23]; Reeb

graph [24]; triangulations [25]; and networks of reusable

paths [26]. In many cases random graphs have been used to

validate the proposed algorithm and also to test scalability

and robustness. In the localization problem discussed in

this paper different types of random graphs have been used

in order to explore the trade-offs between exploration and

exploitation. In all cases we start with planar embedding of a

graph such that the graph representation used is compatible

with the physical properties of the robots used. For example,

there is no point trying to simulate the motions of an one

meter square robot inside an environment of radius one.

First we create the vertices, two different approaches can

have been explored: a set of random points, Fig. 3a, or

points on a regular grid. Next, an initial graph is generated

either as a triangulation or ,when the vertices are arranged

in a regular grid as a four or eight connected complete

grid. Finally, edges are randomly removed while ensuring

that the graph stays connected. In addition, obstacles can

be utilized that restrict the vertex and edge placement; see

Fig. 3b. When the starting graph is a grid then the resulting

graph is termed the “Montreal Graph” [27]; see Fig. 3c. The

results presented here are based on triangulation graphs (with

edges removed). Preliminary results on the other graphs

indicated similar performance. The noise statistics for the

odometry and the camera estimates used in the simulations

were experimentally derived from [5].

B. Simultaneous Localization and Uncertainty Reduction on
Maps

Figure 4 presents an illustrative example of the proposed

algorithm. The environment consists of 15 cameras (nodes)

which are connected by 22 edges. At the beginning the

robot is performing exploration while always selecting a

frontier node of high uncertainty, after a sufficiently large

number of nodes are detected, the robot selectively performs

relocalization when a node’s uncertainty rises above a certain

threshold. Please note that the uncertainty ellipses are plotted

where the cameras are located, which are approximately a

meter off the robot’s position. The robot started at [0,0] then

moved to the next node [15,12] (increased uncertainty) and

then planed a path (green dashed line) back to the starting

node from where moved and explored a new edge (solid cyan

line). In Fig. 4b the robot followed a new edge and closed

the first cycle (uncertainty reduced). The robot continued

exploring new edges and mapped 8 nodes; see Fig. 4c.

It is worth noting that when the robot travels to the next

node A* is called with α = 0.01, see eq. 3, which means

the cost is mainly influenced by the uncertainty build up.

This is apparent in the path taken which passes through

the most accurate nodes, even though it is longer. The

uncertainty grew and the robot reverted to an uncertainty

reduction procedure by traversing repeatedly through the

known graph targeting nodes with high uncertainty; see Fig.

4d. The A* is called with α = 0.01 giving priority to

uncertainty reductions, as can be seen from the resulting

path. The majority of the environment is explored, there

are only three remaining unexplored edges, again the A*

planner guided the robot (dashed green line) in a path that

minimized uncertainty; see Fig. 4e. Finally after all edges are

explored the robot moves through the known map, reducing

the uncertainty to a pre-specified value; see Fig. 4e.

C. Performing exploration with bounded Uncertainty

A major advantage of the proposed methodology is the

ability to produce maps of bounded uncertainty by setting a

specific threshold for the relocalization procedure. During si-

multaneous exploration and uncertainty reduction, when any

landmark’s uncertainty rises above a prespecified threshold,

the robot is guided through a pure relocalization procedure.

Relocalization is achieved by moving to the nodes with

the highest uncertainty via trajectories that improve the

localization accuracy. As can be seen, even though the

number of nodes increased the uncertainty was maintained

almost constant, at a level similar or lower than the set

threshold. There is a clear cost for the higher accuracy

as can be seen in figure 5a, where maintaining the lowest

uncertainty resulted in an ever-increasing distance.

D. Distance and Uncertainty Results

In this section uncertainty and distance measurements are

plotted for different number of landmarks (vertices in the

graph) and also for different density of edges. In all the plots

in figure 6 the number of vertices varied from ten to hundred,

in increments of ten; for a specific number of vertices ten

random graphs were constructed. The plots show average

distance travelled (averaged over the ten random graphs each
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(a) (b) (c)

Figure 3. Different types of planar graphs: (a) Random dense graph based on the Delaunay triangulation; (b) sparser graph with obstacles; (c) Montreal
graph.

(a) (b) (c)

(d) (e) (f)

Figure 4. Exploring a 15 vertices, 22 edges graph: (a) Two nodes mapped, exploring the third edge; (b) first loop closure; (c) continuing the exploration;
(d) reducing uncertainty by travelling through the known graph; (e) most of the graph is explored, some areas have high uncertainty; (f) reducing uncertainty
by travelling through the completed map.

time) and average uncertainty in the form of the square root

of the trace of the map covariance:

E =
√
trace(P ) (5)

In addition the density of the graph was also varied as

a percentage of the number of vertices. Figure 6a,b present

results from very sparse graphs where the number of edges

was equal to the number of vertices; this was one edge

more than the minimum requirement of a spanning tree. The

following plots present results from 1.3 times the number of

vertices, see Fig. 6c,d; 2.1 times the number of vertices, see

Fig. 6e,f; and finally a full triangulation O(3N − 3 − k)
order of edges where N is the number of vertices and k is

the number of vertices on the convex hull; see Fig. 6g,h.

For every random graph four different exploration strate-

gies were selected to run as a way for comparing. The

simplest strategy is to always select a random frontier node,

and then plan an uncertainty reduction path to it. The second

is to go to the closest frontier node (including the current

node) and then take a random frontier edge. The third is

to select the frontier node with the minimum uncertainty

and then follow a random frontier edge from it. Finally,

the fourth is to select the maximum uncertainty node and
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(a) (b)

Figure 5. Distance travelled (a) and Map uncertainty (b) for different
number of nodes {20,25,. . . ,50} using the bounded uncertainty strategy
for different uncertainty thresholds ({2,4,. . . ,8} meters). The number of
edges is 1.5 times the number of vertices, e.g., G20 = [V,E] : |V | =
20, |E| = 30.

follow the algorithm described in section III. As expected

the fourth algorithm gave the most accurate results albeit at

ever increasing costs. To a large extend the majority of the

time was spend relocalizing to maintain the uncertainty at the

predefined threshold, thus it is not a fair comparison with the

rest of the algorithms as they did not perform any relocaliza-

tion explicitly. The rationale behind selecting as a departing

point to the unknown the node with the minimum uncertainty

was to start each time the exploration from the most accurate

position. The surprising result was that selecting a random

frontier node was similar in performance with selecting the

node with minimum uncertainty. In practise, most of the

time the random node resulted in a good relocalization path

and improved the overall accuracy of the map.

V. CONCLUSION

In this paper a systematic way of addressing the problem

of localization and uncertainty reduction was presented. By

drawing from the multi-armed bandit problem solutions,

we proposed an algorithm for systematically exploring an

unknown environment while at the same time maintaining

map uncertainty at the desired levels.

We presented results from random graphs with varying

densities, illustrating the effect edge density has on the

frequency of map refinement. In addition, the scalability of

the approach was tested by running the proposed algorithm

on graphs of different sizes and of different densities.

Currently, the proposed method is being tested on a

variety of random graphs. Of particular interest are graphs

embedded in a physical environment with obstacles because

the choice of where to explore next can lead away from

low uncertainty areas. Furthermore we are extending this

work on the multi-robot domain by examining the benefits

of distinct roles (explorer versus localizer).

The problem of maintaining bounded uncertainty while

exploring an unknown environment is crucial for enhancing

the autonomy capabilities of robotic agents. Though the

problem is challenging the analysis presented in this paper

will provide significant guidelines for future research.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6. Distance travelled (a,c,e,g) and Map uncertainty (b,d,f,h) for
different number of nodes, different number of edges and for different
exploration strategies.
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