
Chapter 1
Cooperative Exploration, Localization, and
Visual Map Construction

Ioannis M. Rekleitis, Robert Sim, and Gregory Dudek

Abstract We examine the problem of learning a visual map of the environment
based on discrete landmarks. While making this map we seek to maintain an accu-
rate pose estimate for the mapping robots. Our approach is based on using a team
of at least two (heterogeneous) mobile robots in a simple collaborative scheme.
In many mapping contexts, a robot moves about the environment collecting data
(images, in particular) which are later used to assemble a map; we view the map
construction as both a knowledge acquisition and a training process. Without ref-
erence to the environment, as a robot collects training images, its position estimate
accumulates errors, thus corrupting its estimate of the positions from which obser-
vations are taken. We address this problem by deploying a second robot to observe
the first one as it explores, thereby establishing a virtual tether, and enabling an ac-
curate estimate of the robot’s position while it constructs the map. We refer to this
process as cooperative localization. The images collected during this process are
assembled into a representation that allows vision-based position estimation from a
single image at a later time. In addition to developing a formalism and concept, we
validate our approach experimentally and present quantitative results demonstrating
the performance of the method in over 90 trials.

1.1 Introduction

Many robotic tasks require that the robot learn a representation, or map, of some
property of the environment. Examples of such maps include measures of radiation
hot-spots, magnetic declination, sonar representations and visual maps [4, 6, 16].
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The specific problem we consider is mapping a property of interest over an un-
known environment. A significant issue faced by many map-building schemes is
the management and estimation of positional (or pose) errors as the robot collects
observations from the environment. That is, as a robot or a team of robots col-
lects successive measurements from different positions and orientations (poses), the
certainty of their pose estimates decreases with each new measurement. In some
cases where the observations lie on a high-dimensional manifold, correlation be-
tween dimensions allows for globally consistent alignment of the observations via
an expectation-maximization or iterative optimization approach to correcting the
observation poses [20, 37]. That is, we can recover the spatial distribution of the
measurements. However, it is often the case that either there is insufficient geomet-
ric constraint in the observations to produce confident pose estimates even post hoc,
or that the computational cost of making the appropriate inferences is infeasible.
Uncertainty modeling methods such as Kalman filtering can reduce the severity of
the problem, but certainly do not eliminate it.
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Fig. 1.1 Mapping: (a) Continuous function such as: Radiation, Visual appearance, Elevation, Mag-
netic field, Temperature, etc. (b) Discrete function such as: Mine detection, Lost objects, Holes,
Electrical outlets, etc.

Our approach to the pose estimation problem for map building involves the use
of two or more robots working in close cooperation. Several authors have also
considered the use of marsupial robots or robot teams either in theory or prac-
tice [13, 24, 40].

This paper addresses the problem of establishing accurate pose estimates in the
context of robotic mapping. The pose estimates can be used to collect accurately
localized measurements in their own right, or as a precursor to a system that builds
a map. The robot collecting measurements for the map operates in concert with a
second robot that acts as an active observer. In our cooperative localization [31]
scheme, this second robot tracks the motions of the first as it collects data and pro-
vides it with the information required to prevent odometric error from accumulating.
We can view the robots as being “connected” by a virtual tether which is established
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between the two robots and which enables the task of mapping to be accomplished
without significant error and independent of the ground surface conditions and the
quality of the odometry estimate. In principle, more than one of these active ob-
servers could be used simultaneously, although this is not elaborated on in this pa-
per. Beyond presenting the details of the approach and its implementation, this paper
provides a quantitative evaluation validating the effectiveness of this methodology.

The remainder of this paper is structured as follows: Section 1.2 discusses the
general framework in which our approach applies. Section 1.3 presents related work
that addresses the problem of minimizing localization error during exploration. The
cooperative localization strategy is introduced in Section 1.4. We then discuss a
particular application of our approach to the task of visual landmark learning in
Section 1.5 and experimental results are presented in Section 1.6. Finally, we discuss
open questions and future directions in Section 1.7.

1.2 Motivation

The work presented here is motivated by the need to use a mobile robot in order
to accurately map a spatially varying property of an unknown, possibly hazardous,
environment. Such a property could be a continuous function, see Fig. 1.1a, over the
accessible area such as radiation, temperature, magnetic field variation, elevation, or
visual appearance, or the property could be a discrete function, see Fig. 1.1b, such
as presence of mines, lost objects, holes/anomalies on the ground, or electrical out-
lets. In addition, the property could be a scalar or a vector-valued function. In most
cases the sensor used to map arbitrary properties such as those noted above is not
itself suitable for the accurate localization of the exploring robot – for example, a
radiation meter cannot readily be used to accurately recover the pose of the explor-
ing robot (except in very special cases). In practice, there are two different issues
to consider. First the property of interest may vary too slowly to accurately assist in
localization of the robot; second the values of the property of interest may be iden-
tical in many places, thus making the task of distinguishing two places impossible.
Thus, the self-localization ability of a single robot using only the measurements of
the function of interest may be poor in the absence of additional sensory apparatus.
Furthermore, the terrain being explored may be uneven or otherwise problematic,
resulting in wheel slippage, and rendering the odometry unreliable. Our approach
employs cooperative localization [29] in order to recover the pose of the explor-
ing robot with high accuracy, independent of the ground surface properties and the
reliability of the odometry.

Another motivation for using more than one mobile robot is that several appli-
cations require the exploration or inspection of hazardous environments with an
attendant risk to the robot doing the work. Such applications include but are not
limited to: de-mining rural areas, inspecting nuclear facilities or marking/mapping
of chemical spills. In order to improve robustness or reduce the potential cost in
such a scenario we can deploy a team of heterogeneous robots consisting of a “base”
robot which is equipped with the main computer, a communication module and the
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robot tracker sensor, and a team of lower-cost “exploring” robots that are equipped
with only the mapping sensor (and the target for the robot tracker). In particular,
our scheme obviates the need for accurate odometry on the exploring robots. The
base robot is always located at a safe area keeping visual and radio contact with the
exploring robots. If any of the exploring robots is destroyed the expense is limited,
and the mission can continue with the surviving robots. The main advantage of this
approach is that the (expensive) base robot is not endangered by moving to an un-
explored hazardous environment. In the experiments presented in this paper there
is one base robot equipped with the robot tracker sensor and one mapping robot
equipped with the target and a measuring device (a camera).

1.3 Related Work

The problem that we have described is closely related to the problem of simultane-
ous localization and map-building, wherein the robot is tasked to explore its envi-
ronment and construct a map [19]. The advantages of collaborative behavior have
been examined extensively in the context of biological systems [38].

In the context of terrain coverage in particular, Balch and Arkin were among the
first to quantitatively evaluate the utility of inter-robot communication [1]. Mataric
was another pioneer in considering the utility of inter-robot communication and
teamwork in space coverage [22]. Dudek, Jenkin, Milios and Wilkes proposed a
multi-robot mapping strategy akin to that proposed here, but they only consid-
ered certain theoretical aspects of the approach as it applied to very large groups
of robots. Several authors have also surveyed a range of possible approaches for
collaborative robot interactions [3, 8, 9].

More recently, teams of mobile robots are used to reduce the localization er-
ror [17, 33]. In most cases the robots use each other to localize only if they meet
by chance. Different estimation techniques have been employed to combine the in-
formation from the different robots: particle filters have gained popularity [11, 30]
together with more traditional Kalman filter estimation [10, 34] or more recently
maximum likelihood estimation [15].

A number of authors have considered pragmatic map-making in particular. Most
existing approaches operate in the range-sensing domain, where it is relatively
straightforward to transform observations from a given position to expected ob-
servations from nearby positions, thereby exploiting structural relationships in the
data [2, 12, 18]. Such approaches usually differ in when the map is constructed.
Off-line approaches post-process the data, usually by applying the expectation max-
imization (EM) paradigm [7] to the task by iteratively refining the map and the esti-
mates of the observation points. On-line methods compute the maximum-likelihood
map and robot pose as it explores, and are usually based on Kalman filtering or
particle filtering and their extensions [23, 32, 33].

Several authors have investigated vision-based pose estimation and map con-
struction [14, 39]. Se et al construct a map by extracting point features from im-
ages and localizing them in the world with a stereo camera [35]. Davison performs
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SLAM using a monocular camera by applying techniques from the structure-from-
motion literature [5]. Other authors have considered generic features described im-
plicitly by computing the principal components of sensor observations [25,26]. Our
work is similar to the earlier localization techniques in that it applies probabilistic
methods to localization from feature observations. However, it is more similar to
the latter techniques in that feature and camera geometry are not modeled explicitly
but rather the (possibly complex) interaction of feature and sensor is learned as a
function of pose.

1.4 Cooperative Localization
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Fig. 1.2 Pose Estimation via Robot Tracker: Observation of the Moving Robot by the Stationary
Robot.

In previous work, Rekleitis, Dudek and Milios have demonstrated the utility of
introducing a second robot to aid in the tracking of the exploratory robot’s posi-
tion [28]. In that work, the robots exchange roles from time to time during the ex-
ploration of a polygon-shaped world, thus serving to minimize the accumulation of
odometry error. The authors refer to this procedure as cooperative localization. We
have constructed a tracking device that can estimate the position and orientation of
a mobile robot relative to a base robot equipped with the robot tracker sensor. The
motion planning strategy is such that at any time one of the robots is stationary while
the other robot is moving. The stationary robot acts as an artificial landmark in order
for the moving robot to recover its pose with respect to the stationary one. Therefore,
a detectable landmark is provided without any modification of the environment.

This paper builds on the results by Rekleitis et al. [27] by considering the task
of exploring the visual domain. In the following section, we describe the method
employed for tracking the position of the robot as it explores. Different types of
sensors could be used depending on the required precision of the specific task.
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1.4.1 Tracker-based Pose Estimation

The Robot Tracker sensor returns three measurements, the triplet T = [ρ φ θ] where
ρ is the distance between the two robots, φ is the angle at which the observing robot
sees the observed robot relative to the heading of the observing robot, and θ is the
heading of the observed robot as measured by the observing robot relative to the
heading of the observing robot; see Fig. 1.2. If the stationary robot is equipped with
the Robot Tracker then the Pose (Xm) of the moving robot is given by eq.(1.1),
where [xs, ys, θs]

T is the pose of the stationary robot.

Xm =

xm
ym
θ̂m

 =

xs + ρ ∗ cos(θ̂s + θ̂)

ys + ρ ∗ sin(θ̂s + θ̂)

π + θ̂s + θ̂ − φ̂

 (1.1)

We have implemented two trackers based on this paradigm. The first operates
in the visual domain using a helical target, whereas the second employs a laser
range-finder and a geometric target. In the following sections we outline their im-
plementations.

1.4.2 Implementation 1: Visual Robot Tracker

The first implementation of a visual robot tracker involved the mounting of a helical
target pattern on the observed robot, while the observing robot was equipped with a
camera.

The bottom part of the target pattern is a series of horizontal circles (in fact, these
are cylinders and they project into a linear pattern in the image). This allows the
robot to be easily discriminated from background objects: the ratio of spacing be-
tween the circles is extremely unlikely to occur in the background by chance. Thus,
the presence of the robot is established by a set of lines (curves) with the appropri-
ate length-to-width ratio, and the appropriate inter-line ratios. Figure 1.3a shows the
gray-scale image and Fig. 1.3b presents the identifying stripes highlighted.

By mounting the observing camera above (or below) the striped pattern of the
observed robot, the distance from one robot to the other can be inferred from the
height of the stripe pattern in the image 1, due to perspective projection; scaling
of the pattern could also be used. The difference in height between the observing
camera and the target can be selected to provide the desired trade-off between range
of operation and accuracy.

The second component of the target pattern is a helix that wraps once around the
observed robot. The elevation of the center of the helix allows the relative orientation
of the observed robot to be inferred; see Fig. 1.3.

In practice, the above process allows the observed robot’s pose to be inferred with
an accuracy of a few centimeters in position and 3 to 5 degrees in heading [29]. The

1 After an initial calibration process a look-up table is constructed that relates y-coordinates in the
image with distance.
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range of the visual tracker depends on the height of the robots, in our experimental
setup the effective range was between 1.5 m to 4.5 m. Experimental results showed
the system to be sensitive to partial occlusions and especially to uneven floors. In
the next section we present a robot tracker sensor based on a laser range finder. The
experiments presented in this paper utilized the laser-based robot tracker.

(a) (b) (c)

Fig. 1.3 Robot Tracker: (a) The raw image of the moving robot as observed by the robot tracker.
(b) The helical and cylindrical pattern detected in the image. (c) The laser-based tracker and target.

1.4.3 Implementation 2: Laser Robot Tracker

The second and more accurate implementation employs an AccuRange2 laser range-
finder mounted on the observing robot and a three-plane target mounted on the ob-
served robot; see Fig. 1.3c. The AccuRange laser range-finder produces a range
scan in the horizontal plane. The effective range of the Accurange scanner is up to
12 m with an angular resolution of 11.3 points per degree (4096 points for 360 de-
grees). The manufacturer specifications claim sub-millimeter accuracy per point; in
practice we observed less than a centimeter variation regardless of the range. The
target is a set of three vertical planes extending from the center of the target at three
distinct angles (100◦, 120◦, 140◦) with length of 25cm and height of 30cm. From
any direction around the observed robot at least two vertical planes are “visible”.
We employ the laser range-finder in order to detect the two planes. The intersection
of the two planes defines a unique point in a fixed position with reference to the
observed robot. Further on, the angle between the two planes combined with their
orientations provides an estimate for the heading of the robot. When the approxi-
mate position of the observed robot is available (most of the time) then the laser
points are filtered around that position and few lines have the correct size to select.
At maximum range (12m) between 8 and 12 points are returned per target plane.

2 AccuRange 4000 LineScanner laser range-finder from ACUITY RESEARCH Inc. (see
http://www.acuityresearch.com/acculine.html)
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The precision of the laser range-finder subsystem is much higher than the pre-
cision of the visual tracker. The position estimation is accurate to half a centimeter
and the heading estimation error is below one degree.

1.5 Application: Landmark Learning and Landmark-based Pose
Estimation

In this section we demonstrate the effectiveness of our approach as it applies to the
problem of constructing a visual map of an unknown environment. The visual map
entails learning a set of visual landmarks which are useful for the task of estimating
the pose of a single robot equipped with a monocular camera. We employ the tracker
described in the previous section to properly register the landmark observations in
the map, i.e. to provide “ground truth” positions while the robot explores the visual
environment. We employ the visual mapping framework described in [36], which
tracks the set of points output by a model of visual attention and attempts to con-
struct representations of the landmarks as functions of the pose of the robot. The
landmark representations do not recover 3D information about the landmark, nor do
they depend on pre-defined camera calibration parameters. Instead, the representa-
tions learn the generating function z = f(Xm) that maps robot poses to landmark
observations z. This is accomplished by training a set of interpolation networks on
a set of landmark training observations and ground truth poses. The remainder of
this section will describe the visual mapping approach, and in subsequent sections
we will present experimental results illustrating how the tracker can be employed to
construct the map.

Candidate
Landmarks

Tracked Landmarks. . .

Attributes

Images sampling pose space

Fig. 1.4 The off-line training method. Images (large rectangles) are collected sampling the pose
space. Landmarks are extracted from the images and matched across the samples. The tracked
landmarks are parameterized as a function of pose and saved for future pose estimation.
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The learning method is depicted in Fig. 1.4 and operates as follows (refer to [36]
for further details):

1. Exploration: One robot tracks the other as it collects images sampling a range
of poses in the environment. The pose at which each image is taken is recorded
as the estimate given by the tracker.

2. Detection: Landmark candidates are extracted from each image using a model
of visual attention. In this work, we identify candidates as local maxima of edge
density in the image.

3. Matching: Tracked landmarks are extracted by tracking visually similar candi-
date landmarks over the configuration space. The measure of visual similarity we
employ is the normalized correlation between candidate image regions.

4. Parameterization: The tracked landmarks are parameterized by computing the
behavior of a set of computed landmark attributes (for example, position in the
image, intensity distribution, edge distribution, etc), versus the “ground truth”
pose provided by the tracker. The resulting models are then measured in terms
of their a priori utility for pose estimation using cross-validation. The cross-
validation covariance C, along with the inferred generating function f(Xm) for
each landmark will subsequently be employed for modeling the feature likeli-
hood distribution p(z|Xm).

5. The set of sufficiently useful landmark models is stored for future retrieval.
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Fig. 1.5 (a) A set of observations of an extracted scene feature. The grid represents an overhead
view of the pose space of the camera, and feature observations are placed at the pose corresponding
to where they were observed. Note that the observations capture variation in feature appearance.
(b) The likelihood of an observation as a function of pose.

For the purposes of our experiments, the visual landmarks are initially selected
from a subset of the training images using an attention operator that responds to
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local maxima of edge density in the image. The selected landmark candidates are
then tracked over the remaining images along the robot’s trajectory by maximizing
correlation with the local appearance of the initially detected landmark. The set of
matches to a given candidate constitute a tracked landmark, and is stored for param-
eterization and evaluation. Figure 1.5a depicts an example of a tracked landmark.
Each thumbnail corresponds to the landmark as it was observed from the pose cor-
responding to its position in the grid (representing an overhead view of the pose
space).

The parameterization of each landmark feature fi is accomplished by employing
a radial basis function regularization framework to model the observation generating
function

z = fi(Xm), (1.2)

where z is a low-dimensional vector-valued representation of the landmark at-
tributes and Xm is the pose of the robot. In other words, fi(·) is the function that
predicts the attributes of the landmark i as a function of the pose of the robot. Fur-
thermore, the landmark is evaluated for its utility by computing the covariance C
of a randomly sampled subset of leave-one-out cross-validation residuals over the
training set. The cross-validation error provides an a priori estimate of the utility of
the landmark and landmarks with large error can be discarded.

The parameterization of each landmark affords a maximum likelihood prediction
of an observation, given an a priori pose estimate Xm, as well as a measure of the
uncertainty (C) of that prediction. As such, the landmark models are useful for
the task of probabilistic robot localization. That is, we define a likelihood function
p(z|Xm) which allows us to measure the likelihood of an observation z, assuming
knowledge of the robot’s pose Xm:

p(zi|Xm) = k exp(−0.5(zi − fi(Xm))TC−1(zi − fi(Xm))

where k is a normalizing constant. This likelihood distribution can be employed in
a Bayesian framework to infer the probability distribution of Xm given the obser-
vation z:

p(Xm|z) =
p(z|Xm)p(Xm)

p(z)
(1.3)

where p(Xm) represents the prior information about Xm and p(z) is a constant rel-
ative to the independent variable Xm. Several such probability distributions can be
generated—one for each observed landmark—and can be combined to obtain a full
posterior pose distribution. Note that this framework is more generic than a Kalman
filter in that it allows for a multi-modal representation of the pose likelihood.

The set of landmarks observed and computed over the environment during the
mapping stage constitutes the visual map and can later be used for accurate single-
robot pose estimation. When the robot requires a pose estimate without the aid of
the robot tracker, it obtains a camera image and locates the learned landmarks in the
image using the predictive model and the tracking mechanism. The differences in
appearance and position between the prediction and the observation of each land-
mark are combined to compute the likelihood of the observation in the Bayesian
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Candidate
Landmarks

Independent Pose
Likelihoods

Input image

Match

. . . Tracked Landmarks

. . .

Final Pose Likelihood

Merge

Fig. 1.6 Pose estimation based on learned visual landmarks. Landmarks (small squares) are ex-
tracted from the current camera observation and matched to the previously learned tracked land-
marks. Each match generates a pose estimate, all the matches are filtered and combined to generate
a final pose estimate.
framework. This process is illustrated in Fig. 1.6. The maximum posterior pose es-
timate is recovered by gradient ascent over the observation likelihood as a function
of pose. An example likelihood function is plotted at a coarse scale in Fig. 1.5b.
Note that the pose likelihood is a useful measure of confidence in the final estimate
allowing for the rejection of outlier pose estimates on the basis of a user-defined
threshold.

The cost of computing the posterior distribution will be dependent on any
prior pose information that is available. Uninformative priors will imply that every
learned landmark will be considered for matching, and successfully matched land-
marks will subsequently be evaluated over the search region of the pose space using
their generative models. Assuming that landmark matching constitutes the greater
computational cost of pose estimation (which is generally the case), the pose esti-
mation process is linear in the number of landmarks in the map. This computational
cost can be reduced by exploiting prior pose information to pre-select for matching
only those landmarks that are a priori likely to be visible.

While this work computes only the mode of the posterior pose distribution, it
should be noted that eq.(1.3) is well suited to alternative representations, such as
computation of the posterior over a discretization of the pose space, or computation
at the loci of a set of points in a particle filter. Furthermore, the parameterization
of the landmark models is generative in nature, eq.(1.2), so that the representa-
tion can be employed in a more approximate approach, such as a Kalman filter
or other hypothesis tracker. Such approaches are beyond the scope of this work, but
are straightforward to apply in practice.
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Fig. 1.7 Views of the two “rooms” as seen by the robot, and the floor plan of the two “rooms”.

1.6 Experimental Results

In this section we present the results of deploying the tracking method for the task of
landmark learning using a team of two robots. Two different experiments were con-
ducted in our laboratory. In the first experiment we tested the ability of the team to
move through two consecutive rooms while in the second experiment we maximized
the area covered using all the available space.

1.6.1 Experiment 1:

Our environment consisted of a laboratory partitioned into two “rooms” by room
dividers, with an open doorway connecting them. The first two pictures in Fig. 1.7
are the robot’s-eye-view of the two rooms, and the third picture presents the top view
of the floor plan. At the outset, one robot remained stationary while the other used
a seed-spreader exploration procedure [21] across the floor, taking image samples
at 40cm intervals. When the robot had completed the first room, it moved beyond
the door and the stationary robot followed it to the threshold, where it remained
stationary while tracking the exploratory robot as it continued its exploration of the
second room. In this experiment the robots first map one room, then move to the
next room. The accumulated uncertainty is very small due to the sort path taken
by the observing (base) robot. More significant is the odometric error that occurred
when the observed (mapping) robot ran over a cable. The cooperative localization
approach, though, corrected the pose estimate and the visual map was constructed
accurately.

a) Odometry versus tracking: The trajectory of the exploratory robot was defined
at the outset by a user. However, as the robot explored, accumulated error in odom-
etry resulted in the robot straying from the desired path. The tracking estimate of
the stationary robot was provided to the moving robot in order to correct this ac-
cumulated error. During the exploration the pose of the robot was corrected based
on the observations of the robot tracker. During the experiment the pure odometry
estimates were kept for comparison. Figure 1.8a plots the uncorrected odometric
trajectory (plotted as ’x’) and the actual trajectory of the robot, as measured by the
tracker (plotted as ’o’). For the sake of clarity, the odometric error was reset to zero
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(a) (b)

Fig. 1.8 (a) Odometric (x) vs. Tracker-corrected (o) trajectories of the robot. (b) Odometric error
versus distance traveled.
between the first and second rooms. Figure 1.8b displays the accumulated odometric
error in the second room versus total distance traveled (after it was reset to zero)

(a) (b)

Fig. 1.9 (a) Tracker estimates vs. Vision-based estimates for training images. (b) Tracker estimates
vs. Image-based estimates for a set of 21 random positions.

b) Tracking versus vision-based pose estimation: Once image samples were ob-
tained using the tracker estimates as ground truth position estimates, it was pos-
sible to apply our landmark learning framework to the image samples in order to
learn a mapping between appearance-based landmarks and the pose of the robot.
Figure 1.9a shows the discrepancies between the pose estimates from the tracker
(marked as circles) and the landmark-based vision pose estimator (marked as x) in
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Room 2. At each position, the two 2-D projections of the alternative pose estimates
are joined by a line. While the tracker is clearly more accurate, the quality of the
landmark-based pose estimates is sufficient for situations where only one robot is
present. There are a few large outliers that can be easily eliminated using prior pose
estimates.

Our final stage of this experiment involved navigating the robot to a series of
random positions and acquiring image- and tracker-based pose estimates, which are
plotted together in Fig. 1.9b. This final experiment illustrates the use of a multi-
sensor estimator in removing outliers. Assuming that the tracker-based position is
correct, the mean error in the image-based estimate was 33cm, a large part of which
can be attributed to the two significant outliers from nearly the same position. The
purpose of this experiment is to verify the accuracy of pure vision based localization.
Clearly, combining probabilistically the vision based estimated and an odometry
based prior estimate results in a more accurate pose estimation.

1.6.2 Experiment 2

A second experiment was performed where the two robots explored a single large
room. At the outset, one robot remained stationary while the other used a seed-
spreader exploration procedure [21] across the floor, taking image samples at 25cm
intervals, and in four orthogonal viewing directions, two of which are illustrated in
Fig. 1.10. In this experiment the goal was to map a larger open area and to obtain
maps in different orientations.

Fig. 1.10 Opposing views of the lab as seen by the exploring robot.

As before, the trajectory of the exploratory robot was defined at the outset by
a user. However, as the robot explored, accumulated error in odometry resulted in
the robot straying from the desired path. The differential drive configuration of the
exploratory robot, coupled with frequent rotations to capture the four viewing di-
rections, led to a rapid, and somewhat systematic degradation in dead reckoning, as
illustrated in Fig. 1.11a, where the uncorrected odometric trajectory is plotted as a
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dash-dotted line, and the actual trajectory of the robot, as observed by the tracker,
is plotted as a solid line. The accumulated odometric error is plotted versus total
distance traveled in Fig. 1.11b.
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Fig. 1.11 In this experiment the robot took pictures in four orientation; the higher number of
rotations increased non-linearly the odometric error. (a) Odometric (denoted by dash-dotted line)
vs. Tracker-corrected (denoted by a solid line) trajectories of the robot. (b) Odometric error versus
distance traveled.

Once image samples were obtained using the tracker estimates as ground truth
position estimates, it was possible to apply our landmark learning framework to the
image samples in order to learn a mapping between appearance-based landmarks
and the pose of the robot. Training was applied separately to each of the four view-
ing directions, developing a set of tracked landmark observations. Each thumbnail
corresponds to an observation of the landmark. The relative position of the thumb-
nail in the image corresponds to the physical location from which it was acquired
(that is, the positions of the thumbnails constitute an overhead view of locations vis-
ited by the robot). Note that in some locations there is no observation, as the tracker
was not able to locate a visual match to the landmark.

Again, the final stage of our experiment involved navigating the robot to a series
of 93 random positions and acquiring images along the four orthogonal viewing
directions. Image- and tracker-based maximum likelihood pose estimates were then
generated for one of the viewing directions, and outliers removed on the basis of a
likelihood threshold. Of the 93 observations, 4 estimates were rejected. In general,
these outliers corresponded to observations where the robot was very close to the
wall it was facing. One would expect that an observation from a different viewing
direction would return an estimate with higher confidence. We have omitted this
application for the sake of brevity.

The remaining 89 image-based estimates of high confidence are plotted with
their associated tracker-based estimates in Fig. 1.12a. Assuming that the tracker-
based position is correct, the mean error in the image-based estimate was 17cm,
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(7.7cm in the x direction vs. 15cm in the y direction). The larger error in the y
direction corresponds to the fact that the camera was pointed parallel to the positive
y axis, and changes in observations due to forward motion are not as pronounced as
changes due to side-to-side motion. The smallest absolute error was 0.49cm, which
is insignificant compared to the “ground truth” error, and the largest error was 76cm.
Note that most of the larger errors occur for large values of y. This is due to the fact
that the camera was closest to the wall it was facing at these positions y, and as has
been mentioned, tracking scene features over 25cm pose intervals became difficult.
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Fig. 1.12 (a) Tracker estimates vs. Image-based estimates for a set of 93 random positions. (b) The
trajectory of the moving robot based on odometry estimates (triangles connected with a dashed
line), the robot tracker cooperative localization (’+’ connected with a solid line) and the image
based localization (’o’ connected with a dash-dotted line).

1.6.2.1 Random Walk

Figure 1.12b presents a random walk of the exploring robot through the mapped
environment. The robot starts at a random location (marked as a “*”). Initially the
odometry estimate is set to the value of the robot tracker estimate at that starting
position, the pose estimate from the vision based system is approximately 30cm to
the right of the robot tracker estimate. The robot took seven random steps and the
three estimated trajectories are presented in Fig. 1.12b. First the odometer estimate
(marked as triangles connected with a dashed line) is plotted; second, the robot
tracker estimate (marked as “+” connected by a solid line), and third the visual
pose estimator results (marked as “o” connected with a dash-dotted line). The robot
tracker estimate provides a close approximation to ground truth at the end of the
random walk the disparity between the robot tracker and the visual pose estimator is
17.5cm and between the robot tracker and the odometer is 68cm. The much higher
disparity is a result of an increase in the accumulated error in orientation. The goal
of this experiment was to evaluate the accuracy of the vision based localization; as
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noted earlier the fusion of odometry data and the visual pose estimation resulted in
higher positioning accuracy.

1.7 Conclusions

We introduced a method for the automatic mapping of an arbitrary environment
which utilizes cooperative localization in order to maintain a virtual tether between
two robots as one explores the environment and the other tracks its pose. The im-
plementation we presented relies on a mounted target whose pose can be estimated
using a laser range-finder. The need for such an approach to maintaining a “ground
truth” estimate of the exploring robot is validated by the magnitude of the accrued
odometric error in our experimental results. Furthermore, we validate the utility of a
set of learned landmarks for localization when the second robot cannot be deployed.
This demonstrates conclusively that the virtual tether provides more accurate pose
estimates, and hence a more accurate appearance-based map, than could be achieved
with the robots operating independently.

Our approach does not eliminate positional error for the mapping robot but sig-
nificantly reduces it. While the base robot does not move, the pose uncertainty of
the mapping robot is equal to the uncertainty of the robot tracker sensor (a few cen-
timeters) for an area as large as 225m2 for a robot tracker with range 12m. Every
time the base robot moves, its positional uncertainty increases by the positional un-
certainty of the mapper plus the uncertainty of the robot tracker sensor. An analysis
of the accumulation of the uncertainty is beyond the scope of this paper. In many
environments, environmental features may be deemed accurate enough to be used
to assist in localization. Such a SLAM formulation would further improve perfor-
mance.

Our work demonstrates how co-operative localization can be employed as a
mechanism for constructing a new map representation of the environment. One as-
pect of the problem that we did not consider is that of including feedback from the
visual representation to further augment the robot’s pose estimate as it explores. This
approach would be an example of simultaneous localization and mapping (SLAM)
using multiple sources of information. We will consider this problem in future work.

The particular map we produce, an appearance-based representation of the en-
vironment, allows a single robot to accurately estimate its position on subsequent
visits to the same area. While such single-robot pose estimates are not as accurate as
when two robots are used, their accuracy is substantially ameliorated by the fact that
two robots were used in the initial mapping stage. The use of an appearance-based
model obviates most dependences on the particular geometry of the local environ-
ment. In principle, if a pair of robots was used in this subsequent stage the accuracy
of the estimates could be further improved, but the extent of this advantage remains
to be determined.

It would appear that these advantages become even more profound if more than
two robots are used for position estimation and mapping. In the particular algorith-
mic scheme the use of many more robots would be an issue, but it seems that several
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feasible solutions can be formulated; we hope to examine this problem in the future.
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