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Preface

This tutorial started as a chapter of my Ph.D. thesis [45]. At a next
iteration it became available as a techincal report (TR-CIM-04-02)
from the Centre for Intelligent Machines, McGill University [46].
It was placed online to help other researchers that are interested
in implementing a particle filter for mobile robots. A shorter ver-
sion of this text was published in the International Conference on
Robotics and Automation 2003 (ICRA-2003) [44]. In its current
form as a book it is augmented with several different examples that
cover different scenarios of mobile robot localization.

The main goal of this book is to introduce the concepts of a Par-
ticle Filter while at the same time provide examples and pointers
for a practical implementation in the field of robotics. The focus of
this book is on discussing the practical aspects of a standard Par-
ticle Filter, as such, little to no attention is being paid to the more
advance versions of Rao Blackwelized Particle, Filter, FastSLAM
1 and 2, Unscented Particle filter, etc.

xv





Chapter 1

Introduction

The Particle Filters belong in the Sequential Monte Carlo Simula-
tion family of algorithms and have been extensively used for model
estimation. They are an instantiation of the Bayesian Filter, there-
fore, they operate in a recursive function under the assumption of
the Markov property.

The following subjects are presented in this tutorial. The next
chapter introduces some relevant background on the topics of esti-
mation theory, odometry error modeling, mobile robot localization,
and an outline of the Bayesian framework the particle filter is based
on. Chapter 3 contains a detailed description of the Monte-Carlo
Simulation method (particle filtering) we used in order to imple-
ment the Bayesian framework. Chapter 6 presents an odometric
error study of a differential drive robot and an analysis of odomet-
ric error modeling. Chapter 7 presents different algorithms for the
resampling stage of the particle filter.
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Chapter 2

Related Work

Particle Filters have been used extensivelly in many different fields.
In this chapter relevant background for the easier understanding of
the subsequent chapters is reviewed. A brief overview on estimation
theory is presented in Section 2.1. Section 2.2 discusses the work
on odometric error estimation and dead reckoning, and Section 2.3
presents an overview on localization.

2.1 Estimation Theory

During the exploration of the unknown environment, the robots
maintain a set of hypotheses with regard to their position and
the position of the different objects around them. The input for
updating these beliefs comes from the various sensors the robots
poses. An “ optimal estimator” [21] can be employed in order for
the mobile robots to update their beliefs as accurately as possible.
More precisely, the position of an obstacle observed in the past
can be updated every time more data become available (a process
called smoothing). Moreover, after an action, the estimate of the
pose of the robot can be updated based on the data collected up

3



4 CHAPTER 2. RELATED WORK

to that point in time (a process called filtering).
Kalman filtering [8, 21, 41] is a standard approach for reducing

the error, in a least squares sense, in measurements from different
sources. In particular, in mobile robotics, Smith, Self and Cheese-
man provided a framework for estimating the statistical proper-
ties of the error in robot positioning given different sets of sensor
data [52, 53]. A variation is based on Extended Kalman filtering
(EKF), where a nonlinear model of the motion and measurement
equations is used [12,34]. Roumeliotis et al. successfully employed
Extended Kalman Filter in a variety of tasks such as localization
and multi-robot mapping [48–50]. Kurazume et al. proposed the
use of multiple robots, equipped with a sophisticated laser range
finder, in order to localize, using some of them as movable land-
marks [31–33]. The team of mobile robots uses a swarm behavior,
using each other for localization. The fact that two robots could
see each other was not used to infer that the space between them
was empty.

One approach that has gained popularity lately falls under the
category of Monte Carlo Simulation (see Doucet et al. [16] for an
overview) and is known under different names in different fields.
The technique we use was introduced as particle filtering by Gor-
don et al. [23] for tracking a moving target. In mobile robotics
particle filtering has been applied successfully by different groups
for single robots [13, 14, 28, 56], or for multiple robots [15], dur-
ing navigation for online localization and for localization with a
uniform prior (solving the kidnaped robot problem) [55], but also
during exploration and mapping [27]. In vision this technique was
introduced under the name of condensation [25] and particle filter-
ing [3] for the estimation of optical flow in image sequences [26] and
for tracking multiple moving objects in video sequences [39,54].
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2.2 Dead Reckoning

Dead reckoning is the procedure of modeling the pose (position and
heading) of a robot by updating an ongoing pose estimate through
some internal measures of velocity, acceleration and time [6,17]. In
most mobile robots this is achieved with the use of optical encoders
on the wheels and is called odometric estimation. The estimate of
the pose of the robot is usually corrupted with errors resulting
from conditions such as: unequal wheel diameters, misalignment
of wheels, finite encoder resolution (both space and time), wheel-
slippage, travel over uneven surfaces [6]. The process of correcting
the pose estimate is referred to as localization.

Borenstein and Fend in numerous studies present an analysis of
the mechanical/kinematic causes of odometry error. Furthermore,
they proposes a standard test (UMBtest) for the estimation of sys-
tematic error [7]. Chong and Kleeman [11] use the UMBtest for the
elimination of systematic error and then calculate analytically the
Covariance matrix for an extended Kalman Filter. Moon et al. [42]
studied the effect of speed and acceleration in the kinematics of
differential-drive robot, and proposed a method for maintaining a
straight line trajectory. Roy et al [51] proposed an online calibra-
tion using external sensing in order to estimate the systematic error
as a separate component for rotation and for translation.

2.3 Localization

There are two major approaches to localization of a mobile robot
based on whether the full structure of the environment is used. For
both approaches a variety of sensing methodologies can be used in-
cluding computational vision, sonar or laser range finding [17].The
first approach is to use landmarks in the environment in order
to localize frequently and thus reduce the odometry error [6]. A
common technique is to select a collection of landmarks in known
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positions and inform the robot beforehand [20, 22, 35]. Another
technique is to let the robot select its own landmarks according to
a set of criteria that optimize its ability to localize, and then use
those landmarks to correct its position [2]. The second approach to
localization is to perform a matching of the sensor data collected
at the current location to an existing model of the environment.
Sonar and laser range finder data have been matched to geometri-
cal models [34,37,38,40,43,57], and images have been matched to
higher order configuration space models [1, 18] in order to extract
the position of the robot. Borenstein suggested a two-part robot
that would more accurately measure its position by moving one
part at a time [4]. Also, Markov models have been used in order
to describe the state of the robots during navigation [30].

The existence of clearly identifiable landmarks is an optimistic
assumption for an unknown environment. Even in man-made en-
vironments, the cost of maintaining labels in prearranged positions
may be prohibitive. Moreover, in large-scale explorations the robot
may have to travel a large distance (larger than its sensor range)
before being able to locate a distinct landmark.

2.4 Bayesian Reasoning

The Bayesian approach provides a general framework for the esti-
mation of the state of our system (the current pose of all robots)
in the form of a probability distribution function (pdf), based on
all the available information.

For the linear-Gaussian estimation problem1 the required pdf re-
mains Gaussian and the Kalman filter provides a provably optimal
solution [8, 29, 48]. In the non-linear Gaussian case the Extended
Kalman Filter (EKF) has been successfully used by linearizing the
control equations [52, 53]. For non-linear, non-Gaussian models

1Where the noise probability distribution functions are Gaussian and the
model of the system is linear.
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two difficulties must be resolved: how to represent a general pdf
using finite computer storage and how to perform the integrations
involved in updating the pdf when new data are acquired. Dur-
ing the exploration the uncertainty build-up in the pose estimate
of each robot translates into uncertainty in the resulting map. In
order to improve the accuracy of the map the pose of the robot
has to be estimated at discrete time steps. This is an instance
of the discrete time estimation problem and can be formulated in
state-space notation (see also Gordon et al. [23]).

The ith robot pose at time t = k is represented by the state
vector xik = [xik, y

i
k, θ̂

i
k]T , xik ∈ <2 × S1. Each robot takes action

(αik) and its pose evolves according to Equation 2.1. 2

xk = fα(xk−1, vk) (2.1)

where, fα is the system transition function that models how ac-
tion α probabilistically modifies the pose of the robot and how it
is affected by the noise vk. The actual transfer function fα is not
analytically available; instead, a simulation (as described in chap-
ter 6 Section 6.2) that models the effect of noise and provides an

approximation f̂α ≈ fα is used.
After each action is performed the robot acquires one (or more)

sensor readings. Every sensor measurement available at time t = k
is included in a sensor data vector noted as zik. These measure-
ments are related to the state vector via the observation equation
2.2.

zk = gk(xk, uk) (2.2)

where gk is the measurement function and uk is the noise model.

2The superscript “i” that indicates the robot to which we refer is dropped
for clarity of presentation for the rest of the discussion.
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It is assumed that the initial pdf P (x0) is known and that the
available information at time t = k is the set of measurements and
the set of actions up to that time. In order for the robot to decide
the next action it needs to know its current pose or, since knowl-
edge of the true pose is not feasible due to noisy measurements, at
least the pdf of its pose given the previous actions and observations
(P (xk|x0, αj , zj : j = 1 . . . k)). This can be achieved recursively,
by first predicting the prior probability of xk from the previous
pose xk−1 (presuming it is available) and the action taken αk (see
Equation 2.3) and then updating using the latest sensor data zk
in order to obtain the posterior distribution of the pose xk of the
moving robot given all available information.

P (xk|x0, αk, αj , zj︸ ︷︷ ︸
j=1...k−1

) =

∫
P (xk|αk,xk−1)P (xk−1|x0, αj , zj︸ ︷︷ ︸

j=1...k−1

)dxk−1

(2.3)

Note that the P (xk|αk,xk−1) can be derived by the system model
(Equation 2.1), the known characteristics of the noise vk−1 and the
P (xk−1|x0, αj , zj : j = 1 . . . k − 1), which is the posterior of x at
time t = k − 1.

When new sensory information becomes available we can use
Bayes rule in order to update the pdf of the moving robot with the
latest observations (Equation 2.4). The conditional probability of
the sensor measurement zk given the pose xk from which it was
obtained can be estimated by the sensing function gk and the noise
model vk. Finally the normalizing denominator can be obtained
through Equation 2.5.

P (xk|x0, αj , zj : j = 1 . . . k) =
P (zk|xk)P (xk|x0, αj , zj : j = 1 . . . k − 1)

P (zk|x0, αj , zj : j = 1 . . . k − 1)

(2.4)

P (zk|x0, αj , zj : j = 1 . . . k−1) =

∫
P (zk|xk)P (xk|x0, αj , zj : j = 1 . . . k−1)dxk (2.5)



Chapter 3

Particle Filter

The main objective of particle filtering is to “track” a variable
of interest as it evolves over time, typically with a non-Gaussian
and potentially multi-modal pdf. The basis of the method is to
construct a sample-based representation of the entire pdf. A series
of actions are taken, each one modifying the state of the variable
of interest according to some model. Moreover at certain times
an observation arrives that constrains the state of the variable of
interest at that time.

Multiple copies (particles) of the variable of interest are used,
each one associated with a weight that signifies the quality of that
specific particle. An estimate of the variable of interest is obtained
by the weighted sum of all the particles. The particle filter algo-
rithm is recursive in nature and operates in two phases: prediction
and update. After each action, each particle is modified according
to the existing model (prediction stage), including the addition of
random noise in order to simulate the effect of noise on the variable
of interest. Then, each particle’s weight is re-evaluated based on
the latest sensory information available (update stage). At times
the particles with (infinitesimally) small weights are eliminated, a

9
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process called resampling.
More formally, the variable of interest (in our case the pose of

the moving robot xk = [xk, yk, θ̂k]T ) at time t = k is represented as
a set of M samples (the “particles”) (Ski = [xkj , w

k
j ] : j = 1 . . .M),

where the index j denotes the particle and not the robot, each
particle consisting of a copy of the variable of interest and a weight
(wkj ) that defines the contribution of this particle to the overall
estimate of the variable.

If at time t = k we know the pdf of the system at the previous
instant (time t = k − 1) then we model the effect of the action to
obtain a prior of the pdf at time t = k (prediction). In other words,
the prediction phase uses a model in order to simulate the effect
an action has on the set of particles with the appropriate noise
added. The update phase uses the information obtained from sens-
ing to update the particle weights in order to accurately describe
the moving robot’s pdf. Algorithm 1 presents a formal description
of the particle filter algorithm and the next two subsections discuss
the details of prediction and update.

Given a particle distribution, we often need to take actions
based on the robot pose. Three different methods of evaluation
have been used in order to obtain an estimate of the pose. First,
the weighted mean (Pest =

∑M
j=1 wjxj) can be used; second, the

best particle (the Pj such that wj = max(wk) : k = 1 . . .M)
and, third, the weighted mean in a small window around the best
particle (also called robust mean) can be used. Each method has its
advantages and disadvantages: the weighted mean fails when faced
with multi-modal distributions, while the best particle introduces
a discretization error. The best method is the robust mean but it
is also the most computationally expensive.

3.0.1 Resampling

One of the problems that appear with the use of particle filters
is the depletion of the population after a few iterations. Most of
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Require: A set of Particles for Robot i at time 0: S0
i = [xj , wj :

j = 1 . . .M ].
W = wj : j = 1 . . .M
while (Exploring) do
k = k + 1;
if (ESS(W ) < β∗M) then {Particle Population Depleted

(Equation 3.2)}
Index=Resample(W );

Ski = Ski (Index);
end if
for (j = 1 to M) do {Prediction after action α}

xk+1
j = f̂(xkj , α)

end for
s=Sense()
for (j = 1 to M) do {Update the weights}
wk+1
j = wkj ∗W(s,xk+1

j )
end for
for (j = 1 to M) do {Normalize the weights}
wk+1
j =

wk+1
j∑M

j=1 w
k+1
j

end for
end while
{ESS is the Effective Sample Size, see Equation 3.2}

Algorithm 1: Particle Filter Algorithm; procedures are noted as
underlined text, Comments are inside curly brackets “{comment}”.

the particles have drifted far enough for their weight to become
too small to contribute to the pdf of the moving robot 1. If we
consider the current set of particles Sk = {xki , wki } : k = 1 . . .M as
a discrete representation of the pdf of the moving robot-pose, a new

1For most practical implementations the weights become zero due to round-
ing off.
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representation S′k = {x′ki , w′
k
i } : k = 1 . . .M is needed such that

xki = x′
l
i for k, l in [1,M ] and weights (w′

k
i = 1/M) that represent

the same pdf.
Liu et al. [36] refer to two different measures that estimate the

number of near-zero-weight particles: one is the coefficient of vari-
ation cv2

t (see Equation 3.1) and the second is the effective sample
size ESSt (see Equation 3.2).

cv2
t =

var(wt(i))

E2(wt(i))
=

1

M

M∑
i=1

(Mw(i)− 1)
2

(3.1)

ESSt =
M

1 + cv2
t

(3.2)

When the effective sample size drops below a certain threshold,
usually a percentage of the number of particles M , then the particle
population is resampled, eliminating (probabilistically) the ones
with small weights and duplicating the ones with higher weights.

Different methods have been proposed for resampling; three of
the most common ones are discussed in chapter 7. In every case
the input is an array of the weights of the particles and the output
is an array of indices of which particles are going to propagate
forward. The requirement is that the pdf reconstructed by the
resampled population is very close to the one before the resampling.
Experimental tests showed no noticeable improvements over the
simple select with replacement scheme. In Select with Replacement
each particle is selected to continue with a probability equal to
its weight. We used the approach of Carpenter et al. [10] that
runs in linear time in the number of particles (see chapter 7 for a
description of the algorithm).



3.1. DIMENSIONALITY 13

3.0.2 Update

After an action (the motion of one of the robots) the robot tracker
sensor is employed in order to estimate the pose of the moving
robot 2. The calculations are dependent on the configuration of
the robot tracker employed. The next two sections present the
update of the weights of the particles of the moving robot for
the laser/target robot tracker combination for two different cases.
First we derive the update equations when the laser range finder
is mounted on the stationary robot (subsection 5.2); second for
when the laser range finder is mounted on the moving robot and
the target is mounted on the stationary robot (subsection 5.2).

3.1 Dimensionality

Particle Filters are sample based methods, as such their perfor-
mance depends on the number of samples. The larger the number
of samples the more the state space is covered. The number of
dimensions of the state space is crucial in the selection of sample
size. For example, for covering an one dimensional space, between
zero and one, 20 particles provide some good coverage; see 3.1a.
While for a two dimensional area, twenty particles appear rather
sparse; see 3.1b. Raising the number of particles on the power of
the dimensions, 202 = 400 particles for example generate adequate
coverage; see 3.1c. when the state space is three dimensional, the
trend is similar, twenty particles generate very sparse coverage; see
3.1d, twenty squared, is still sparse; see 3.1e; while twenty cubed
(203 = 8000) particles provide a dense coverage; see 3.1f.

2Additional sources of information (e.g. consistency of sensed parts of the
environment with the map up to this point) can also be used during the update
stage.
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Figure 3.1: Spatial coverage in different dimensions for varying
number of particles: (a) 1D, 20 particles; (b) 2D, 20 particles; (c)
2D, 400 particles; (d) 3D, 20 particles; (e) 3D, 400 particles; (f)
3D, 8000 particles.



Chapter 4

Propagation

In this chapter we discuss the propagation step of the algorithm
for a variety of examples. Different types of motion schemes are
discussed both on 2D and 3D moving robots. The propagation
step does not have to have a single equation, if there is a reliable
simulator of the robot, this can be used to simulate the propagation
step. The very first step is the initialization of the Particle Filter,
which is discussed in the next section, then at each propagation
step

4.1 Initialization

Depending on the starting assumptions different particle distribu-
tions can be used. At the begining each particle is assigned a weight
equal to 1/N where N is the number of particles. If the robot starts
from a known initial pose, the all the particles would be concen-
trated and have an identical pose; see Fig. 4.1a. It is possible that
we know the position with a certain degree of accuracy but not the
orientation, this can be easily modelled by drawing the particles
from a Normal distribution for the position, with the appropriate

15
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σ, and the orientation uniformally between 0 and 2π; this would
be the case if we have information from a GPS device before any
motion; see Fig. 4.1b. Finally in the case of global localization, un-
known initial pose, then the particles are distributed uniformally
over the environment; see Fig. 4.1c. In the examples of Figure
4.1, the known map have been used to reject particles which were
created inside obstacles, leaving only valid particles.

(a) (b) (c)

Figure 4.1: Particle distribution for different scenarios: (a) Per-
fectly known initial pose of the robot. (b) Initial pose known with
some uncertainty. (c) Unknown initial pose of the robot.

4.2 Piece-wise linear Motion

4.2.1 Prediction

In order to predict the probability distribution of the pose of the
moving robot after a motion we need to have a model of the effect
of noise on the resulting pose. Many different approaches have been
used (see Borenstein et al. [5,7] for an overview), most of which use
an additive Gaussian noise model for the motion. Any arbitrary
motion [∆x,∆y]T can be performed as a rotation followed by a
translation (a piecewise linearisation, see Figure 4.2). The robot’s

initial pose is [x, y, θ̂]T . First the robot rotates by δθ̂ = θ̂k−θ̂, where
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θ̂k = arctan(∆y/∆x) to face the destination position, and then it

translates forward by distance ρ =
√

∆x2 + ∆y2 1. If the starting
pose is [x, y, θ̂]T , the resulting pose [x′, y′, θ̂k]T is given in Equation
4.1. Consequently, the noise model is applied separately to each of
the two types of motion because they are assumed independent.

x′y′
θ̂′

 =

x+ ρ cos (θ̂k)

y + ρ sin (θ̂k)

θ̂k

 (4.1)

Rotation

When the robot performs a relative rotation by δθ̂ the noise from
the odometry error is modeled as a Gaussian with mean (Mrot)
experimentally established (see appendix 6) and sigma proportional

to δθ̂. More formally, if at time t = k the robot has an orientation
θ̂k then after the rotation (time t = k + 1) the orientation of the
robot is given by Equation 4.2. Therefore, to model the rotation
of δθ̂, the orientation θ̂j of each particle j is updated by adding

δθ̂ plus a random number drawn from a normal distribution with
mean Mrot and standard deviation σrotδθ̂ (N(Mrot, σrotδθ̂), where
σrot is in degrees per 360◦).

θ̂k+1 = θ̂k + δθ̂ +N(Mrot, σrotδθ̂) (4.2)

Translation

Modeling the forward translation is more complicated 2. There
are two different sources of error, the first related to the actual

1In our experimental setup the Nomadic Technologies Superscout II robots
used are controlled by the same rules.

2For a detailed description of the model please refer to appendix 6 sections
6.1.2,6.2.2.
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Figure 4.2: Arbitrary motion [∆x,∆y]T of robot Ri. At time t =

k− 1 the pose is [x, y, θ̂]T , after the motion at time t = k the pose

is [x′, y′, θ̂k]T . The robot first rotates to orientation θ̂k and then
translates by ρk.

distance traveled and the second related to changes in orientation
during the forward translation. During the translation the orienta-
tion of the robot changes constantly resulting in a deviation from
the desired direction of the translation; such effect is called drift
and we model it by adding a small amount of noise to the orienta-
tion of the robot before and after each step. As well, if the intended
distance is ρ, the actual distance traveled is given by ρ plus some
noise following a Gaussian distribution. Experimental results pro-
vide the expected value and the standard deviation for the drift and
pure translation. Because it is very difficult to analytically model
the continuous process, a simulation is used that discretizes the
motion to K steps, where K is chosen to be low enough for compu-
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tational efficiency but high enough in order to describe the effect
of noise in forward translation. If [σtranslation, σdrift] are experi-
mentally obtained values per distance traveled then at each step
of the simulation the standard deviation used is given in Equation
4.3. Algorithm 2 provides a formal description of the prediction
phase of a set of particles S for a forward translation by distance
ρ.

σtrs = σtranslation
√
K

σdrft = σdrift

√
K
2

(4.3)
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Figure 4.3: The effect of σtrs, σdrft for the forward translation: (a)
σtrs = 5cm/m, σdrft = 1◦/m (b) σtrs = 1cm/m, σdrft = 5◦/m.

Figure 4.3 presents a graphical illustration of the effect of the
two noise parameters (σtrs, σdrft) in the predictive model. In both
cases the robot makes a single forward motion of 100cm (upper
left sub-plot), 200cm (upper right sub-plot), 300cm (lower left sub-
plot), and 400cm (lower right sub-plot). In Figure 4.3a the un-
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Input: Set of M Particles::S; Translation distance::ρ
δρ = ρ

K ;
for (j = 1 to M) do { For each particle}

for (k = 1 to K) do { At each of K steps}
Etrs =rand N(Mtrs ∗ δρ, σtrs ∗ δρ);
Edrft =rand N(Mdrft ∗ δρ, σdrft ∗ δρ);

θ̂[j] = θ̂[j] + Edrft;

x[j] = x[j] + (δρ+ Etrs ∗ cos (θ̂[j]);

y[j] = y[j] + (δρ+ Etrs ∗ sin (θ̂[j]);
Edrft =rand N(Mdrft ∗ δρ, σdrft ∗ δρ);

θ̂[j] = θ̂[j] + Edrft;
end for
S′[j] = [x[j], y[j], θ̂[j]]T ;

end for
Return(S′)

Algorithm 2: Forward Translation with Noise; rand N(M,σ) is a
pseudo-random number generator drawing samples from a Normal
distribution with mean M and standard deviation σ; procedures
are noted as underlined text, Comments are inside curly brackets
“{comment}”. The variables Mtrs and Mdrft represent the mean
error and are experimentally derived.

certainty in the distance traveled is the dominant uncertainty and
thus the particles spread a lot more in the direction of the motion.
In contrast, in Figure 4.3b, where the drift noise dominates, the
particles spread in a circular pattern. Appendix 6 contains a de-
tailed experimental study of these parameters using the Nomadic
Technologies Superscout II mobile platform.

Figure 4.4 presents two examples of complex motions and illus-
trates the performance of the prediction stage of the particle filter.
In figure 4.4a, the robot moves forward three times, rotates ninety
degrees, then translates forward three more times, after which it
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Figure 4.4: (a) Large trajectory, the uncertainty build up is rep-
resented by the spread of the particle cloud. (b) Series of forward
translations and 360◦ rotations performed in our laboratory. The
connected curved line represent the uncorrected odometer values
(captured accurately by the cloud of particles), and the bottom
line represents the actual trajectory.

rotates again by ninety degrees and translates forward five times.
As can be seen the uncertainty grows unbounded. Sub-figure 4.4b
presents experimental validation of our predictive model. In this
case the predictive model was guided by a set of motion commands
that were used in an experiment in our laboratory (for the full de-
scription of this experiment please refer to chapter 8 of [45]). In
short, the experiment consisted of forward translations, each one
followed by four rotations by ninety degrees (in order to sense the
environment in four different directions). The connected circles in
sub-figure 4.4b represent the uncorrected odometer values. In fact,
the actual trajectory of the robot was kept in a straight line but
the odometry estimates did deviate due to noise. The predictive
model was constructed using the noise statistical parameters col-
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lected in our laboratory (see Appendix 6). The predicted cloud
of particles can be seen around the recorded values following the
trajectory with high accuracy.

4.3 Linear and Angular Velocity Control

Many mobile robots operate

xt+1
i = xti + (vt + wvt)δt cos(φ)
yt+1
i = yti + (vt + wvt)δt sin(φ)
φt+1
i = φti + (ωt + wωt)δt

(4.4)

where vt is the linear velocity and ωt is the angular velocity at time
t.

Figure 4.5 presents the spread of particles sampled at 1Hz (δt =
1sec); plotting one sample every second and plotting all the par-
ticles every five seconds. The linear velocity is constant (vt =
1m/sec), and the angular velocity changes randomly every ten sec-
onds.
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Figure 4.5: Sample trajectories using propagation only.
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4.4 Failure of Motion Commands

In a planetary exploration scenario, the communication link can
be faulty, as such only 60% of the commands arrive. 4.6 presents
a simple scenario of piecewise linear motions. The rover starts
at [-8, 0, 0◦]. Three commands are send to the rover: translate
by 4m; see 4.6b, rotate by 30◦; see 4.6, finally translate by 6m;
see 4.6d. The resulting particle distribution has several modes.
Some particles are at [-8, 0, 0◦], all three commands failed. Some
particles are at [-8, 0, 30◦], the two translation commands failed
but the rotation command was received. Some particles are at [-4,
0, 0◦], the rotation and the second translation failed; while some
particles are at [-4, 0, 30◦], only the last translation command
failed. Some particles are at [-2, 0, 0◦], the first translation and
the rotation commands failed. Some particles are at [−8 + 6 ∗
cos(30◦), 6 ∗ sin(30◦), (30◦)], only the first translation failed. Some
particles are at [2, 0, 0◦], when only the rotation failed. Finally,
when all three commands were successful, the particles arrived at
[−4 + 6 ∗ cos(30◦), 6 ∗ sin(30◦), (30◦)].
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Figure 4.6: (a) Initial pose at [-8, 0, 0◦]. (b) Translation by 4m,
only 60% of the particles move to [-4, 0, 0], while 40% of the par-
ticles stay at [-8, 0, 0◦]. (c) Rotate by 30◦, 60% of the particles in
the two locations rotate by 30◦. (d) Translate by 6m, some parti-
cles stayed at the original pose, while some stayed at the original
position but rotated by 30◦, some translate by 6m.



Chapter 5

Update

5.1 Landmark based updated

5.2 Cooperative Localization

Pose Estimation, stationary robot observing moving
robot

If the pose of the stationary robot xs = [xs, ys, θ̂s]
T (with laser

range finder) and the pose of the moving robot xm = [xm, ym, θ̂m]T

(with target) are known, then the robot tracker sensor measure-

ment z = [ρ, θ̂, φ̂]T can be calculated by Equation 5.1:

z =

ρθ̂
φ̂

 =


√
dx2 + dy2

atan2(dy/dx)− θ̂s
atan2(−dy/− dx)− θ̂m

 (5.1)

where dx = xm − xs and dy = ym − ys.
If the known information is the pose of the stationary robot (xs)

(with the laser range finder) and the robot tracker measurement is

25
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Figure 5.1: The stationary robot with the robot tracker sensor
observes the moving robot that carries the target.

(z = [ρ, θ̂, φ̂]T ) then the estimate of the pose of the moving (target)
robot (xmest(k + 1)) is given in Equation 5.2:

xmest(k + 1) =

xmestymest
ˆθmest

 =

xs + ρ cos (θ̂s + θ̂)

ys + ρ sin (θ̂s + θ̂)

π + θ̂ + θ̂s − φ̂

 (5.2)

The Equations 5.1 and 5.2 are equivalent. Consequently, the
above equations can be used in order to calculate the weight of each
particle of the moving robot, assuming a Gaussian error model for
each component of the sensor data (ρ, θ̂, φ̂), in two different ways.

First, let the ith particle at time k be xkmi = [xmi , ymi , θ̂mi ]
T . Then

if the pose of the stationary robot is known xs = [xs, ys, θ̂s]
T the

estimated tracker measurement zi for particle i is given in Equation
5.3:
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zi =

ρiθ̂i
φ̂i

 =


√
dx2

i + dy2
i

atan2(dyi, dxi)− θ̂s
atan2(−dyi,−dxi)− θ̂mi

 (5.3)

where dxi = xmi − xs and dyi = ymi − ys.
The weight for particle i then is proportional to the probability

of xk+1
mi given xs and zi (see Equation 5.4). As can be seen in

Equation 5.3 the value of φ̂i is affected by the complete pose of
particle i (both position and orientation). Therefore the error in
position (xmi , ymi) is used twice. In Equation 5.4 the constants
σρ, σθ̂, σφ̂ are the presumed standard deviation of the robot trackers
measurement noise and they signify the confidence with which we
weight each measurement.

P (xk+1
mi |xs, z) =

1√
2πσρ

e
−(ρ−ρi)

2

2σ2ρ
1√

2πσθ̂
e

−(θ̂−θ̂i)
2

2σ2
θ̂

1√
2πσφ̂

e

−(φ̂−φ̂i)
2

2σ2
φ̂

(5.4)

Figure 5.2 illustrates the spatial variation of Equation 5.4. In
particular the spatial variation of the contribution of each com-
ponent (ρ, θ̂, φ̂) to the weighting function is presented in the first
three sub-plots, and the spatial variation of the weighting function
is presented on the lower right sub-plot. For clarity of presentation,
the pose of the observing robot is set at xs = [0, 0, 0]T and the pose
of the moving robot at xm = [100, 100, 45]T , and using Equation

5.1 the tracker measurement z = [ρ, θ̂, φ̂]T is calculated. Then the
spatial variation of the different terms of the product in Equation
5.4 is plotted keeping the moving robots orientation at the correct
value (45◦).

Experimental results have shown that the accuracy of the po-
sition of the robot is (almost) fixed (independent of the distance
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Figure 5.2: The contribution of each measurement of the robot
tracker in the weighting pdf of the moving robot.

at which the observed robot is seen). Unfortunately, the tracker
measurements are in polar coordinates and thus for a fixed error
in the angle (θ̂) the longer the distance (ρ) the higher the error. In
practice, it is necessary to calculate σθ̂ as a function of ρ:

σθ̂ = h(ρ, σθ̂) = asin(σθ̂/ρ) (5.5)

If the σθ̂ is kept at a fixed value then the weighting function
is spread out, as can be seen in the upper right sub-plot in Figure
5.3, and the prediction is less accurate. Figure 5.3 presents the
spatial variation of the weighting function for the same condition
as in Figure 5.3, except σθ̂ is not scaled.

An alternative weighting function is to use the difference in
Cartesian coordinates and the orientation estimate in order to
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Figure 5.3: The contribution of each measurement of the robot
tracker in the weighting pdf of the moving robot. In contrast to
Figure 5.2 the σθ̂ is not calculated to be proportional to distance
between the two robots.

weight the particle xkmi given xs and zi (see Equation 5.6).

P (x
k+1
mi
|xs, z) =

1
√

2πσρ
e

−(dx−dxi)
2

2σ2ρ
1

√
2πσρ

e

−(dy−dyi)
2

2σ2ρ
1

√
2πσφ̂

e

−(θ̂m−θ̂mi )
2

2σ2
θ̂′

(5.6)

The second approach is to use Equation 5.2 and weight every
particle depending on how far it is from the estimated pose of
the moving robot (see Equation 5.7). Where if xmest(k + 1) =

[xmest , ymest , θ̂mest ] is the estimate pose and xkmi = [xmi , ymi , θ̂mi ]
T

is the “ith” particle then di =
√

(xmest − xmi)2 + (ymest − ymi)2.
The disadvantage of this approach is that σd, σθ̂ do not represent
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the sensor’s noise model.

P (xk+1
mi |xs, z) =

1√
2πσd

e
−(di)

2

2σ2
d

1√
2πσθ̂

e

−(θ̂mest−θ̂mi )
2

2σ2
θ̂ (5.7)

During the estimation of the weight the pose of the station-
ary robot xs is used. As the actual pose is not known, different
estimates x̄s can be employed. The following options have been
considered:

• The best particle (the one with maximum weight):

x̄s = xmaxs

• Weighted Mean:

x̄s =

M∑
j=1

xsjwj

• Use every particle of the stationary robot (O(n2)):

P (xk+1
mi |xs, z) = Σnj=1P (xk+1

mi |x
j
s, z)

• Robust Mean: Select only the particles that are less than
ε from the particle with maximum weight. The advantage
of this method is that it selects the mode of the distribution
and reduces the discretization error (which occurs when only
a single particle is used).

x̄s =

K∑
j=1

xjswj : |xjs − xmaxs | ≤ ε
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Figure 5.4: Observation.

Pose Estimation, moving robot observing stationary
robot

This time the stationary robot has the target. If the poses of
the two robots (xs = [xs, ys, θ̂s]

T and xm = [xm, ym, θ̂m]T ) are

known then the robot tracker sensor measurement (z = [ρ, θ̂, φ̂]T )
can be calculated by Equation 5.8 (exactly as in the previous case
Equation 5.1).ρθ̂

φ̂

 =


√
dx2 + dy2

atan2(dy, dx)− θ̂m
atan2(−dy,−dx)− θ̂s

 (5.8)

where dx = xs − xm and dy = ys − ym 1.
If the pose of the stationary robot (xs) (carrying the target)

and the robot tracker measurement (z = [ρ, θ̂, φ̂]T ) are known then

1Note that dx, dy are different from Equation 5.1.
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the estimate of the pose of the moving (carrying the laser) robot
(xm) is given in Equation 5.9.

xmest(k + 1) =

xmestymest
θ̂mest

 =

xs + ρ ∗ cos (φ̂+ θ̂s)

ys + ρ ∗ sin (φ̂+ θ̂s)

π + φ̂+ θ̂s − θ̂

 (5.9)

Applying the same methodology as in the previous section the
weight update functions are identical with the ones in Equations
5.4, 5.6, 5.7.

5.2.1 Effect of different Robot Tracker Sensors

Several simple sensing configurations for a robot tracker are avail-
able. For example, simple schemes using a camera allow one robot
to observe the other and provide different kinds of positional con-
straints such as the distance between two robots and the relative
orientations. In this section we consider the effect the group size
has on the accuracy of the localization for different classes of sen-
sors. The experimental arrangement of the robots is simulated
and is consistent across all the sensing configurations. The robots
start in a single line and they move abreast one at a time, first
in ascending order and then in descending order for a set num-
ber of exchanges. The selected robot moves for 5 steps and after
each step cooperative localization is employed and the pose of the
moving robot is estimated. Each step is a forward translation by
100cm. Figure 5.5 presents a group of three robots, after the first
robot has finished the five steps and the second robot performs the
fifth step.

5.2.2 Range Only

One simple sensing method is to return the relative distance be-
tween the robots. Such a method has been employed by [24] in the
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Figure 5.5: Estimation of the pose of robot R2 using only the
distance from robot R1 (d1) and from robot R3 (d3).

millibots project where an ultra-sound wave was used in order to
recover the relative distance. In order to recover the position of
one moving robot in the frame of reference of another, at least two
stationary robots (that are not collinear with the moving one) are
needed thus the minimum size of the group using this scheme is
three robots.

The distance between two robots can be easily and robustly
estimated. In experimental simulations, the distance between ev-
ery pair of robots was estimated and Gaussian, zero mean, noise
was added with σρ = 2cm regardless the distance between the two
robots. Figure 5.6 presents the mean error per unit distance trav-
eled for all robots, averaged over 20 trials. As can be seen in Figure
5.6 with five robots, the positional accuracy is acceptable with an
error of 20cm after 40m traveled; for ten robots the accuracy of the
localization is very good.
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Figure 5.6: Average error in position estimation using the distance
between the robots only (3,4 and 10 robots; bars indicate standard
deviation).

5.2.3 Azimuth (Angle) Only

Several robotic systems employ an omnidirectional vision sensor
that reports the angle at which another robot is seen. This is also
consistent with information available from several types of observ-
ing systems based on pan-tilt units. In such cases the orientation
at which the moving robot is seen can be recovered with high accu-
racy. We performed a series of trials using only the angle at which
one robot is observed, with groups of robots of different sizes. As
can be seen in Figure 5.7 the accuracy of the localization does not
improve as the group size increases. This is not surprising because
small errors in the estimated orientation of the stationary robots
scale non-linearly with the distance. Thus after a few exchanges
the error in the pose estimation is dominated by the error in the
orientation of the stationary robots.
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Figure 5.7: Average error in position estimation using the orienta-
tion of the moving robot is seen by the stationary ones.

To illustrate the implementation of the particle filter, we present
here the probability distribution function (pdf) of the pose of the
moving robot after one step (see Figure 5.8). The robot group size
is three and it is the middle robot R2 that moves. The predicted
pdf after a forward step can be seen in the first sub-figure (5.8a) us-
ing odometry information only; the next two sub-figures (5.8b,5.8c)
present the pdf updated using the orientation at which the moving
robot is seen by a stationary one (first by robot R1 then by robot
R3); finally, the sub-figure 5.8d presents the final pdf which com-
bines the information from odometry and the observations from
the two stationary robots. Clearly the uncertainty of the robot’s
position is reduced with additional observations.
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Figure 5.8: The pdf of the moving robot (R2) at different phases
of its estimation: (a) prediction using odometry only; (b) using
the orientation from stationary robot R1; (c) using the orientation
from stationary robot R3; (d) final pdf.
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Figure 5.9: Average error in position estimation using both the
distance between the robots and the orientation the moving robot
is seen by the stationary ones. (a) Average error in positioning of
the team of robots one trial (3,5 and 10 robots). (b) Average error
in position estimation over twenty trials (3,5,10 and 40 robots).

5.2.4 Position Only

Another common approach is to use the position of one robot com-
puted in the frame of reference of another (relative position). This
scheme has been employed with two robots (see [9]) in order to re-
duce the uncertainty. The range and azimuth information ([ρ, θ]) is
combined in order to improve the pose estimation. As can be seen
in Figure 5.9a even with three robots the error in pose estimation
is relatively small (average error 30cm for 40m distance traveled
per robot, or 0.75%). In our experiments the distance between the
two robots was estimated and, as above, zero-mean Gaussian noise
was added both to distance and to orientation with σρ = 2cm and
σθ = 0.5◦ respectively. The experiment was repeated twenty times
and the average error in position is shown in Figure 5.9b for groups
of robots of size 3,5,10 and 40.
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5.2.5 Full Pose
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Figure 5.10: Average error in position estimation using full pose
[ρ, θ, φ].

Some robot tracker sensors provide accurate information for
all three parameters [ρ, θ, φ] and they can be used to accurately
estimate the full pose of the moving robots (see [31, 47]). In the
experimental setup the robot tracker sensor was characterized by
Gaussian, zero mean, noise with σ = [2cm, 0.5◦, 1◦]. By using the
full Equation 5.4 we weighted the pdf of the pose of the moving
robot and performed a series of experiments for 3, 5 and 10 robots.
As can be seen in Figure 5.10 the positional accuracy is consistently
lower than in the case of range only, orientation only and position
only measurements.

In addition, experiments were conducted for larger group sizes
and for longer distances traveled. Figure 5.11 presents the mean
error over thirty experiments for 3,5,10,15,20 and 30 robots. The
mean positional error was calculated as a function of the group
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Figure 5.11: Average error in position estimation using full pose
[ρ, θ, φ] for different number of robots.

size in order to examine the contribution of each additional robot
to localization. Two different functions were used in order to model
the error with respect to the group size (N) (a) Ea(N) = αNβ + γ
and (b) Eb(N) = αeβN + γ. Using cross-validation 2 Ea(N) was
selected because it had smaller mean squared error. For a fixed
distance traveled (50m) the error function is given in Equation
5.10. As expected the incremental benefit of each additional robot
is a function decreasing asymptotically to zero.

Ea(N) = 126.866N−0.948 (5.10)

2The two functions were fitted for robot group sizes of 3-10,15,20 and 30
(11 group sizes in total), each time omitting one group size and then calculating
the difference between the observed error value and the function response.
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5.2.6 Example

0 20 40 60 80 100 120
0

20

40

60

80

100

Motion 

Stationary 
Robot      

Moving Robot 

(a)

0 20 40 60 80 100 120
0

20

40

60

80

100 Tracker 

Motion 

Stationary 
Robot      

Moving Robot 

(b)

0 50 100 150 200

−40

−20

0

20

40

60

80

100

120

Motion 

Motion 

Stationary 
Robot      

Moving Robot 

(c)

0 50 100 150 200

−40

−20

0

20

40

60

80

100

120

Tracker 

Motion 

Motion 

Stationary 
Robot      

Moving Robot 

(d)

Figure 5.12: (a) Prediction of the first step. (b) Update using the
robot tracker. (c) Prediction of the second step. (d) Update using
the robot tracker.

Figure 5.12 presents an illustration of the above described pro-
cess over two iterations. The first column present the prediction
phase and the second column the update phase. The moving robot
starts at position [0,0], and the stationary robot is located at
[0,100]. At figure 5.12a the moving robot moves by [100cm,100cm]
and the particles form a cloud of approximately 20cm in radius.
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Figure 5.12b presents the update phase based on the tracker sen-
sor measurement (darker color represents higher weights). At the
second step the robot moves by [100cm,-100cm] and figure 5.12c
presents the cloud of particles. It is worth noting that the particles
with higher weights (darker grey) have spread out. Finally, figure
5.12d presents the second update phase where again the particles
closer to the sensed pose have higher weights.





Chapter 6

Odometry Error Study

In this chapter we consider the measurement of odometric uncer-
tainty for a mobile robot. The primary emphasis is to experi-
mentally estimate the rate of odometry error buildup in a small
differential-drive research robot, and to model its behavior proba-
bilistically. Although the use of Kalman filters and related tech-
niques are common place for robotic systems, it is not uncommon
for mobile robotics practitioners to merely make educated guesses
not only for the rate of error accumulation for their robots, but also
for the error model itself. While there are a few notable papers that
rigorously consider error measurement for mobile robots [5, 7, 42],
the most common error model used in practice is an unrealistic
univariate two-dimensional Gaussian. Furthermore, in simulated
environments very crude odometry error models are used, if the
error is modeled at all.

Our goal was to develop a more realistic odometry error model
that would reflect (at least partially) the complexity of the robot’s
locomotion. Such a model is used to describe faithfully the prob-
ability distribution function of the robot’s pose after an arbitrary
motion. The odometry error study presented here in combination

43
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with the proposed model provides a practical framework for the
implementation of realistic odometry error in different simulation
packages. Our primary experimental data is obtained from a
differential-drive robot, although we believe the proposed proba-
bilistic model applies to other types of drive mechanism and we
have tested it informally on synchro-drive systems as well. The
odometry error is detected using a calibrated laser range finder.

Figure 6.1: Measuring the odometry error on carpet.

6.1 Odometry Study of a Differential Drive
Robot

As a baseline we consider the odometry error accrued under various
conditions by a commercial differential-drive robot, the Nomadic
Technologies Superscout II. This robot uses two wheels to provide
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differential drive and odometry feedback with a third rear-mounted
castor wheel for balance. Without loss of generality any arbitrary
motion by ∆X,∆Y can be achieved by combining a rotation that
points the robot towards the target location, followed by a trans-
lation that moves the robot to the target location. Therefore we
divided the observations into rotational errors and translational
errors.

6.1.1 Rotation

(a) (b)

Figure 6.2: The four walls providing three landmarks. (a) Before
the rotation. (b) After the rotation.

Empirical knowledge suggests that the largest factor in odome-
try error is the rotational error1. In order to measure the rotational
error we placed the robot inside a “C”-shaped enclosure consisting

1While we make this observation empirically, it follows naturally from the
kinematics of the robot and a simple model for uncertainty in wheel velocity.
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of four walls (see Figure 6.1,6.2a). The intersections of the four
walls provide three geometric landmarks detectable both in world
coordinates and “raw” laser coordinates (see Chapter 6 section 3.2
of [45]). Moreover, the orientations of the four walls in world co-
ordinates should change by the amount of the robot’s rotation.
To estimate the error, the three landmarks are detected then the
robot rotates and the three landmarks are detected again (see Fig-
ure 6.2b). The three landmarks in laser coordinates provide three
estimates for the rotation and the orientations of the four walls
provide four more estimates. The seven estimates are kept only if
they all agree up to 0.2 degree. We proceed to measure the rota-
tional error for different motion parameters (rotation angle, speed,
acceleration) and on different surfaces.
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Figure 6.3: Error in rotation relative to the odometer for different
angles and for different speeds (“o” speed 10, “x” speed 50, “+”
speed 90, lines connect the mean values).

First, we measured the error in rotation for different rotation
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Figure 6.4: Error in rotation relative to the intended pose for dif-
ferent angles and for different speeds (as in Figure 6.3)

and translation speeds and for different angles. Figures 6.3,6.4
present the error measurements relative to the odometer estimate
(Figure 6.3) and relative to the intended pose (Figure 6.4); for
every speed/angle we gather twenty samples. It is worth noting
that they are concentrated (small standard deviation) around a
non zero mean value. Moreover from Figures 6.3,6.4 it is clear that
a systematic error occurs that biases the error by the direction of
the rotation (negative rotation have positive mean error). As it was
expected the small rotations provide negligible error. Surprisingly
though, the higher speed produced less odometry error (“+” in the
figures).

The effect of different surfaces on the rotational error was stud-
ied next. Four different surfaces were tested for a rotation of −90◦

and forty samples were collected each time. The two types of car-
pets follow more closely a normal distribution than the other two
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surfaces. This is due to the fact that the surface is smooth con-
trary to the tile floor that contains bumps. The friction between
the wheels of the robot and the floor (or the carpet) was relatively
similar. On the contrary the plastic surface provided less friction
thus significantly increasing the rotational error.
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Figure 6.5: Error distribution from the odometry measurement for
different surfaces (rotation of 90◦).

From Figure 6.6 we see that the error from the intended rotation
is much larger. Even though the odometer reported a pose different
than the intended one, the control software of the robot stopped
the rotation. For applications that require precise positioning, this
extra error should be taken into account.

From the results described above we can deduce that a study
of the odometry error of the particular mobile robot used is es-
sential in order to model the systematic error that occurs during
rotations. A zero mean Gaussian representation would require an
unnecessarily large standard deviation forcing us to consider poses
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Figure 6.6: Error distribution from the intended pose for different
surfaces (rotation of 90◦).

of the robot that are in fact unlikely.

6.1.2 Translation

The same setup used for the estimation of the rotational error is
used also for the translation. The same enclosure was used (see
Figure 6.1). The robot was moved forward by a distance D over
different surfaces and with different speeds. After every translation
the robot was translated back (by -D) and the pose of the robot
was reset to the origin (Pr = [xr, yr, θr]

T = [0, 0, 0]T ). Figure
6.7 presents the error accumulated after an intended translation of
100cm. The robot was moved 165 times over different areas of our
lab (tiled floor). The first three sub-plots present a histogram of
the error along the X and Y axis and for the orientation Θ. The
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fourth sub-plot present the spatial distribution of the robot poses
for all the motions.
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Figure 6.7: Error distribution after translation of 100cm. Tile floor,
165 samples.

Speed 20 60 100

M σ M σ M σ

X -1.843 0.372 -1.850 0.363 -2.266 0.526

Y -0.863 0.317 -0.977 0.491 -1.041 0.491

Θ 0.587 0.215 0.760 0.366 0.107 0.314

Table 6.1: Mean error and Standard Deviation along the X,Y-
axis (in cm) and orientation Θ (in degrees) after the translation of
100cm for three different speeds.

Table 6.1 illustrates the effect of speed in the accumulation of
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odometry error for three different speeds (20, 60, 100) during the
translation of 100cm along the x-axis. There is a significant increase
when the higher speed was used, especially in the systematic er-
ror as it manifests in the mean error along the axis of translation.
The observations are consistent with the work presented by Moon
et al. [42] where higher acceleration gives reduced orientation er-
ror. As can be seen in Table 6.1 the high acceleration results in
small orientation error but higher error along the direction of the
translation.

The measurement of odometry error over different surfaces is
presented next. Figure 6.8 presents the results for a translation
of 120cm on a plastic surface. The same behavior as with the
rotation manifests during the translation, with the error in the
distance traveled (X-axis) much higher than the error on carpet
or tile floor. Figure 6.9 presents the results for the translation on
carpet.

The statistical properties of the odometry error collected above
enable us to create a realistic error model for the type of robot used.
Furthermore, the odometry error measurements could be utilized
in the construction of realistic simulation experiments.

6.2 Odometry Error Modeling

In the past little attention has been paid to the modeling of odom-
etry error. The computing power was not enough to permit a
precise modeling forcing early researchers to a simple Gaussian pdf
around the final position of the moving robot as the most gen-
eral error model. With the computing power currently available,
even on board autonomous robots, more elaborate techniques such
as condensation (a Monte-Carlo simulation method) and multiple
Gaussians are used in order to track the accumulation of uncer-
tainty during motion. In many cases, however, the error model
is still based on a single random variable drawn from a normal
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Figure 6.8: Error distribution after translation of 120cm. Plastic
surface, 43 samples.

distribution.
There are many sources of error that contribute to the accumu-

lation of uncertainty during motion such as wheel slippage, differ-
ence in the diameters of the wheels and anomalies of the floor 2.
Without loss of generality any arbitrary motion by ∆X,∆Y can
be achieved by combining a rotation that points the robot towards
the target location, followed by a translation that moves the robot
to the target location.

For modeling purposes the odometry error could be divided into
rotational error 3 and translational error. These errors can be mod-
eled statistically by random variables drawn from three Gaussians
with zero mean and σrot, σtrans, σdrift standard deviations. The

2For a more detailed study please refer to Borenstein [5, 19].
3For simplicity’s sake it is assumed that only the orientation of the moving

robot is affected.
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Figure 6.9: Error distribution after translation of 120cm. Carpet
surface, 43 samples.

first Gaussian models the error accumulated during pure rotations
of the robot. The other two Gaussians model the error that occurs
during a forward translation of the robot and affects the complete
pose of the moving robot. It is worth noting that an additional
source of error could be added that would represent bumps on the
floor and small collisions by adding some “salt and pepper” noise.

6.2.1 Rotation

As we saw in section 4.2.1 the noise model for rotational is straight
forward described by the general equation 6.1.

θk+1 = θk + ∆θ +N(Mrot, σrot
∆θ

360
) (6.1)
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6.2.2 Translation

Modeling the translation of the robot is more difficult because the
noise model is more complex. During a translation by a distance
R towards the orientation the robot two kinds of uncertainty ac-
cumulate: first, the distance the robot traveled is given by R plus
an error. Second, the orientation of the robot constantly changes
adding the equivalent of a Brownian type of noise to the final po-
sition. While for the real robot the drift is a continuous process
that affects the complete trajectory of the translation during simu-
lations, but more important during the modeling of uncertainty, a
discretization of the process is required. The simplest approxima-
tion 4 of the above process is to model the translation as a partial
rotation followed by a translation followed by a second rotation
(Fig. 6.10). The reason for this is that the robot would deviate
from the trajectory, hence the initial rotation by a small angle, and
also the final orientation of the robot is corrupted by some noise,
hence the second rotation.

Orientation: For a single translation modeled as one step the
orientation of the robot at the beginning would be θi and at the
end the orientation is θi+1 = θi + Eθ1 + Eθ2 , where Eθ1 and Eθ2
are the amount of the two rotations that occur before and after
the translation (see Fig. 6.10). From experimental data we could
have an estimate about the standard deviation of the orientation
as a function of the distance traveled (σdrift in degrees per me-
ter traveled). The standard deviation of the orientation after one
translation can be calculated in terms of the characteristics of the
noise Eθj , j = 1, 2, and if Eθ1 = Eθ2 = Eθj then the standard devia-
tion of the noise Eθj is calculated in the equation 6.2.

4It is the most commonly used.
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σ2
θi+1

= E{θ̂i+1θ̂
T
i+1} where

θ̂i+1 = θi+1 − E{θi+1} = θi + Eθ1 + Eθ2 − θi
= Eθ1 + Eθ2 Therefore

σ2
θi+1

= E{(Eθ1 + Eθ2)(Eθ1 + Eθ2)T }
= E{(Eθ1)2}+ E{(Eθ1)2}+

2E{(Eθ1Eθ2)} where

E{(Eθ1Eθ2)} = 0 Uncorrelated, and

E{(Eθ1)2} = E{(Eθ1)2} = σ2
j Therefore

σ2
θi+1

= 2σ2
j ⇔

σj =
σθi+1√

2
(6.2)

More realistically, the translation could be modeled as a series

Figure 6.10: One step in translation.
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of N equal steps of R/N length each, then the pose of the robot
after step i would be: xi = (xi, yi, θi)

T and the trajectory could be
modeled as: x0,x1 . . .xn. Figure 6.10 illustrates one step from xi
to xi+1. If the translation was performed in one step only then the
drift could be modeled as a small rotation before the translation
and a small rotation after the translation. Equation 6.3 expresses
the above described process, E∆ρ is the noise added in the distance
traveled and Eθ1 , Eθ2 is the noise added in the orientation of the
robot due to drift. The number of steps N used to model the un-
certainty should not change the resulting distribution of the robot
position. The statistical properties of the distribution of the robot
Pose are established experimentally.

xi+1 =

xi+1

yi+1

θi+1

 =

xi + (∆ρ+ E∆ρ) cos (θi + Eθ1)
yi + (∆ρ+ E∆ρ) sin (θi + Eθ1)

θi + Eθ1 + Eθ2

 (6.3)

Orientation: At the end of step i the orientation of the robot is
θi = θi−1 + ni where ni is the noise accumulated during that step.
We assume the noise ni to be zero mean Gaussian and as we saw
earlier the result of the addition of two Gaussians (see equation
6.2). Therefore, after the Nth step the orientation of the robot is

θN = θ0 +

N∑
i=1

ni. And the statistical properties of the distribution

are :

E{θN} = E{θ0}+

N∑
i=1

E{ni} where

N∑
i=1

E{ni} = 0 zero mean noise⇔

E{θN} = θ0 (6.4)
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σ2
N = E{θ̂N θ̂TN} where θ̂N = θN − E{θN} = θN − θ1 ⇔

σ2
N = E{(θN − θ1)(θN − θ1)T } = E{(

N∑
i=1

ni)(

N∑
i=1

ni)
T }

= E{(n1 + . . .+ nN )(n1 + . . .+ nN)T }

=

N∑
i=1

E{n2
i }+ E{n1(n2 + . . . nN )T }

+E{n2(n1 + n3 . . .+ nN )T }+ . . .

=

N∑
i=1

E{n2
i }

because E{ni(
j<>i∑
j=1:N

(nj))
T } = 0 Uncorrelated ⇔

σ2
N = Nσ2

i ⇔ σN =
√
Nσi ⇔ σdriftρ =

√
Nσstep

ρ

N
⇔

σstep = σdrift ∗
√
N (6.5)

In conclusion, for a given set of uncertainty parameters, de-
fined as < σtrans, σdrift >, the noise (E∆ρ, Eθ1 , Eθ2) that should be
added during the modeling of odometry error is given in equation
6.6, where N(0, 1) is a random number drawn from a Gaussian
distribution with zero mean and sigma equal to one.

E∆ρEθ1
Eθ2

 =


N(0, 1)σtrans

√
N∆ρ

N(0, 1)
σdrift

√
N∆ρ√

2

N(0, 1)
σdrift

√
N∆ρ√

2

 (6.6)
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Figure 6.11: The standard deviations of 30000 particles as they
move along the x axis for 100cm using different number of steps
each time. The experiment is repeated 100 times.

Using the above model we run experiments for different number
of steps using multiple samples. It is worth noting that a change in
the number of steps affects only the distribution of the points along
the direction normal to the direction of the translation and only
for small number of steps. As the number of steps increases the
standard deviation of the samples along the direction perpendicular
to the direction of the translation converges. Figure 6.11 presents
the standard deviation of 10000 particles along the X-axis, Y-axis
and the orientation after they moved along the X-axis for 300cm,
for different number of steps. The standard deviations along the
axis of motion and for the orientation is constant for all practical
purposes.



Chapter 7

Resampling Methods

In this Chapter three methods of resampling are described together
with some variations that help improve the performance. In every
case the input is an array 1 of the weights of the particles (nor-
malized to sum up to one) and the output is an array of indices
that indicate which particles are going to propagate forward. The
premise of all algorithm is that particles with high weights are go-
ing to be duplicated while the particles with small (or zero) weights
are going to be eliminated.

7.1 Select with Replacement

The simplest method of resampling is to select each particle with
a probability equal to its weight. In order to do that efficiently,
first the cumulative sum of the particle weights are calculated, and
then N sorted random numbers (sorting is O(n log(n)) uniformly
distributed in [0, 1] are selected. Finally, the number of the sorted
random numbers that appear in each interval of the cumulative sum
represents the number of copies of this particular particle which

1The arrays start at 1 in MATLAB, 0 in C/C++.
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are going to be propagated forward to the next stage. Intuitively,
if a particle has a small weight, the equivalent cumulative sum
interval is small and therefore, there is only a small chance that
any of the random numbers would appear in it; in contrast, if
the weight is large then many random numbers are going to be
found in it and thus, many duplicates of that particle are going to
survive. Algorithm 3 presents a formal description of the “select
with replacement” algorithm.

Input: double W[N]

Require:
∑N
i=1Wi = 1

Q = cumsum(W); { calculate the running totals Qj =∑j
l=0Wl}

t = rand(N+1); {t is an array of N+1 random numbers.}
T = sort(t); {Sort them (O(n log n) time)}
T(N+1) = 1; i=1; j=1; {Arrays start at 1}
while (i ≤ N) do

if T [i] < Q[j] then
Index[i]=j;
i=i+1;

else
j=j+1;

end if
end while
Return(Index)

Algorithm 3: Select with Replacement Resampling Algorithm;
functions are noted as underlined text, Comments are inside curly
brackets “{}”.

7.2 Linear time Resampling

Carpenter et al. [10] proposed a linear time algorithm for resam-
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Input: double W[N]

Require:
∑N
i=1Wi = 1

Q = cumsum(W); {calculate the running totals Qj =∑j
l=0Wl}

t = -log(rand(N+1));
T = cumsum(t); {calculate the running totals Tj =∑j
l=0 tl}

TN = T/T(N+1);{normalize T to TN;}
i=1; j=1; {Arrays start at 1}
while (i ≤ N) do

if T [i] < Q[j] then
Index[i]=j;
i=i+1;

else
j=j+1;

end if
end while
Return(Index)

Algorithm 4: Linear Time Resampling Algorithm; functions are
noted as underlined text, Comments are inside curly brackets “{}”.

pling from a set of particles. It is based on a manipulation of the
random number sequence in order to achieve a new sorted random
number sequence in linear time. Using the cumulative sum of the
negative logarithm of N random numbers uniformly distributed in
[0, 1], a new sequence of N sorted random number uniformly dis-
tributed in [0, 1] is created. The final step is the same as in the
previous algorithm where the particles are selected with a proba-
bility proportional to their weights. Algorithm 4 presents a formal
description of the “select with replacement” algorithm.



62 CHAPTER 7. RESAMPLING METHODS

7.3 Resampling by Liu et al.

Instead of using directly the weights (wj) of the particles in order
to decide which ones are going to be propagated forward, another
number aj can be used, usually a function of the particles weights
(aj = f(wj)). A generic choice is the the square root (f(wj) =√
wj). Then the new weights (aj) are normalized so they sum up

to the number of particles N (
∑N
i=1 ai = N). Then each particle

is examined separately, and, if its weight (aj) is greater or equal to
one, k copies of it are propagated forward (k = bajc); otherwise,
the particle “survives” with probability equal to aj . One drawback
of this approach is that the number of particles after resampling
is not N anymore as the choice of how many particles survive is
stochastic 2.

7.4 Variations on Resampling

Two main variations at the resampling stage have been proposed:
corrective resampling and keeping a small percentage of particles
from the old distribution.

7.4.1 Corrective Resampling

Jensfelt et al. [27] suggested a modification to the traditional SIR
filter that “boosts” the contribution of the sensing versus the con-
tribution of the predictive model. The particle population is “in-
jected” during the update phase with a small number of particles
created directly from the sensor data independently of where the
rest of the particles are located.

2Stochastic is a process that is random but it follows certain distributions.
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7.4.2 Maintaining the variance of the distribution

Contrasting to the previous approach is the method of maintain-
ing a small percentage of the particle population independently of
their weights. More precisely during the resampling stage a small
number of particles selected uniformly from the particle population
are being propagated forward given a small weight. The intuition
behind this approach is to maintain the coverage of the predictive
model in the particle population without affecting the accuracy of
the localization.



64 CHAPTER 7. RESAMPLING METHODS

Input: double W[N]
for (j = 1 to N) do {Update the weights}
a[j] =

√
W [j]

end for
sum = 0;
for (j = 1 to N) do {calculate

∑N
i=1 ai}

sum = sum+ a[i];
end for
for (j = 1 to N) do {Normalize the weights (a) to sum up

to N}
a[j] = N ∗ a[j]

sum
end for
i=1;
for (j = 1 to N) do {For each particle}

if (a[j] ≥ 1) then {Accept the ones with bigger

weights}
for (l = 1 to ba[j]c ) do {Add bajc copies of the jth

Particle}
Index[i]=j;
i = i+ 1;

end for
else
R =rand(1);
if a[j] ≥ R then {Accept the particle with

probability aj}
Index[i]=j;
i = i+ 1;

end if
end if

end for
Return(Index)

Algorithm 5: Resampling Algorithm; functions are noted as un-
derlined text, Comments are inside curly brackets “{}”.
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Piece Wise Linear Motion Sample Code

Init

function pos=init(x,y,theta,N)

% Usage: ;

% pos=init(x,y,theta,N);

% Initializes a set of "N" pose particles;

% pos: (an N by 4 matrix) at the pose <x,y,theta>.

pos=zeros(N,4);

pos(1:N,1)=x;

pos(1:N,2)=y;

pos(1:N,3)=theta;

pos(1:N,4)=1/N;

RelRotate

function Pose=RelRotate(theta,Pose)

% Rotates an array of particles by theta,

% Adds error of N(rotMean,rotSigma*Dtheta/360) where :

% -rotSigma (global variable) is the std of

% rotation in deg per 360.

% -rotMean (global variable) is the mean in

% degrees (usually zero)

% -Dtheta is the individual rotation needed for

% each particle for a rotation by relative theta

% degrees.

N=size(Pose,1);

global rotSigma;

Err=randn(N,1).*theta*rotSigma/360;

Pose(1:N,3)=Pose(1:N,3)+theta+Err;
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Translate

function NewPose=Translate(r,Pose)

% Translate a set of particles (Pose) forward by r;

N=size(Pose,1); piconst=pi/180.0;

global trsSigma;

global drfSigma;

global trsMean;

global drfMean;

global Nstps; % Number of steps

if(Nstps<1) Nstps=1; end;

stepTrans=r/Nstps;

ltrsSigma = trsSigma*sqrt(Nstps)*stepTrans/100; % per cent

% Local drift sigma (in degrees per meter);

ltrsRotSigma= drfSigma*sqrt(Nstps)*stepTrans/(100*sqrt(2));

for(k=1:1:Nstps)

Err1=randn(N,1)*ltrsSigma+trsMean*stepTrans/100;

Err2=randn(N,1)*ltrsRotSigma;

Pose(1:N,3)=Pose(1:N,3)+Err2;

Angle=Pose(1:N,3)*piconst;

Pose(1:N,1)=Pose(1:N,1)+(stepTrans +Err1).*cos(Angle);

Pose(1:N,2)=Pose(1:N,2)+(stepTrans +Err1).*sin(Angle);

Err2=randn(N,1)*ltrsRotSigma+drfMean*stepTrans/100;

Pose(1:N,3)=Pose(1:N,3)+Err2;

end;

NewPose=Pose;



76 BIBLIOGRAPHY

Velocity Control Propagation code

move

function P=move(v,w,Pos)

% Move a set of particles (Pos) by linear velocity v

% and angular velocity w for 1 sec.

N=size(Pos,1);

P=zeros(N,4);

dt=1;

sigma_v=0.03;

sigma_w=0.002;

e_v=randn(N,1)*sigma_v;

e_w=randn(N,1)*sigma_w;

P(:,1)=Pos(:,1)+(v+e_v).*dt.*cos(Pos(:,3));

P(:,2)=Pos(:,2)+(v+e_v).*dt.*sin(Pos(:,3));

P(:,3)=Pos(:,3)+(w+e_w).*dt;

P(:,4)=Pos(:,4);

Init

Init

Faulty Commands example

function testFaultyCommands(N)

%Piecewise linear motion (Translation and Rotation)

%Command success 70%; Start at [-8,0,0];

% Translate by 4m; Rotate by 30 degrees; Translate by 6m

P=init(-8,0,0,N);
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close all; f=figure; % plot coordinate system

plot([-10 4],[0,0],’k’); hold on; plot([0 0],[-4, 10],’k’);

% plot Original Pose

plot(P(:,1),P(:,2),’r.’); title(’Original Pose’);

saveas(f,’faultyComm1.pdf’);

%Select ~70% to receive/use a command: Translate by 4 m.

idx=rand(N,1);

stay=P(find(idx>0.7),:); move=P(find(idx<=0.7),:);

move=Translate(4,move); P=[move;stay];

plot(P(:,1),P(:,2),’r.’); title(’Translate by 4 m’);

saveas(f,’faultyComm2.pdf’);

%Select ~70% to receive/use a command: Rotate by 30 degrees.

idx=rand(N,1);

stay=P(find(idx>0.7),:); move=P(find(idx<=0.7),:);

move=RelRotate(30,move); P=[move;stay];

plot(P(:,1),P(:,2),’r.’); title(’Rotate by 30 degrees’);

saveas(f,’faultyComm3.pdf’);

%Select ~70% to receive/use a command: Translate by 6 m.

idx=rand(N,1);

stay=P(find(idx>0.7),:); move=P(find(idx<=0.7),:);

move=Translate(6,move); P=[move;stay];

plot(P(:,1),P(:,2),’r.’); title(’Translate by 6 m’);

saveas(f,’faultyComm4.pdf’);


