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ABSTRACT

This thesis is motivated by real world problems faced in aquatic environments. It
addresses the problem of area coverage path planning with robots - the problem of
moving an end-effector of a robot over all available space while avoiding existing
obstacles. The problem is considered first in a 2D space with a single robot for
specific environmental monitoring operations, and then with multi-robot systems —
a known NP-complete problem. Next we tackle the coverage problem in 3D space -
a step towards underwater mapping of shipwrecks or monitoring of coral reefs.

The first part of this thesis leverages human expertise in river exploration and
data collection strategies to automate and optimize environmental monitoring and
surveying operations using autonomous surface vehicles (ASVs). In particular, four
deterministic algorithms for both partial and complete coverage of a river segment
are proposed, providing varying path length, coverage density, and turning patterns.
These strategies result in increases in accuracy and efficiency compared to manual
approaches taken by scientists. The proposed methods were extensively tested in
simulation using maps of real rivers of different shapes and sizes. In addition, to verify
their performance in real world operations, the ASVs were deployed successfully on
several parts of the Congaree River in South Carolina, USA, resulting in a total of
more than 35km of coverage trajectories in the field.

In large scale coverage operations, such as marine exploration or aerial monitoring,
single robot approaches are not ideal. Not only the coverage might take too long, but
the robot might run out of battery charge before completing the task. In such scenar-

ios, multi-robot approaches are preferable. Furthermore, several real world vehicles
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are non-holonomic, but can be modeled using Dubins vehicle kinematics. The second
part of this thesis focuses on environmental monitoring of aquatic domains using a
team of Autonomous Surface Vehicles (ASVs) that have Dubins vehicle constraints. It
is worth noting that both multi-robot coverage and Dubins vehicle coverage are NP-
complete problems. As such, we present two heuristic methods based on a variant of
the traveling salesman problem—k-TSP—formulation and clustering algorithms that
efficiently solve the problem. The proposed methods are tested both in simulations
and with a team of ASVs operating on a 40 000m? lake area to assess their ability to
scale to the real world.

Finally, in the third part, a step towards solving the coverage path planning prob-
lem in a 3D environment for surveying underwater structures, employing vision-only
navigation strategies, is presented. Given the challenging conditions of the underwa-
ter domain, it is very complicated to obtain accurate state estimates reliably. Conse-
quently, it is a great challenge to extend known path planning or coverage techniques
developed for aerial or ground robot controls. In this work we are investigating a
navigation strategy utilizing only vision to assist in covering a complex underwater
structure. We propose to use a navigation strategy akin to what a human diver will
execute when circumnavigating around a region of interest, in particular when col-
lecting data from a shipwreck. The focus of this work is a step towards enabling the
autonomous operation of lightweight agile robots near underwater wrecks in order
to collect data for creating photo-realistic maps and volumetric 3D models while at
the same time avoiding collisions. The proposed method uses convolutional neural
networks (CNNs) to learn the control commands based on the visual input. We have
demonstrated the feasibility of using a system based only on vision to learn specific
strategies of navigation, with 80% accuracy on the prediction of control command
changes. Experimental results and a detailed overview of the proposed method are

discussed.
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CHAPTER 1

INTRODUCTION

Automation and robotic systems are becoming a crucial part of our day-to-day activ-
ities. We use them in manufacturing, hospitals, stores, at home for cleaning floors or
windows, and deploy them in remote areas of the Earth and outer space. Despite the
anecdotal belief that robots might eliminate human labor and jobs, automation and
intelligent robotic systems help us to reach areas that are dangerous or unreachable
for humans. We are able to explore the ocean, the surface of the Moon and Earth
more efficiently than ever before. Nevertheless, we are far from having low mainte-
nance and systems with high intelligence, and still rely on human operators in many
dangerous or mundane tasks. For the last fifty years a large body of research has
been done in robotics, automation, and artificial intelligence to address those gaps

and advance the field.

1.1 MOTIVATION

The area coverage path planning is the problem of finding a path such that, if fol-
lowed by the robot, the robot’s end-effector or sensor will be moved over the region
of interest while avoiding existing obstacles. The area coverage problem is common
in a wide range of domains and in various applications: cleaning the floor in indoor
environments [17, 62, 93], window cleaning robots [12, 76, 128], in underwater en-
vironments for archaeological and environmental applications [27, 91, 115], in aerial
surveillance or reconstruction of 3D objects [104, 108, 138], with surface vehicles for

environmental monitoring and inspection operations [53, 54, 92].



Ocean covers 71% of Earth’s surface, about which we know less than we do about
the moon. Only 10% of this area has been explored. Until now, the scientific com-
munity has relied heavily on manual surveying operations to conduct their studies
(see Figure 1.1). Deploying autonomous systems during those expeditions on the
surface and underwater for exploring and moving the frontier of the unknown is ex-
tremely important from environmental, biological, and historical perspectives. In this
domain, the problem is how to effectively navigate and collect data with a robot that

moves on the surface of the rivers, lakes or underwater in the ocean or sea.

(b)

Figure 1.1: (a) Scientists manually collecting bathymetric data over Congaree River,
Columbia, SC. (b) A diver manually photographing a shipwreck for photogrammetric

mapping.

To address the environmental monitoring problem, autonomous surface vehicles
(ASVs) have been deployed on rivers and lakes, while different designs have been
proposed for specific applications [8, 61, 78]. These ASVs are fuel powered, with
basic autonomy; they can be deployed with a range of sensors, and can perform long
term operations with up to nine hours of operational time.

In the underwater environment, different types of platforms are being used for ex-
ploration and monitoring operations [4]. Among many challenges in this environment,
the operational time and computational power are key aspects. As such, remotely
operated vehicles could be operated by humans through a tether [88, 110, 123], thus

providing long operational time. Tether-less systems tend to be more expensive and



have limited battery life, but can be deployed in remote areas [22, 105]. Gliders are
a type of autonomous systems designed to operate over large distances for a very
long period of time (for example, crossing the Atlantic in over 200 days) [9, 36, 133].
Nevertheless, the motion of the glider is limited to the linear direction and thus does
not provide the flexibility and agility demonstrated by six degrees of freedom robotic
systems.

In this work we address the area coverage problem for aquatic domains for both
surface and underwater environments. We use single and multiple ASVs for perform-
ing surface coverage of rivers and lakes. With the above discussed considerations
regarding different autonomous platforms, for 3D dimensional coverage our target
platform is Aqua2 robot, which has six degrees of freedom and can navigate around

complex structures.

1.2 OBJECTIVE OF THE THESIS

The objective can be stated as follows:

To solve the coverage path planning problem in aquatic environments, generat-
ing different coverage strategies for different aquatic domains to be deployed on au-
tonomous surface or underwater vehicles, that will efficiently perform uniform sam-
pling of the environment, taking into account obstacles, implicit geological properties
of the environment and also perform effective data collection suitable to the deployed

SENSOTS.

1.3 CONTRIBUTIONS OF THE WORK

The following work presents different algorithms for solving area coverage problems
in aquatic environments. Nevertheless, they can be generalized for ground and aerial

environments as well. The contributions of this thesis can be summarized as follows:



e Riverine Coverage: four different coverage path planning patterns are designed,
aiming to optimize coverage efficiency for survey operations performed on the

surface of rivers [54, 58, 59].

e Multi-robot Area Coverage: two approximation algorithms are introduced for
solving the area coverage problem with non-holonomic vehicles, in particular

surface vehicles with Dubins constraints [53, 57, 78].

e Coverage in 3D: a coverage strategy that performs visual navigation in 3D is
presented. The main contribution of this approach is the ability to perform
a set of predefined navigation steps without requiring knowledge about the

environment and without relying on an accurate state estimation [55, 56, 101].

1.4 OVERVIEW

The rest of this dissertation is organized in the following way. In the Chapter 2 we
review the literature on area coverage path planning problems in different domains.
We present first state-of-the-art approaches for the area coverage problem in two
dimensional spaces with a single robot. Then we present the solutions to the same
problem with multi-robot systems. Next we review the navigation problem in three
dimensional space and conclude with an overview of works for solving environmental
sampling and monitoring problems.

Chapter 3 discusses the problem of area coverage in a riverine environment. It
presents strategies for automating methods used by the scientists for collecting data
over rivers. In addition, more efficient approaches are proposed for improving ef-
ficiency of automated versions of the manual surveying operations. The proposed
methods are suitable for different survey operations with different sensor suites. Par-
allel to the shore patterns are used for complete coverage with side scan sonar to

minimize the number of turns for optimal data collection. Another complete cov-



erage algorithm that performs boustrophedon motion across the river can be used
with single ping sonar. To sample the river without complete coverage, a zig and zag
approach is proposed. All patterns are extensively tested in a segment of Congaree
River resulting in more than 35km of covered trajectories.

Chapter 4 presents two approximation algorithms for solving multi-robot area
coverage problems with Dubin vehicles. The first approach is finding an optimal path
and then clustering it between multiple robots. The second approach is first splitting
the area and then solving the generalized multiple-salesman travelling problem to
find an optimal path for each robot. These methods ensure complete utilization of
all robots. Experiments were performed with autonomous surface vehicles covering
an area of up to 40 000m? over Lake Murray in SC, USA.

In Chapter 5, we propose our approach for three dimensional area coverage using
only a camera for performing navigation in an unknown environment. We use human
expertise for learning to navigate in a complex environment and collect data for 3D
reconstruction. We train a network to learn predefined navigation strategies using real
world data collected over shipwrecks and from the Gazebo simulation environment.
The neural network achieved approximately 80% accuracy for predicting the direction
in which the robot has to move. We also present navigation results acquired from
simulation performed in the Gazebo environment.

The last Chapter 6 gives an overview of the presented work and summarizes the
contributions of this thesis. It discusses possible research areas that can be explored
to extend the presented work with a report of some preliminary results.

Finally, the Appendix describes related work performed by the author that is rel-
evant to this dissertation. Namely, in Appendix A, the main experimental platforms
are described with details only relevant to this dissertation. And Appendix B gives
an overview of a framework for controlling ASVs affected by water current and wind

speeds.



CHAPTER 2

RELATED WORK

2.1 2D COVERAGE

There are numerous ways to formulate area coverage, including static or dynamic
coverage, complete or partial, offline or online [14, 34]. In addition, there are many
different approaches to tackle such a problem, such as defining it as a graph partition-
ing problem, performing region-based decomposition, or defining it as a submodular
optimization problem [34, 114].

When prior information about the environment is available in the form of a map,
the coverage is called offline [14]. One of the approaches widely used in offline cov-
erage algorithms is based on area decomposition. Choset [15] proposed a cellular
decomposition technique, called boustrophedon decomposition (BCD). In his work,
the area of interest is decomposed into obstacle-free cells. A lawnmower pattern or
boustrophedon motion is typically executed to cover each cell (see Figure 2.1). Sev-
eral works use this type of motion as the method of choice in solving the coverage
problems as a main strategy [7] or as a prior strategy to improve coverage quality [60].
Other approaches were also used for decomposing areas, such as Morse decomposition
[1] or grid-based decomposition [31, 62].

Polynomial time algorithms were proposed for solving single robot coverage using
a boustrophedon decomposition based approach [75, 137]. In contrast to the original
algorithm, in these approaches, the problem is represented as the Chinese postman

problem (CPP), which ensures efficient coverage order of cells. The latter is a graph



Cell 4

Cell|2

Figure 2.1: Boustrophedon cellular decomposition example with a lawn-
mower pattern covering each cell.

routing problem, of finding a minimum-cost closed tour that visits each edge at least
once. The solution to CPP had polynomial time complexity and was proposed by
Edmonds and Johnson [24]. Sadat et al. [108, 109] address selective coverage using
a tree, based on a Hilbert space-filling curve.

When considering the coverage problem for robots with turning constraints, the
presented methods that use boustrophedon coverage pattern may not be the most
efficient — that is, they will either spend an excess time on covering areas out of the
region of interest or fail to perform complete coverage on turns because of the rotation
constraints. The Dubins vehicle is a common robot model in coverage problems, and
Savla, Bullo, and Frazzoli [112] consider a control-theoretic solution.

Reducing traversal time by considering motion constraints is not a new idea in
coverage. Both Huang [46] and Yao [139] minimize the path length by using motion
constraints in their environmental decomposition. Both of them seek to reduce the
amount of rotation required by the robot.

In contrast, Lewis et al. [67] proposed to optimize the solution by carefully select-

ing how the robot transitions from covering to not-covering. They use boustrophedon



decomposition to split it into cells, and then each cell is decomposed further into
passes, and based on those passes a routing problem is defined (see Figure 2.2). As
such, the traveling salesman problem (TSP) with Dubins curve constraints — called
Dubins traveling salesman problem — is utilized in their work. In [85, 113], the Du-
bins TSP is defined as a metric TSP with an additional constraint, such as the paths
between nodes must adhere to a minimum turn radius necessary for the covering the

vehicle’s transition between nodes.

(a) (b) (c)

Figure 2.2: (a) Boustrophedon Decomposition; (b) Splitting each cell into passes with
a width of a sensor footprint; (¢) Creating a graph by connecting each pass.

2.2 MULTI-ROBOT COVERAGE

Some of the presented methods based on cellular decomposition were also designed
for multi-robot systems [103], assuming restricted communication. Avellar et al. [6]
present a multi-robot coverage approach that operates in two phases: decomposing
the area into line-sweeping rows, based on which a complete graph is constructed to
be used in the second phase, where the vehicle routing problem [125] is solved. Field
trials with Unmanned Aerial Vehicles (UAV) showed that their proposed approach
provides minimum-time coverage. However, that algorithm is only applicable for

obstacle free environments.



Grid-based methods for single robot coverage were also adapted for multi-robot
systems as well [3, 28, 39, 104]. The robustness and efficiency of the systems proposed
by these works depend on the resolution of the input representation. Because the
size of each cell is typically based on the size of the sensor footprint, the coverage
becomes more challenging in environments with many obstacles, since the footprint
size increases.

A large body of work in multi-robot systems assumes that there is some form of
communication between the robots [136]. Some of them came up with alternative im-
plicit communication means, such as trail of other robots [48, 49, 132]. Nevertheless,
this type of communication is impractical in aquatic or aerial environments.

Graph routing problems such as TSP and CPP have also been defined for multiple
routes: finding k routes that visit non overlapping vertices of the graph, such that the
union of those clusters are the exact set of vertices in the TSP case. This problem is
called k-TSP problem or m-TSP. When edges are considered instead of vertices, the
problem is called k-CPP. Both these problems and their variations were shown to be
NP-complete [30].

In our previous work [52], we presented a communication-less multi-robot coverage
algorithm based on efficient single robot coverage. In that work, we proposed two
approximation methods that utilize boustrophedon decomposition and the Chinese
postman problem. Nevertheless only one of the proposed methods have been executed
and compared with an original k-CPP solver. Moreover, the utilization of robots is
dependent on the number of obstacles in the area. Since clustering is based on
boustrophedon cells, a small number of obstacles will result in a small number of
cells, and consequently less clusters per region. Note however, that the solution
generated did not take into account any kinematic constraints of the robots.

Turn minimization is especially important when considering multiple robots. Van-

dermeulen et al. [128] tackle this problem by partitioning the area into long thin



rectangles as wide as the robot’s sensor. Then those areas are used by a m-TSP
problem solver to minimize the coverage time. The m-TSP algorithms can be also
used to perform task allocation [127]. Ozdemir et al. [89] consider a problem for an
unknown environment with swarms of simple robots. It does not require run-time
computation or memory for storage, and only relies on one bit information about the
presence of another robot in the line of sight. Nevertheless this approach may not

guarantee complete coverage.

2.3 3D COVERAGE

So far we have discussed the area coverage problem when the area of interest is as-
sumed to be constrained by a 2D environment. However, some applications require
acquiring information about 3D structures, thus anticipating a coverage path plan-
ning approach that works in higher dimensions. The field of applications of these
problems is as wide as for 2D coverage, with the use of aerial, underwater robots or
manipulators.

The 3D coverage problem is quite challenging because there are exponentially
many solutions to choose from. Some approaches have been proposed and shown
to have feasible solutions both with single and multiple robots using octomaps [19,
20]. In addition, some coverage solutions in three dimensions have been presented for
ensuring the even distribution of spray paint in the automotive industry [5]. Another
work has addressed the coverage of an unknown environment using a frontier-based
approach [18].

Peng et al. [13] addressed the problem by representing an area through well de-
fined 2.5D features thus reducing the complexity of structure-dependency of the 3D
coverage. In that work, the coverage problem is specifically designed for an aerial
vehicle with a conical field of view that can rotate around a fixed point with three

degrees of freedom, thus limiting its application to other domains.
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Similar to Palomeras et al. [90], Bircher et al. [10] combine the problem of covering
an unknown environment with a given structure by sampling random next-best views
around the target structure. It is an extension of their previous work [11] that builds
a tree of next-best views and selects the best branch using the size of unexplored area
covered as the metric. Like most next-best view based approaches, these works are
also subject to the sensor data quality, system localization and vehicle dynamics.

The coverage problem has also been studied for underwater environments, which
has valuable environmental and archaeological importance. A number of works pre-
sented seabed and underwater coverage path planning methods with Autonomous
Surface Vehicles and Autonomous Underwater Vehicles [32, 44]. Behavior-based con-
trol of an underwater vehicle for coral-reef inspection was proposed by [106]. The
behavior selection is implemented using both fuzzy logic and utility fusion. The be-
haviors ensure collision avoidance, proper distance from the reef and rope following
or target following actions. However, no similar approach has been developed for
surveying more complicated environments.

To ensure complete coverage without overlaps, Galceran et al. [35] suggest seg-
menting the environment based on similar depths. Each of these segments then is
considered as an individual planning problem. The proposed algorithm extends cel-
lular decomposition [15], performing 2.5D coverage by traveling at a constant depth
from the surface. This work has been extended to also take into account the state es-
timation uncertainty and perform replanning as needed [33]. The above works rely on
knowing the approximate depth to split the area, and it only views the environment
from above.

When the environment is unknown, Vidal et al. [130] propose a next-best view ap-
proach, but it is constrained by the certainty of the state estimation. To overcome the
complexity of 3D exploration, a simplified formulation of the problem is considered,

such as 2D mapping of an underwater structure [131]. In these works, the authors
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use a view planner and frontier-based strategies. The environment is represented as a
quadtree occupancy map which is also used to generate viewpoints for exploration. It
is worth noting that quadtree representations become more computationally expen-
sive when representing large-scale complex structures. These methods also require
accurate localization.

3D coverage has also been shown to have a wide range of applications for mapping
historical artefacts and structures in underwater environments [38]. Most of the
presented works either assume reliable localization or some type of prior information
about the environment. Nevertheless, when operating in an underwater unknown
environment, reliable state estimation is very challenging. In contrast, a wide range
of vision based navigation methods have been used in literature for aerial robots and
ground vehicles, either for goal oriented path planning or coverage. For example,
Smolyanskiy et al. [121] collect real and simulation data to train a drone to navigate
over a trail. When operating in 2D Lewis et al. [68] show that it is even possible to
guarantee coverage with simple blind robots — with no state estimation.

Motivated by similar works, Manderson et al. [72] have built a 3D navigation deep
learning framework for underwater systems by proposing a vision based navigation in
an unknown environment for coral reef exploration. This work became the motivation
of our proposed solution as well, for 3D coverage of shipwrecks. More recent work by
the same group [71] incorporates path planning in conjunction with obstacle avoidance
and a bias towards areas with corals. Their approach is trained for navigating over
the coral reef, rather than for navigating around an underwater structure.

More generally, in computer vision literature, methods grouped under the terms
shape-from-motion and next-best-view have been utilized for the visual mapping of an
object or a structure. By definition, shape-from-motion techniques always estimate
the location of the camera together with the shape of the mapped structure, thus

requiring accurate state estimation of the mapping system — a difficult task as shown
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in [51]. Furthermore, all next-best-view techniques require the knowledge of where

the camera is and an ability to navigate to the next viewpoint.

2.4 AQUATIC EXPLORATION AND COVERAGE

Substantial work has been done on the design and operation of autonomous surface
vehicles (ASVs) in rivers. One team of researchers has shown that it is both possible
and desirable to design and operate autonomous surface vehicles for the purpose of
performing bathymetric surveys [29]. Significant progress has also been made on the
problem of navigating a river with an ASV [122]. Additionally, another team has
determined a technique for exploring and mapping a river using an unmanned aerial
vehicle [47]. Though, to the best of our knowledge, there is no existing research on
automated vehicles zig-zagging their way through rivers, the basic principle has been
applied using an underwater autonomous vehicle [142]. The vehicle used repeated 135
degree turns to map an upwelling front underwater, covering 200 square kilometers
over the course of five days without human intervention. Estimating the meanders of
a river has also been studied by Qin and Shell [98], and the proposed estimator can
be used for online path selection.

Of particular relevance to environmental monitoring are two works dealing with
the coverage of rivers using drifters: vehicles that do not have sufficient power to travel
against the current [66, 65] and another work dealing with coverage path planning
for a group of energy-constrained robots [119]. One notable work breaks from the
tendency to emphasize complete coverage, instead attempting to conserve time and
fuel by focusing coverage on regions of interest [73]. This allowed them to create
a map of a coral reef area with half the distance travelled and power used than a
lawnmower-style complete coverage algorithm would have required. Another paper,
in which lawnmover-style coverage is applied to a Dubins vehicle, reformulates the

problem as a variant of the T'SP in order to obtain an optimal solution [67].
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Although the above selective coverage work phrases the problem in terms of cov-
erage, it bears kinship with the literature for informative motion planning, that is,
the problem of planning a path using limited resources in order to maximize the
amount of information gained. Unfortunately, informative motion planning prob-
lems are usually NP-hard optimization problems. The formulation of these problems
requires the definition of an information metric that can be associated with the loca-
tions or path. Since the information metric cannot be known a priori for a real-world
scenario, approximations are done using methods such as Gaussian Processes. This
means that informative motion planning can be applied to practical problems, such
as mapping wireless signal strength on a lake [45], understanding salinity at a river
confluence [117], or investigating algal blooms [118] and sampling areas with high
chlorophyll [74]. Despite the success of these projects, qualitative considerations in-
volved in the formulation of the riverine coverage problem mean that reformulating it
as an informative motion planning problem would not necessarily produce data with
the desired qualities, and it would be difficult to devise an information metric that
obtains the desired result.

Some work has been done to find a connection between river meanders and the
speed of river current [82, 98] or to model the external forces [80]. The first to
understand how flow affects the length of meanders and its down-flow migration was
Einstein [25]. In another work, Qin and Shell [98] use the well studied model of the
geometry of meanders to estimate the shape of the unseen portion of the river. Using
this information as an input, a boat can adjust the speed and perform more optimal
and smooth paths when performing online navigation. To the best of our knowledge,

this has been first addressed by our work [59].
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2.5  VISION-BASED NAVIGATION

When dealing with the real world to solve hard-to-engineer behaviors, machine learn-
ing approaches have been proven to be beneficial, particularly reinforcement learning
(RL). In reinforcement learning, an agent learns the best approach to achieve the
goal by interacting with the environment and receiving feedback on specific actions
(63, 124].

Reinforcement learning algorithms guarantee complete exploration when any state
is assumed to be reachable (ergodicity assumption). Moldovan and Abeel [77] for-
mulated the problem of exploration through Markov Decision Processes when there
is no such assumption. But in real world applications, this assumption is almost
never true, e.g, safe coverage of marine environments ensuring that agents are not
visiting shallow areas, navigation through steep areas and many others. In the above-
mentioned work, the intended field application was Martian terrain exploration. The
results showed that with safe exploration the robot is able to explore better in terms
of safety and information gain when compared with the classical methods.

In the work by Zhu et al. [143], a deep reinforcement learning approach is used
for solving a problem of navigation in space with an aim to find a given goal. The
only data used to achieve this is images captured by the robot’s cameras. More
formally, given an RGB target image, the problem is to find an optimal sequence
of actions to navigate towards it: the output is an action (go forward, turn left) in
3d. In this work, the authors try to address the main issues in deep RL, such as
the inability to generalize to new target goals and the amount of data required for
error to converge. To ensure a better generalization, a policy is defined as a function
of the goal and the current state. As for generating more data, they proposed The
House of interaction (AI2-THOR) framework, which allows the system to collect a
huge number of training examples from agents’ interaction with objects and their

navigation in the environment.
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Map-less target-driven navigation was studied by Pfeiffer et al. [94]. An end-
to-end approach is used, when current sensor readings are translated to the action
commands for the robot. To solve this problem, imitation learning (IL) is used for
initially training the navigation policy and then RL is applied. The aim in their
work is to combine the best practices of both approaches by covering disadvantages
of each other. Namely IL is more simple and easy to train, but at the same time it
tends to overfit to the training environment, whereas RL is able to generalize and
encode information about desired actions (avoid obstacles, reach target). This hybrid
approach should potentially speed up the training speed of RL and produce a more

robust policy than with simple IL or RL.
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CHAPTER 3

RIVERINE COVERAGE

3.1 INTRODUCTION

Bathymetric surveys, that is, surveys of the depth of a body of water, are an impor-
tant tool for understanding hydro-geologic processes. Since the sensor footprint of a
bathymetric sensor is significantly smaller than the width of many rivers, a complete
bathymetric survey of a river requires multiple boats or passes. The usual method for
performing coverage of a known two-dimensional area, boustrophedon coverage [16,
1, 2], performs poorly in tight and uneven spaces such as rivers. Fortunately, river
surveyors have developed and practiced a variety of coverage techniques that are
suitable for rivers. The different surveying/coverage strategies were developed based
on the property needing measurement and the available resources. For example, in
a fast flowing river, studying sediment transfer requires sampling across the river.
Otherwise, by the time the boat returns to the same spot, the sediment will have
moved significantly.!

In this chapter, we address the question of how to conduct such surveys using

autonomous robots. Three methods, each suited to a specific scenario, are presented:

1. To produce a high precision depth map, data is required from every point on the
riverbed. To accomplish this with our first method, the survey boat performs

longitudinal passes, traveling roughly parallel to the river shores. This approach

L As Heraclitus said “Everything changes and nothing remains still ... and ... you cannot step
twice into the same river.” [42].
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is particularly apt when the survey is being conducted using sensors, such as
side-scan sonar, that are sensitive to turning motions. The method we propose,
called L-cover, adapts the number of passes based on the width of each segment

of the river.

. When complete area coverage is deemed unnecessary or overly expensive, a
single pass along the river is utilized. In this method, which we call Z-cover,
surveyors travel down the river in a zigzag pattern, turning away from the shore
each time they reach it. This allows bathymetric data reflecting the full width

of the river to be collected in a single pass.

. The third method is an alternative complete coverage approach which works
by guiding the boat across the river, performing a lawn-mowing pattern in a
transverse direction, in a manner quite similar to traditional boustrophedon
coverage [2]. This strategy, which we term T-Cover, may be advantageous, for

example, for tracking sediment transfer.

In addition, we show how the longitudinal coverage can be optimized using intrin-

sic river speed information provided by the river meanders. The presented Meander

based coverage, so-called M-cover, algorithm relies on the information that on the

outer bank of the river the speed is different from the inner banks and provides a

more efficient coverage strategy.

3.2 LZT COVERAGE PATTERNS

Our objective for riverine coverage is to automate different approaches used by river

surveyors and develop more efficient planning for each of them. We deploy an ASV

with a variety of depth sensors to survey the riverbed. The ASV moves within a

known environment, described by an occupancy grid map M : R* — {0,1}, derived

from Google satellite imagery. Values of 0 indicate the portion of the river we intend
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to cover, while 1 indicates locations outside that region of interest, which we treat as
obstacles. We assume that on a given map M, starting point v, is located at the very
border of the map, and thus we can implicitly infer the general direction of coverage.
Otherwise the direction of the coverage should be explicitly defined as an input.

In this section, we describe algorithms executing three types of coverage patterns

in such contexts:

e Section 3.2.1 presents a pattern, termed L-Cover, which moves in passes parallel
to the shore. This pattern is particularly suitable for use with a side-scanning

sonar.

e Section 3.2.2 describes a pattern, termed Z-Cover, which ‘bounces’ between the
river shores. This approach is used for performing river surveying using a single

pass, which is suitable for long term deployments.

e Section 3.2.3 proposes a T-Cover pattern, where passes are made across the

river, perpendicular to the shore.

These three methods differ in the length of the paths they generate, in the density of

the coverage pattern, and in the number of turns needed to execute those patterns.

3.2.1 LONGITUDINAL COVERAGE (L-COVER)

Our first approach, L-cover, performs coverage in a boustrophedon pattern, with
passes parallel to the edges of the river. The goal of the algorithm is to split the
river into subregions that can be covered with the same number of passes. The
algorithm takes as input the map of the river M, the starting point v, and a parameter
s describing the desired spacing between the passes; see Algorithm 1. First, we
identify the coverage direction (the red line in Figure 3.2a) and compute an ordered
list, denoted Cie., of contour points of the shore (Line 2-3). Next, the algorithm

sequentially traverses the contour C,.. with a step size Aw connecting opposite edges
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with straight line segments, denoted [. Step size Aw is the distance between each pair
of segments [; and [;;1. Then, the river is split into clusters of subregions based on
the width of the river, denoted by len(), and the desired spacing s (Lines 4-11). Any
small clusters are merged with the nearest neighbor cluster that has similar width
(Lines 13-15). Finally, parallel passes are generated for each resulting cluster C1
(Line 17). The resulting path 7 is a list of all sequential passes from each cluster
(Line 19). Examples of the results of the algorithm, with different values of s, are

presented in Figure 3.1.

Algorithm 1 L-cover
Input: binary map of river M, starting point v,
spacing parameter s
Output: a 7 path
Aw < initialize()
Cee < getDirectional Contours(M )
0 < getCoverageDirection(Cec, vs)
while the end of the river is not reached do
[ < getNextSegment(Aw, Cyec, lprev, )
if len(l) — len(lyrev) < s then
Insert [ in to Clyr
else
Save cluster Cl,,,, in Cl,e.
Cleyrr < createNewCluster(()
end if
: end while
: for each Cle Cl,.. do
Merge Cl with closest neighbor within tolerance
: end for
: for each CIl € Cl,,.. do
p < generatePasses(Cl, s)
Append p to 7
- end for
: return

R i e e T e i

3.2.2 Z1G-ZAG COVERAGE (Z-COVER)

The Z-cover partial coverage approach is based on a zig-zag pattern which aims

to cover a substantial portion of the environment in a single pass along the river.
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(a)

Figure 3.1: An example of trajectories and clusters generated by L-cover approach
on a small section of Congaree river with different coverage density values (alter-
nating colors mark different clusters).

The core idea of the proposed algorithm is to build a coverage path that gathers
information along and across the river simultaneously. By ensuring that consecutive
triangles have approximately equal areas, we ensure that the ratio of the covered
areas across the river area remains approximately the same.

Algorithm 2 outlines the approach. It takes as input the map M of the river
and the starting point vs. Just as in the L-cover algorithm, the C,.. vectors of
directional contours are acquired (Line 2-3). Then, each time the algorithm searches
for a next point, it does so by drawing lines from the current location towards the
opposite shore. An acceptable next point is searched for among the intersections of
the opposite shore with d possible lines [y, s, ...[; (blue lines in Figure 3.2a) that form
Oo+1c, 1 =1,2,...,d degree angle relative to the direction downriver. If one of these
points forms a triangle with the previous two points on the path with area within
tolerance of the area of the previously selected triangle (the triangle with green edges

in Figure 3.2a), it will be selected. If no such point exists within d intersections, the
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tolerance Ae will be increased and the algorithm will do the same search again (Lines

13-15). The tolerance Ae is predefined and can be tuned if necessary.

(a)

Figure 3.2: (a) A sketch of the triangle selection procedure. (b) The result of the
Algorithm 2 applied on a section of Congaree river.

3.2.3 TRANSVERSAL COVERAGE (T-COVER)

Finally, we consider T-cover, which performs a continuous lawn-mower motion pattern
perpendicular to the shores of the river. The algorithm uses the same information
as L-cover, namely the map M, the start location v,, and the coverage spacing s.
After acquiring directional contours, it generates passes, perpendicular to the shores,
spaced by distances s from each other. This is similar to covering a single cell of the
Boustrophedon Cellular Decomposition, albeit the direction of the coverage varies
with the river’s meanders. This approach is utilized when the quantities measured

change rapidly over time and the transverse profile of the river bed is required.
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Algorithm 2 Z-cover
Input: binary map of river M, starting point v,
Output: a 7 path

1: 0y, d, a, Ae < initialize()

2: Clee < getDirectionalContours(M)

3: 0 < getCoverageDirection(Clec, vs)

4: while the end of the river is not reached do

5 for each i€ 1,..., ddo

6: Veurr <— getIntersectionPoint(l;, Cyec, )
7: p1, P2 < getPreviousTwoPoints()

8 Seurr < computeAreaOfTriangle(veyr, p1, P2)
9 if | Seurr — Sprev| < A€ then

10: append Ve to T

11: end if

12: if 1 == d and 7 is empty then

13: Ae++

14: 14 1

15: end if

16: end for

17: Veurr <— getNextPoint (Ce)
18: end while

19: return 7

3.3 MEANDER-BASED COVERAGE (M-COVER)

To optimize the complete coverage L-cover method proposed above, we use the mean-
ders of the river. In the meander-based coverage we rely on the fact that on the inner
bend, the downriver speed of the current is slower compared to any neighbouring
region closer to the outside bend of the river. As shown in Figure 3.3b, along the
passes that connect green dots the water flow is faster, whereas orange ones indicate
regions where the flow is slower.

To find the meanders, Algorithm 3 looks into the intersection of two consecutive
tangent lines to the curve of the river contour (Figure 3.3a). If the lines intersect inside
the river, an inner curve is identified (orange vertex), otherwise if the intersection is on
land then an outside bend has been found (green vertex). Using this information, the

M-cover algorithm depicted in Algorithm 3 finds an efficient complete coverage path.
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(a) (b)

Figure 3.3: A sketch for finding the meanders: (a) The procedure of checking the
intersection of a neighbor pair of tangents; (b) The order of vertices the algorithm
will visit if coverage is to be performed upwards.

It takes as input the map of the river M, a starting point v,, and the spacing width
information (sensor footprint size). First, the direction of the coverage is identified
implicitly from vs and M; then, the directional contour Cye. is generated (Line 2).
Consequently, the river is split into S,.. segments, utilizing the meander information,
based on the above explained intuition (Line 4). Each segment is split into segments
that the robot can cover in a single pass (Line 6). We decompose the area into an
even number of segments in order to return back to the initial starting point v,. Each
of the passes are assigned a direction: the first pass that is closest to the inner bank
of the river is getting reserved for upwards travel, whereas the ones closer to the
outer side are getting reserved for downwards travel (Lines 7-14). A pass is added
between each consecutive segment of meanders: from orange to the closest green on
the opposite edge of the river (Lines 16-17).

The simple M-cover approach does not take into account the change in the width
of the river, which can affect the number of the passes one can generate. To solve

that problem we propose to adapt the clustering stage in the L-cover algorithm. With
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Algorithm 3 M-cover
Input: binary map of river M, starting point vy, spacing parameter s
Output: a 7 path

1: Aw < initialize()

2: Clee < getDirectionalContours(M)

3: 0 + getCoverageDirection(Clec, vs)

4: Spee < getMeanderSegments(Aw, Cyec, 0)

5: for each S € S,.. do

6: P « splitIntoEvenPasses(S, Cyec, S)

7 k + |P‘

8: for each p;, pyj24 € P do

9: if p; is on outside bend then

10: pi < down direction, pya1i < up direction
11: else

12: Prj2+i < down direction, p; < up direction
13: append p;, prjayi to ™

14: end if

15: end for

16: Sprev — S

17: p < createPassBetween(Syre, S)

18: append p to 7
19: end for
20: return 7

this modification the algorithm will perform coverage in segments that have the same
width (see Algorithm 4). In the same way, the width based approach will take as an
input the map M, the starting point v, and the spacing information. In this case
we simply apply the clustering step of the L-cover algorithm, to split the area into
regions that have approximately the same width (Line 4), and then on each of those
segments we apply the M-cover algorithm to generate the more efficient path. The
Figure 3.1 shows an example of width-based clusters, denoted in alternating colors,

for the same segment of river with different spacing values s.

3.4 EXPERIMENTS

The performance of the proposed coverage strategies was first tested extensively on

different size and shape river maps. Then, some of the generated paths were deployed
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Algorithm 4 Width Based M-cover
Input: binary map of river M, starting point v, spacing parameter s
Output: a 7 path

i Cyee + getDirectionalContours(M)
0 < getCoverageDirection(Cec, vs)
Clyee < getSameWidthClusters(Cyee, 0, s)
for each Cl € Cl,,. do
p < M-cover(Cl, vs, s)
append p to w
end for
return 7

both in simulation using the Stage simulator [129] and in the field to perform large
scale river surveying that covered a total 35.82km distance. In the latter case, the de-
veloped algorithms were deployed on the AFRL Jetyaks [78]. The ASVs are equipped
with a PixHawk controller that performs GPS-based waypoint navigation, a Rasp-
berry Pi computer that runs the Robot Operating System (ROS) framework [100]
recording sensor data and GPS coordinates (Figure 3.4). For more details on the
AFRI Jetyaks, please see Appendix A.1. In addition to the base components for the
control and data logging, different types of acoustic range finding sensors were used

during deployments.

3.4.1 PERFORMANCE ANALYSIS

The proposed methods were tested on a set of real maps with up to 3.3km long seg-
ments of river. Because Z-cover is a partial coverage method it has been compared
against a fixed-angle approach used for manual surveying operations [142]. With the
latter, the boat always navigates to the opposite shore by making a fixed-angle turn
relative to the near shore. The qualitative results in Figure 3.5 demonstrate the mo-
tivation behind the Equal Triangle Heuristic approach for improving this operation.
When automated, the fixed degree method resulted in severe overshooting and thus
loss of coverage area. Meanwhile, the Equal Triangle approach ensures more even

coverage.
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Hummingbird

Sonar Transducer

Figure 3.4: The AFRL jetyak used during the field deployment with
different depth sensors mounted on it for surveying operations.

The primary metrics considered to evaluate performance of the coverage tasks are:

e Covered Area (%), expressed as a percentage of the total area of the region of
interest. For all algorithms, we assume that the travel path 7 has a width and

it is proportional to the spacing value s.

e Return Path (%), defined as the percentage of the distance traveled to return
back to the starting location v,, after the coverage was completed, over the total
travel distance. This metric is especially important for large scale operations,

as returning to the initial location might be time and energy consuming.
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Figure 3.5: Contrasting two Z-cover methods: 45 degree heuristic zig zag method
(left) with the equal triangles coverage (right) described in this work. Note, this
excerpt is 5% of the original map.

The coverage is efficient if it maximizes covered area while minimizing the return
path length. It is worth noting that in the classical coverage path planning problem,
the robot has to return to the starting position and there are areas (dead-ends) where
the robot enters covering and then has to traverse back resulting in double coverage.
During riverine coverage, there is only a single segment which is covered and at the
end the ASV has a single return trip to the starting point; as such, we do not use the
total distance travelled metric as it is not informative.

In summary:

1. Even though T-cover and L-cover approaches show similar performance in terms
of completeness, when accounting for the need for a return trip, the T-cover
method is clearly outperformed by the L-cover methods in terms of efficiency

of the coverage path (Table 3.2).

2. The quantitative results validate the qualitative observation regarding the dif-
ferences between the Z-cover algorithm and the fixed-angle approach discussed
above; see Table 3.1. The Equal Triangles Method produces paths with slightly

higher coverage rate.
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3. The T-cover method introduces more turns in the path compared to the L-

cover. When using a side scan sonar for bathymetric mapping, this can cause

loss of data.

Table 3.1: The Average results of the Z-cover approach compared against
the fixed-angle approach.

Fixed-angle Heuristic Z-cover
Return Path (%) 43.3 % 41.4%
Area Covered 29.39% 31.05%

Table 3.2: The Average results of the L-cover and the T-cover approaches

from simulation.

L-cover T-cover
Return Path (%) 8.9% 16.17%
Area Covered 92.65% 91.42%

3.4.2 FIELD TRIALS

The main objective of the field trials is to ensure that the ASVs are able to collect
adequate data when following the trajectories generated by the proposed algorithms.
We deployed an ASV to execute the L-cover, T-cover and the Z-cover algorithms
on a 0.25km? area of the Congaree River that had an average width of 91m. For
these experiments the ASV was equipped with three different Sonar sensors (see
Section 3.4.4). Note that in this work we are assuming that the footprint of the
bathymetric sensor (when side-scan sonars are used) is constant and can be calculated
based on the average depth of the area/river.

The boat’s trajectories in Figure 3.6 and Figure 3.7 are closely aligned to their

ideal mission plans, with small deviations caused by GPS error and environmental
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forces (wind, current). The effect of those forces have been studied in our previous
work [80] and are not the subject of this thesis. In addition, the execution of L-cover
on a different and smaller region of the Congaree river with 0.1km? area is presented
in Figure 3.6b and Figure 3.6d. The resulting time and distance traveled during each

experiment together with actual coverage distance are presented in Table 3.3.

Table 3.3: Coverage time and distance results from the field deployments.

Algorithm Z-Cover L-Cover T-Cover
Time traveled 42m lhr 45m 1hr 09m
Total Distance 5.2km 13.02km 10km
Coverage Distance 3km 11.02km 7.3km

Finally, a qualitative difference was observed when backscatter images of the
riverbed were produced for both autonomous and manual coverage; see Figure 3.11.
Note that the manual operation trajectory is not complete compared to the path of
L-cover; see Figure 3.11b. The time of operation in both cases was similar (close
to 2hr), during which the autonomous operation covered a region twice the area of
the manual coverage; compare Figure 3.11a and Figure 3.11b. Moreover, with our
approach, the mosaicing is both complete and cleaner because of fewer overlapping

tracks and odd orientations to the lines (Figure 3.12).

3.4.3 M-coVER RESULTS

Field experiments were also conducted for the M-cover approach, to demonstrate
that even with dynamically changing environments, it ensures more efficient coverage
compared to the above-mentioned complete coverage techniques. We deployed the
ASV on 4.12 km and 2.76 km segments of the Congaree river; see Table 3.4. The

width of the river on average is 90m. The long segment was covered with a small
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sensor width which resulted in four passes (Figure 3.9a), whereas in the smaller river
segment the ASV performed only two passes (Figure 3.8a and Figure 3.8b).

In addition, we executed the L-cover algorithm with same spacing for the smaller
region and similar to the M-cover two passes were generated (Figure 3.8c and Fig-
ure 3.8d). For the longer region with the same spacing value, L-cover generated
segments with either three or five passes, though it resulted in a similar length of the
coverage trajectory (Figure 3.9b). When the execution time of the coverage operation
of M-cover is compared with L-cover for both experiments, M-cover is on average 20%
more efficient. Note that these results are only based on the performed field trials.
It has been observed that the river current data change even at an hourly basis [80].
Therefore, generating a graph model that will represent the approximate currents
would not be a comprehensive representation of a real world scenario.

Furthermore, we have sampled small portions of the river and compared the cov-
erage time for the two opposite banks of the river to show the effect of the current
on coverage time. The results showed that when travelling upstream on the out-
side portion of the meander the coverage time is almost twice longer than if going

downstream (approximately 47%).

Table 3.4: The experimental results of the M-cover deployments

Algorithm Total Area Path Length Duration # of Passes
M-cover 4.12km x 90m 16.6km 2h 55m 4
L-cover 4.12km x 90m 16.3km 3h 35m 3 and 5
M-cover 2.76km x 90m 5,32km 47Tm 36s 2
L-cover 2.76km x 90m 5.13km 59m 46s 2

31



3.4.4 RIVERBED MAPPING

Different acoustic sensors have been deployed over the course of the field trials in
order to evaluate their performance and to consider the effect of different coverage
motions on the quality of the collected data. More specifically, a CruzPro DSP Active
Depth, Temperature single ping SONAR Transducer was used for the majority of the
experiments. As only a single data point is collected at the time, the coverage is
sparse and an integration strategy needs to be utilized.

The depth measurements gathered from all experiments with single ping sonar
were used to produce a bathymetric map of the covered area utilizing a Gaussian
Process (GP) mapping technique [134]. To evaluate the performance of both algo-
rithms for depth map generation, an uncertainty map was produced based on the
root-mean-square error (RMSE). The results showed that even though the operation
time is longer for the L-cover algorithm, the data collected by the ultrasonic range
sensor results in a more accurate depth map. The depth map produced by data
collected using L-cover, T-cover and Z-cover patterns are presented in Figure 3.13.

The second sensor used was the Humminbird helix 5 chirp SI GPS G2 imaging
sonar. Being a low cost, proprietary sensor, all the collected data has to be post-pro-
cessed. Finally, a long range 3DSS-DX-450 side scan transducer from Ping DSP[95]
was deployed a limited number of times. As can be seen in Figure 3.10, rotations
and repeated scans do not match very well due to the sensitivity to orientation error.

Acoustic data processing is beyond the scope of this dissertation.
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Figure 3.6: Riverine coverage on the Congaree River, SC, USA. The blue paths are
the ideal paths produced by the algorithms while the yellow one is boat’s GPS track:
(a), (c) L-cover on a 2.15km long river segment; (b), (d) L-cover on 0.8 km long river
segment.
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Figure 3.7: Riverine coverage on the Congaree River, SC, USA. The blue paths are
the ideal paths produced by the algorithms while the yellow one is boat’s GPS track:
(a),(c) Z-cover; (b),(d) T-cover on a 2.15km long river segment.
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(d)

Figure 3.8: Riverine coverage on the Congaree River, SC, USA. The blue paths
are the ideal paths produced by the algorithms while the yellow one is the boat’s
GPS track (a),(b) M-cover. (b),(d) L-cover on a 2.76km long river segment.
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(a)

Figure 3.9: Way-points of the complete coverage patterns executed on the 4.2km long
segment of Congaree river, SC: (a) M-cover; (b) L-cover,

(a)

Figure 3.10: CruzPro depth pinger data integrated using a GP
model collected with 3DSS-DX-450 side scan sonar.
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Figure 3.11: Backscatter image of riverbed, Congaree River, showing the bathymetric
map compiled from the Ping DSP data collected by (a) autonomously performing L-
cover coverage; (b) manually controlling the boat.
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Figure 3.12: Backscatter image of riverbed, Congaree River, showing the bathymetric
map from Ping DSP with the ASV’s path superimposed, from (a) autonomously
performing L-cover coverage; (b) manually controlling the boat.

38



Depth Map 12 Depth Uncertainty 2
3766
10 21
3764
8 18
762 6 15
L) L)
g 5 < 2
* 33760 4 o = 12 [
® a ® L
- -
2 9
3138
0 6
3136
-2 3
2754
80658  -B0655  -80.654 80652  -B0.650  —80.648  ~80.646 -4 80658 80650 80654 80652  -80.650  -80.048  -80.640 0
Longitude Longitude
(a) (b)
Depth Map 9.0 Depth Uncertainty 14
3766 3766
75 12
3768 766
10
6.0
762 5762
g SR B
p=1
£ il - g
8 3760 v 8 33760 6
3.0
33.758 33.758 4
1.5 2
3756 33756
-80.658 ~80.656 ~80.654 ~80.652 ~80.650 ~80.648 ~80.646 0'0 -80.658 -80.656 -80.654 -80.652 -80.650 ~80.648 ~80.646 0
Longitude Longitude
(c) (d)
Depth Map 9.0 Depth Uncertainty 20.0
3766 3766
75 17.5
760 3768
15.0
6.0
2762 2762
12.5
P 45 E ® o
g 33.760 (,_D, g 33.760 10.0 5
®© a ® i
3 3.0 3
.38 3758 75
1.5
5.0
3756 3756
0.0 25
3756 3754
9005 9003 80054 -80.652 80630 80648 80646  -80.644 -15 oo oo 80e>4 80052 8065 -80648  -80.040  —80.044 0.0
Longitude Longitude
() (f)

Figure 3.13: The depth map (in meters) of covered region and uncertainty map
of selected method for that region expressed by RMSE: (a), (b) L-cover; (c),(d)

Z-cove

r; (e),(f) T-cover.
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CHAPTER 4

MULTI-ROBOT COVERAGE

4.1 INTRODUCTION

This chapter addresses the problem of covering a large area for environmental moni-
toring with multiple Dubins vehicles (Figure 4.1). Finding a solution to the coverage
problem means planning a trajectory for a mobile robot in a way that an end-effector,
often times the body of the robot, passes over every point in the available free space.
Employing multiple robots can reduce the coverage time cost, and, in hazardous
conditions such as humanitarian de-mining, increase the robustness by completing
the task even in the event of accidental “robot deaths.” The use of multiple robots

however, increases the logistical management and the algorithmic complexity.

Figure 4.1: Three autonomous surface vehicles performing coverage on Lake
Murray, SC, USA.

When covering a known environment, the focus is on performing the task as

efficiently as possible [137]. The scale of the environment in conjunction with the
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speed and endurance of the robot(s) classify the coverage task as small, medium,
or large scale. For example, a flying vehicle with 30 min battery life and an average
speed of 40 km /h can cover a trajectory of 20 km, while an autonomous surface vehicle
(ASV), moving at 10kn (5m/s) for five hours will travel approximately 90 km.

As in the previous chapter we are focusing on the monitoring of aquatic environ-
ments. The vehicles of choice are ASVs that were custom-made at the University
of South Carolina (see A.1 for more details). Aquatic environments, in general, re-
quire large scale operations. For example, one of the testing grounds used—Lake
Murray—has a surface of over 40 000m?. Many ASVs, similar to fixed wing aircraft,
are governed by Dubins vehicle kinematics [21]; i.e., Dubins vehicles cannot turn in
place. More formally, a Dubins vehicle is defined as a vehicle which may only fol-
low line segments and arcs with radius greater than some specified minimum with
non-negative velocity, i.e., they may not back up.

Recent works [67, 141] presented an efficient approach to cover an area by a
single Dubins vehicle. We extend the proposed algorithm to multiple robots based
on the multi-robot coverage path planning algorithms proposed in [52] for holonomic
robots. That work proposed two approximation algorithms, termed CAC and CRC,
for solving the problem. Nevertheless, the CRC algorithm was not implemented at
the time and thus was not compared with CAC within that work.

We will first show the comparison results of the proposed algorithms without the
Dubins constraint. Efficiency is measured as a combination of the utilization of the
robots and the reduction of the maximum coverage cost. The idea is that robots
are limited by the battery life; as such, the workload should be evenly distributed.
Then we will present two methods based on the same approaches utilized by the CRC
and CAC algorithms. In the first one, the efficient path produced by the algorithm
proposed by Lewis et al. [67] is divided into approximately equal parts, in terms of

path length, and each part is assigned to a different robot. In the second method, the
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target area is divided into equal parts, based on the team size, and then the single
robot algorithm [67] is applied to each area.

Analytical comparison of CRC and CAC algorithms show that CRC is slightly
advantageous in terms of efficiency. Experimental results of the new proposed meth-
ods for Dubins vehicles using several simulated world maps show that indeed the
utilization of the robots are maximized and the maximum coverage cost is minimized
compared to even the original CRC. Moreover, the approach is scalable to a large
number of robots. Field trials with a single robot, a team of two, and a team of
three ASVs, demonstrated the feasibility of the proposed approach with real robots

executing plans generated by the planner and highlighted several practical challenges.

4.2 PROBLEM STATEMENT

The Dubins multi-robot coverage problem can be formulated as follows. We assume
to have £ homogeneous robots, with no communication capabilities, each equipped
with a sensor with fixed-size footprint s, and with Dubins constraints—namely, the
robots have a minimum turning radius r that constrains the robots to follow line
segments and arcs with radius greater than or equal to r, and they cannot drive in
reverse. Such robots are deployed in a 2D-bounded area of interest region £ C R2.
The objective is to find a path m; for each robot 7, with 1 < i < k, so that every point
in the region of interest £ is covered by at least one robot’s sensor.

An efficient solution is one that minimizes the length of the trajectories for the
robots, while at the same time ensuring that the workload on the robots are evenly
distributed. This is motivated by the fact that homogeneous robots have the same
limited battery life, and thus, to cover a big region, it is better to utilize all of them
for the coverage task.

In practice, this means that an efficient algorithm finds k£ non-overlapping regions

& C & such that & = U¥(&;), where each robot i can perform a calculated covering
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trajectories m;. Note that 7; includes the whole path the robot has to follow: a robot
starts from an initial starting point v, goes to a point of entry into a partition of
the interest region &;, covers fully &;, and goes back to vs. We call the coverage
cost—i.e., the traveled distance—of a single robot covering &; as ¢(&;). As such, we
can define the optimization problem of Dubins multi-robot coverage as a MinMax

problem: minimizing the maximum cost max}(c(&;)) over all robots.

4.2.1 TERMINOLOGY

In this section we introduce the terminology used in the subsequent sections. A
cell is defined as a continuous region containing only the area of interest that one
of the robots must cover entirely. The cells are the result of a boustrophedon cell
decomposition (BCD) [15]. The Dubins coverage algorithm by Lewis et al. [67]—
referred to as Dubins coverage solver (DCS)—is a process by which a coverage problem
is mapped to a graph for which a solution to the TSP results in a single coverage
path.

The DCS algorithm divides cells into a collection of passes, defined as the smallest
unit of coverage; each of which is axis-aligned and has a width equal to the robot’s
sensor footprint. Each pass has an assigned direction to cover its cell and thus it is
presented as a node of a directed, weighted Dubins graph Gy = (Ey4, V). The edges
of G4 are defined as the Dubins path from a source node to a target node. The
weight of an edge w(u,v) is then the length of the segments and arcs of the Dubins
path between two passes u and v. The output of the DCS algorithm is an optimal
Hamiltonian path R = (v, va, ..., v,), where v; € V; and n is the number of passes,

that is n = |V4].
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4.3 DuUBINS COVERAGE WITH ROUTE CLUSTERING (DCRC)

Our first approach for multi-robot Dubins coverage is based on DCS and the Coverage
with Route Clustering (CRC) method [67].

The CRC algorithm creates cells applying the BCD algorithm on a binary image
of the area with obstacles [53]. Then, boustrophedon cells are turned into edges of
a weighted graph—called Reeb Graph—on which the k-Chinese Postmen Problem
(k-CPP) is solved. The result is a k sub-routes of an optimal Eulerian tour.

To address Dubins constraint in this work, we are interested in solving the k-TSP
problem instead of k-CPP. The pseudocode for DCRC is presented in Algorithm 5.
Line 1 gets an optimal Hamiltonian path R = (v, vs,...,v,), where the vertices
are passes, by using the DCS algorithm to solve the single-robot Dubins Coverage
problem with the DCS algorithm. Its cost ¢(R) is given by the initial traveled distance
to get to the region of interest c(vs,v1), the sum of the costs w(vj,vj41) to cover
passes v;,v;41, and the cost c¢(v,,vs) to go back to the starting point v, (Line 3).
Note that the travel cost c¢(v,u) is defined as Euclidean distance between midpoint
coordinates of corresponding u and v passes. The resulting optimal path R is split
into k subtours {Ry, Ry, ..., Ry} (Lines 4-7). For a given starting point v, the cost
of any tour R; = (v, Viy, ..., vy, ) is defined as the cost of traveling from the starting
point to reach a designated coverage cell, the actual cost of covering that cell and the
cost of traveling back to the starting point (Line 8, where m is the index of the last
pass/vertex in the path). Cost ¢y is calculated to balance travel and coverage costs
between robots (Line 3). Such a clustering procedure was proposed in the k-TSP
solver by Frederickson el al. [30].

The complexity of this algorithm is exponential as DCS uses an exact TSP solver.
The k-CPP solver — referred as FHK — is proved to have an approximation factor

of 2 — 1 [30].

2 k
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Algorithm 5 DCRC

Input: number of robots k, binary map of area M,
turning radius r, sensor footprint s

Output: k tours, 1 for each robot

1: R+« DCS(M,s,r)
2: initialize for each i in k empty tours R;
3: c(R) = c(vs, v)) + Z?:_ll w(vj, Vj1) + (Vn, Vs)
4: Chpax = 1121?%{0(111, v;) + w(vg, Vig1) + c(Vig1,v1)}
5. for each i€ 1, ..., kdo
6: while ¢(R;) <= (¢(R) — 2¢max) * 1/k + Cmax dO
7 include next vertex v along R into R;
8: c(Ry) = c(vs, vi,) + X0 wlvg, v,,,) + c(vi,,, vs)
9: end while
10: end for

4.4 DuBINS COVERAGE WITH AREA CLUSTERING (DCAC)

The DCAC algorithm, similar to the CAC algorithm [53], performs clustering of the
region of interest £ and then finds the optimal route for each robot. An overview of
the DCAC algorithm is presented in Algorithm 6.

In particular, the BCD algorithm is applied to decompose the environment into
cells, consisting entirely of areas which should be covered (Line 1). Then, each cell
is divided into passes (Line 2). A corresponding graph is created from these passes
(Line 3). The graph is an undirected weighted graph G = (V| E), where each vertex
is located at the center of a pass; vertices (v;,v;) in this graph are connected with
an edge e if and only if their corresponding passes share a common edge. The cost
c(e) of each edge e = (v;,v;) is defined as the Euclidean distance between midpoints
of passes. The vertices of graph G are clustered performing a breadth-first search
(BFS) clustering (Line 4). The size of a cluster C' = {vy,vs,...,v,,} is defined as
c(C) = X{ele=(viss1)1<i<m} ¢(€). DCS is then applied on each resulting cluster of
passes (Lines 5-7).

The clustering step in the CAC algorithm [53] ensures that the cost of reaching the

region of interest and the actual coverage costs per region are balanced, by assigning
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more passes to cover to robots that are closer to the region of interest; while the
robots that have to travel more to reach the coverage area will have less passes to

cover.

Algorithm 6 DCAC

Input: number of robots k, binary map of area M,
turning radius r, sensor footprint s

Output: k tours for each robot

cells < BCD(M)
passes «— GenPasses(cell, s)
G < buildGraph(passes, r)
C_set < BFSClustering(G, k) > clusters of passes
for each C; € C'_set do
tour <— DCS(Cj, 1, s)

end for

As the complexity of TSP is exponential, by partitioning problem into k£ small TSP
subproblems, the overall TSP performance is improved. Nevertheless, the complexity

will still remain exponential.

4.5 COMPARISON OF CRC AND CAC METHODS

The experimental validation of the proposed algorithms consists of two components:
first, a large number of randomly generated Reeb graphs were tested, analysing the
performance of the area partitioning stage of proposed CRC and CAC algorithms.
Second, multi-robot simulations were run in the Stage mobile robot simulator [129]
for different environments to validate statistical results. In both cases, we compare
the CAC and CRC methods with simple equal partitioning and the original FHK
algorithm with only one edge cost. We will refer to last one as FHK. As for simple
equal partitioning, we partition a single optimal route using cluster cost equal to 1/k
of the optimal route cost, where k is the number of robots. We call this naive route

clustering and we will henceforth refer to it as NRC.
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4.5.1 STATISTICAL ANALYSIS

For statistical analysis we compare the area partitioning phase performance of the
proposed algorithms, i.e. the k-tour splitting FHK algorithm used in CRC algorithm
with two different edge costs and the DFS-like graph clustering used in CAC. More-
over, we show the performance of these algorithms compared to the baseline, i.e.
the original FHK algorithm [30] and NRC. Before presenting the actual results, the

testing framework is described in detail.

TEST DATA

Testing data represent the same randomly generated 200 images used in the original
work, with arbitrarily distributed obstacles. The boustrophedon decomposition is
performed on each of these artificial environments and as a result a Reeb graph is
produced. In the resulting graph, the Eulerian path is constructed by applying the
algorithm solving the Chinese postman problem. The following input is required for
the comparison of the algorithms: a Reeb graph with coverage cost and travel cost
assigned to each edge, an Eulerian tour of that graph, and the number of tours the
graph is partitioned into. Size information about the input graph and the single
coverage tour costs are shown in Table 4.1. The number of robots or tours that the
graph will be partitioned into have the following values k € {1,4,8,16,20,32}. All
data examples are used with all possible £ values. Note that single cell coverage is
considered an atomic action. As such, it is only divided where an edge (cell) has to

be duplicated (at most once).

MEASUREMENT METRICS

Similar to the original work [52], for every call of the algorithm, we measure the
number of idle robots and the maximum coverage cost. In Figure 4.2 the maximum

coverage cost is represented as a fraction of a single optimal coverage path, and the
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Table 4.1: Input Graphs Information

MIN MAX MEAN
Number of Vertices 10 41 25
Number of Edges 12 57 35
Length of Eulerian Tour 16 73 43
Cost of Eulerian Tour 2414 11176 5123

utilization as the percentage of covering robots. We present average results over all

input data for each number of robots in Figure 4.2. In addition, to measure overall

effectiveness, we averaged results over all k robots, when k£ > 1; see Table 4.2.
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Figure 4.2: CRC, CAC utilization and max coverage cost average results compared
to NRC and original FHK algorithms for a variable number of robots: (a) Robot
utilization (highest number is better); (b) Maximum area covered (lowest number is

better).

REsuLTS

The area coverage problem was defined previously as a MinMax problem [52]. The
maximum coverage cost is minimized by ensuring that no robot stays idle. However,

even with this definition there is a possibility to have idle robots when the size of

cells is not balanced.
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Table 4.2: Average Results for k € {2,4,8, 16,20, 32} robots.

Utilization (%) Max Coverage Cost ratio
CRC 86.6 0.248
CAC 76.2 0.245
NRC 52.0 0.433
FHK 69.0 0.388

All algorithms were applied on the datasets generated as described above. The
results show that the CRC and CAC algorithms demonstrate similar performance
on solving the MinMax problem and on utilizing the robots; see Figure 4.2. But on
average, for larger numbers of robots, CRC shows 10% better utilization compared
to CAC . Meanwhile both CRC and CAC outperform NCR and FHK. On average
CRC and CAC outperform NRC and FHK algorithms by increasing the utilization

by 20.5% and reducing the coverage cost by 39.8%; see Table 4.2.

4.5.2 EXPERIMENTAL VALIDATION IN DIFFERENT ENVIRONMENTS

For testing the complete pipeline of CRC and CAC, different environments were
used. In Figure 4.3(a), presents a variant of the well known cave environment
from Stage [129]. A complex environment with many obstacles is presented in Fig-
ure 4.3(b). An indoor environment is shown in Figure 4.3(c), and the large environ-
ment from rural Quebec from the work of Xu et al. [137] is presented in Figure 4.3(d).
The top row in Figure 4.4 presents the coverage path for four robots performing the
CRC coverage algorithm, while the second row of Figure 4.4 presents the respective
coverage paths utilizing the CAC algorithm. Each of the robots utilizes the Bous-
trophedon coverage pattern [16]. As can be seen from the results in the different
environments, the distribution of areas among the robots vastly varies. To a large
extent, the fact that each cell represents an atomic coverage action is responsible for

the uneven distribution of tasks.
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Figure 4.3: The four environments where the proposed multi-robot coverage algo-
rithms were tested: (a) Cave; (b) Multi-cell; (c¢) Indoor; (d) Rural Quebec.
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Figure 4.4: Coverage paths for four robots utilizing (a-d) CRC coverage algorithm;
(e-h) CAC coverage algorithm.
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To validate statistical results, the same four environments were also used to test
the performance of the proposed algorithms in comparison with the NRC and FHK
algorithms for different numbers of robots. The maximum coverage cost and utiliza-
tion ratio are presented in Figure 4.5 and Figure 4.6, calculated the same way as
it was described in the previous section, for covering each of the environments pre-
sented in Figure 4.3. Different numbers of robots ({1,2,4,8,16,20,32}) were used. The
results once again show that both CRC and CAC in comparison with naive clustering
(NRC) and FHK provide better minimization and utilization, even though they have
the same convergence for minimizing the maximum coverage cost. It is worth noting

that the scale of each environment is arbitrary and the distances measured only serve
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as relative measurements. What is significant, however, is the comparison among

different numbers of robots in a single environment.
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Figure 4.5: The maximum coverage cost of the multi-robot coverage algo-
rithms in different environments and for different number of robots.

4.6 DCRC anxD DCAC EXPERIMENTS

The proposed methods were initially evaluated with simulation tests for large envi-
ronments within a custom simulator that accounts for the Dubins constraints, to test
the optimality of such an approach and its scalability.

Next, we used our autonomous fleet of jet-driven Mokai ES-Kape sport kayaks
(see A.1) for validating the proposed approach with real robots. The goal includes
checking if the assumptions hold in the real world. The ASVs in addition to the base-
line electronics — a PixHawk controller for waypoint navigation and safety behaviors,

and a Raspberry Pi with the Robot Operating System (ROS) framework [100, 86]

51



Cave Environment

Rural Quebec

120 120 : :
_. 100 {1 100 1
R
~ 80 1 8of 1
c
o
5 60| 1 60} .
(]
N
= 40— 1 40 ——xc 1
=2 — CAC — CAC
20H — nre 7 20 — wNRe b
— FHK — FHK
0 I I I I I I 0 I I I I I I
0 5 _10 15 20_ 25 30 35 0 5 10 15 _20 25 30 35
120 Multi-cell Environment 120 Indoor Environment
. 100 . :
3
~ 80} 1 .
c
(]
5 60} i i
(]
N
= 40 . i
e - —_
=} — CAC — CAC
20H — NRC T 20H — NRC T
— FHK — FHK
0 0

0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
Number of Robots Number of Robots

Figure 4.6: The utilization factor comparison the multi-robot coverage algo-
rithms in different environments and for different number of robots.

to record GPS and depth data — are equipped with a SONAR transducer collecting

depth measurements with a frequency of 1 Hz.

4.6.1 SIMULATED RESULTS

The simulation was performed for three large input maps taken from Lake Murray [67]
and a rural Quebec area [137]. The maps differ in terms of size and shape complexity.
We have evaluated both DCRC and DCAC with different numbers of robots, that is
k€ {1,2,5,10} robots. The baseline for comparing the costs of each tour is the cost
of the optimal route produced by the TSP algorithm. As the problem is defined as a
MinMax problem, we consider the value of the maximum cost per robot along with
the ideal cost as a metric. The ideal cost is defined by dividing the single optimal

route cost by the number of robots. Another metric considered in this paper is the
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utilization of robots, that is the ratio between the number of robots used and the
total number of robots available. However, in the following, results with the robots’
utilization are not reported: in all the experiments, the robots’ utilization is 100%,
a difference from the results obtained in [53]. The way we designed our algorithms,
namely with the additional decomposition of the obstacle free cells in passes, results
in a more even distribution of cells to the robots.

Figure 4.10 shows the paths followed by 5 robots in the three environments consid-
ered, using both algorithms. Qualitatively, it can be observed that DCAC produces
paths where robots mostly transition to adjacent passes, while with DCRC, robots go
from one pass to another that is typically not adjacent. This fact makes the robots
follow the paths generated by DCAC going outwards from the region of interest be-
cause of the minimum turning radius—compare for example Figure 4.11 (a) and (b).
Those tighter turns contribute to an increase in the overall cost.

Indeed, as illustrated in Figure 4.7—which shows the ratio between maximum
coverage cost and ideal cost—DCRC has better performance. For example, in the

Rural Quebec environment with 5 robots, DCRC has a maximum coverage cost ratio

of 0.2, while for DCAC is 0.3.

O DCRC
[ DCAC

T DCRC
I DCAC

T DCRC
[ DCAC

Maximum Coverage cost (ratio)

Maximum Coverage cost (ratio)

Maximum Coverage cost (ratio)

o
Lake Murray Rural Quebec Lake Murray
Envi it

Murray Rural Quebec Lake Murra
(small) = Environmen s (complete)

y
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Figure 4.7: The comparison of actual maximum coverage cost and the ideal cost for
three different environments for (a) k =2, (b) kK =5, and (c¢) k = 10 robots.
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4.6.2 FIELD TRIALS

Given the better performance of DCRC, we validated the approach using DCRC with
the ASVs, in a 200 m x 200 m area in Lake Murray, SC. The sensor footprint used had
4.5m and the turning radius of the ASV is 5m. A path, in the form of a waypoint
sequence, was generated with the ASVs starting just outside the area of interest. A
description of the experiments performed and the results obtained follows.

The main objective of the field trials was to ensure that the assumptions hold
with real robots, so that the ASVs are able to follow the trajectories generated by

the proposed algorithms.

SINGLE ROBOT COVERAGE BASELINE

Similar to the simulation experiments, the single robot coverage for Dubins Vehicles
algorithm [67] is used here as a baseline for comparison with the multi-robot approach.

Figure 4.9a and Figure 4.9b present the ideal path and the path followed by
the ASV, respectively, as recorded GPS points overlaid on Google Maps. The depth
measurements were combined using a Gaussian Process (GP) mapping technique [134]

to reconstruct the floor map of that part of the lake (see Figure 4.8a).

MUuLTI-ROBOT COVERAGE EXPERIMENTS

A variety of experiments were performed using teams of two or three robots in different
areas of Lake Murray.

The resulting multi-robot coverage is comparable to the single-robot coverage
trajectory, where only small areas were left uncovered. Indeed, the bathymetric maps
resulting from the single and multi-robot coverage are similar.

The maximum traveled distances per experiment with a different number of robots

are presented in Table 4.3 along with the ideal traveled distance. As in the case of the
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Table 4.3: The maximum distance traveled per robot and the cost
of perfect division for multi-robot coverage experiments with the
deployed ASVs.
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Figure 4.8: Depth map of Lake Murray produced using a GP-based mapping using
data collected with (a) a single robot, (b) two robots, (c) three robots.

simulation, the ideal path length is the size of the sub area if the tasks were exactly
divided into equal parts.

Figures 4.9c and 4.9e show the ideal path for two and three ASVs as generated
by DCRC; while Figures 4.9d and 4.9f show the actual path followed by two and
three robots, respectively. As can be seen qualitatively in Figures 4.9c and 4.9e, the
paths followed by the ASVs are pretty much in line with the ideal path. The small
deviations are due to GPS error, current, wind, and waves from other vessels. As
such, the proposed methods can be applied for coverage using ASVs with Dubins
constraints.

Note that the ill-structured path of one of the robots (with the blue trajectory
in Figure 4.9f) is a result of a hardware failure and a hysteresis of its on-board

PID controller. This illustrates the real world challenges with field trials: even with
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Figure 4.9: Multi-robot experiments at Lake Murray, SC, USA: (c¢) Ideal path pro-
duced for two and (e) three robots; (d) GPS track of the actual coverage path for two
and (f) three robots.

presumably identical boats, each of them should undergo an initial tuning phase
of the different operational parameters. Such an issue opens interesting research
directions on robust multi-robot coverage, including recovery mechanisms to adapt

the algorithms to the new minimum turn radius and accounting for heterogeneity.
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Figure 4.10: A simulation instance of DCRC (first row) and DCAC (second row)
algorithms with 5 robots performing coverage over the area of interest indicated in
gray, where the first column shows a small segment in Lake Murray (200m x 200 m);
second column, Rural Quebec (13km x 10km)
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Figure 4.11: A simulation instance of algorithms on the complete Lake Murray
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CHAPTER 5

UNDERWATER COVERAGE

5.1 INTRODUCTION

Mapping and inspection of underwater structures is an important task found in envi-
ronmental studies, marine archaeology, resource acquisition, and infrastructure main-
tenance, that potentially be performed by underwater vehicles( Figure 5.1b). To in-
spect a structure, an underwater vehicle has to move over most (ideally all) of the
region of interest, thus performing coverage.

The coverage problem in an underwater environment inherits all the challenges
faced by planning for an aerial robot in three dimensions, due to the increased di-
mensionality of the planning space compared to the planning in planar environments.
The coverage path planning problem’s complexity exponentially increases when mov-
ing from two to three dimensions. In addition, the underwater environment presents
novel challenges both from the coverage and the navigation perspective. Underwater
vision presents unique challenges such as hazing, color attenuation [107, 120], and lack
of good features [116, 99]. The dynamics of the water [80] and visibility constraints
contribute to instability, drifting, and error in the localization of an autonomous un-
derwater vehicle (AUV); for details on the challenges of underwater sensing please
refer to the comparison studies in [51, 69, 99].

The focus of this work is visual mapping of a shipwreck. Historical shipwrecks
tell an important part of history and at the same time have a special allure for most

humans, as exemplified by the plethora of movies and artworks of the Titanic; see for
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(b)

Figure 5.1: (a) AQUA underwater robot in a pool. (b) AQUA performing coverage
over Stavronikita Shipwreck in Barbados

example the work of [26] for the visual mapping of the Titanic. Shipwrecks are also
one of the top scuba diving attractions all over the world. The historical shipwrecks
are deteriorating due to warm, salt water, human interference, and in some places
extreme weather (frequent tropical storms). Reconstructing accurate models of these
sites will be of high importance not only for the historical study of the shipwrecks, but
also for monitoring subsequent deterioration [81, 83]; see Figure 5.2 for the different
floors of a shipwreck exposed after a partial collapse.

Currently, limited mapping efforts are performed by divers who take measure-
ments manually using a grid and measuring tape, or using hand-held sensors [41] —
a slow and sometimes dangerous task; see Figure 5.3 for a diver collecting data, man-
ually, to be used in training the navigation model. While acoustic sensing (SONAR)
is common, the resulting maps do not contain the details vision can provide. Vision
has been utilized successfully to map underwater structures [43] or even underwa-
ter caves [102]. This method presents a methodology for training a learning system
to guide an underwater vehicle covering a shipwreck using only vision. The aim of
the trained system is to perform coverage in a completely unknown space by learn-
ing a set of motion strategies based on the previous visual observations of different

environments.
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Figure 5.2: The different levels of the Stavronikita shipwreck, Bar-
bados, after a partial collapse.

To perform coverage or reconstruction of 3D structures, reliable state estimation is
traditionally required [10]. But even with ideal state estimation, performing coverage
in an unknown underwater environment exposes new and very different challenges.
The aim of this work is to answer the question: Is it possible to achieve autonomous
behavior that will provide meaningful coverage decisions relying only on vision? In
contrast to the works presented in the literature on 3D coverage [34], this work is solely
based on vision and does not rely on state estimation nor a map of the environment
for navigation.

The main contribution of this chapter is a deep learning framework for learning
the motions for navigating around a shipwreck. The proposed system trained on data
collected by human operators learns to guide an autonomous system in a similar man-
ner around different shipwrecks using only vision. Results demonstrate the accuracy

of the learned system in validation datasets.
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Figure 5.3: A diver collecting data over Pamir Shipwreck, Barbados.

5.2 PROBLEM STATEMENT

In general terms, the coverage path planning problem (CPP) is concerned with finding
a trajectory that moves an end-effector / sensor of the robot over each available point
of the environment (area or volume) while avoiding obstacles. The target platform in
this work is an autonomous tether-less robot with six degrees of freedom from which
controllable are the three orientations — yaw (rotation around the z-axis), pitch
(rotation around the y-axis), and roll (rotation around the x-axis) in a robot-centric
frame of reference — with up and down (depth change) and forward motions. There
is no prior information about the environment and it is deployed in a 3D-bounded
area of interest £ C R3. The robot follows a path 7 that will result in the acquisition
of a sequence of camera frames V' = {fi, fo, ..., fn}, where f; is the i-th image frame.
The objective of the coverage path planning problem is to ensure that 7 is obstacle
free and that the 3D reconstruction resulting from V' covers the entire surface of the
& object.

The objective of this work is to build a system that will use only the current

frame V' to guide the robot and build a path (7), in such a way that it will imitate
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the behaviors of a human diver when surveying a shipwreck. As such the main
strategies, that will be the building blocks for coverage path planning, considered

within this work, are:
1. keep the shipwreck in the field of view,
2. follow the shipwreck’s side,
3. turn around the bow and stern of the ship,
4. circumnavigate the mast.

The ultimate goal will be to ensure all of these strategies are executed at the same

time, but within this thesis our aim is to achieve these behaviors one at a time.

5.3 TowARDS COVERAGE PATH PLANNING OF SHIPWRECKS

To create a vision based navigation system we need to have a large dataset of different
shipwrecks. We begin with 3D meshes of shipwrecks - the data consists of Gazebo [64]
models of shipwrecks provided by the National Oceanic and Atmospheric Adminis-
tration (NOAA)!. In addition, we have generated test data from the coverage of the
Stavronikita shipwreck in Barbados where we have collected shipwreck images uti-
lizing an underwater Aqua2 robot [23], a stereo-rig sensor (see A.2), and a GoPro
camera. The Aqua2 vehicle is capable of autonomous operations [111] up to a depth
of 30 meters.

A diver was asked to label data based on the action that they would take if they
were to perform coverage around a shipwreck. The possible values that the diver
selects are the directions in a 2D image - the label window is illustrated in Figure 5.4.
The labeling performed is based on a diver’s strategy of data collection, consistent

with the above-mentioned four behavioral strategies. Following the same strategies,

'https://nauticalcharts.noaa.gov/data/wrecks-and-obstructions.html

63



simulation data has been collected by driving an Aqua2 robot in the Gazebo simu-
lator and recording the yaw and pitch changes corresponding to the current camera

view (Figure 5.5).

(a)

Figure 5.4: The labeled data, showing the desired change in orientation along the
yaw and pitch angles: (a) The gazebo simulation, presenting changes in both the yaw
and pitch angles; (b) The underwater video data, where there is change only along
the yaw angle.

(a)

Figure 5.5: (a) Gazebo Model of a Schipwreck used for training; (b) Aqua2 robot
navigating over shipwreck in Gazebo.

The labeled data is fed to an 18 layer residual network with similar architecture to

the one proposed by [121] and adopted later by Manderson et al. [72] (see Figure 5.6).
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The network is a variation of standard ResNet-18 [40]. The first convolution layer has
7x7 and the rest are 3x3, all are downsized using strides of 2. After each convolutional
layer dropout layer is added with 0.2 rate. To avoid the dead neuron problem, we
use the LeakyReLU activation function. We used the Momentum gradient descent
optimizer with a learning rate of 0.001 and a momentum of 0.1. Similar to Smolyan-
skiy et al. [121], we also treat this as a classification problem rather than regression,
to ensure we have a consistent data labelling process. As such, similar to Manderson
et al. [72], the change in yaw and pitch have seven possible values for each. Thus
our network operates on each frame of the incoming video, classifying each image
into one of possible 49 classes. Each of these classes consists of a different yaw /pitch
command composed of two integers in the [-3,3] range. The classification indicates
the chosen action for the robot. After training the network classification output on

the input images is directly used as control commands of the Aqua2 robot.

convolution [ dropout [ LeakyReLU [l Max Pooling [l Average Pooling

(Yaw,Pitch)

400x300x3

7x7 conv, 64 3x3 conv, 64 3x3 conv, 128 3x3 conv, 256

Figure 5.6: The overview of neural network architecture.

In training, the network used a batch size of 32 and a dropout rate of 0.2 over
2048 epochs, and a stochastic gradient descent method optimized the network with a
categorical cross entropy loss function. These variables were tuned until the expected
behavior could be observed. We ended up with a system with 10 layers that did not

result in data overfitting (see Figure 5.7) and achieved increased accuracy in both
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the testing and the validation of data. The output of the system consists of direction
commands that are then converted to the yaw, pitch and roll commands to control

the Aqua2 robot.

5.4 EXPERIMENTS

The experiments were performed using the Aqua2 simulator in Gazebo. It emulates
the real dynamics of an underwater environment and allows control of the robot. The
Aqua2 robot used in simulation uses the motion from six flippers, each independently
actuated by an electric motor, to swim. It has 6 degrees of freedom, of which five
are controllable. The robot’s primary sensing modality is vision. It is equipped with
three iDS USB 3.0 UEye cameras: two facing forward and one in the back. The
front-facing cameras are used for navigation and data collection.

The training has been performed separately on simulation data and real world
data, as well as on combined data samples. Both simulation and real world datasets
consisted of over 25,000 labeled images. The simulation dataset was collected by
driving Aqua2 in Gazebo using the keyboard, which produced automatically labeled
data. Data from the Stavronikita shipwreck was collected with handheld cameras
and later was labeled by a human with the above mentioned approach.

The focus of this chapter is on answering the question: can a deep neural network
learn the motion controls of an underwater vehicle using human driven commands
informed solely by the visual input? A key observation is that during training with
a simulator, the human user only sees the view from the robot’s camera, while in
the footage taken by a human diver the diver has higher awareness as they swim
around the structure. In order to answer the above question, we evaluate how well
the learned system is able to predict the motions similarly to the human annotations.

Thus, within this work, we are concerned with the performance of the classifier and
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Figure 5.7: The accuracy per epoch plot of the proposed method trained
only on real data.

how different datasets affect the prediction accuracy. The training data, model test
and validation test data was selected with a proportion of 6 : 2 : 2.

The model accuracy results using different datasets are depicted in Table 5.1. We
performed separate training using only simulation data, then only real world data
collected from shipwrecks and finally we performed training on combined data. Test
accuracy is reported on the same type of data, whereas additionally we performed
validation tests using a model trained in a real environment on simulation and vice
versa. We also report the number of epochs after which the model is converging, e.g.
when the more iterations of training do not result in improvement of model. When the
CNN is trained on separate datasets the validation accuracy converges close to 80%;

see Figure 5.7. In contrast, when the training happens on the combined dataset
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the validation accuracy drops to 34% (see Table 5.1). This discrepancy between
simulation and real world datasets is indicative of the different visual appearances
between the simulator and the real world. In future work, the simulation data will
be enhanced by using generative adversarial networks (GAN) [37] to resemble the
real world imagery, similar to the approach used for training vision based cooperative
localization [50]. It is worth noting that, in the above-mentioned model, a separate
GAN was necessary for pool and ocean images.

Nevertheless, the quantitative results on separate datasets highlight the feasibility
of the method. The resulting control commands have been used to navigate the
Aqua2 robot in a Gazebo simulation over different shipwreck models. From the
earlier mentioned target behaviors, the Aqua2 performed in simulation the “keeping
the shipwreck in the field of view” and “following the side of shipwreck” strategies (see
Figure 5.8), which are critical for the majority of the exploration. These experiments
demonstrate the capabilities of the proposed system which is trained only on one real

shipwreck dataset using vision as the only sensor.

Table 5.1: Comparison of Accuracy of training using Simulation and Real world
data, and the convergence speed (accuracy values are approximations). Note, the
validation is given for combined data, hence reported as the same.

Simulation Real Simulation
Training Dataset Based World and Real
ase Collected World
Validation Accuracy on Simulation 82% 12% 34%
Validation Accuracy on Real World 6% 80% 34%
Test Accuracy 78% 80% 47%
Convergence on Epochs 500 1000 1000
Size of Complete Dataset 29180 26817 56097
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Figure 5.8: Portion of a trajectory of the robot in simulation produced by a prediction
based controller.
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CHAPTER 6

CONCLUSIONS

This chapter summarizes the contributions of this dissertation, with short overviews
of each chapter in Section 6.1. Following, Section 6.2 details some preliminary findings

and highlights possible future directions of research in environmental area coverage.

6.1 SUMMARY

This thesis addresses area coverage problems in aquatic environments. It addresses
the problem in 2D for monitoring rivers, in large-scale operations with applications
in lake monitoring using multiple robots and finally in 3D for mapping underwater
structures. The dissertation started with a comprehensive overview of the literature
presented in Chapter 2, which discussed the coverage path planning problem from
different perspectives, for two dimensional and three dimensional areas. Multi-robot
area coverage problems were also discussed. Of particular interest for this thesis was
also to present advances in the area coverage field for environmental monitoring and
exploration in aquatic environments. In addition, vision based navigation was briefly
discussed to motivate the proposed vision based coverage approach. The presented
literature review highlighted the importance of this thesis.

In Chapter 3, different strategies were presented for performing partial and com-
plete coverage. Both complete coverage algorithms outperform boustrophedon cov-
erage. L-cover performs coverage parallel to the shores of the river and takes into
account the width of the river for generating the passes, while T-cover performs cov-

erage perpendicular to the shores of the river. The M-cover algorithm takes into
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account meander-based velocity difference of the water current, proved to be a more
efficient approach for longitudinal coverage. The Z-cover algorithm shows improve-
ments over the fixed-angle based approach used in practice by scientists for manual
survey operations. The performance of the algorithms is validated on a large number
of river maps with different size and shape of shores. In addition, the algorithms
were tested in simulation and in the real world. The field trials were performed on
40 000m? and 10 000m? regions of the Congaree River, SC.

Chapter 4 presents a novel approach for multi-robot coverage utilizing multiple
ASVs governed by Dubins vehicle kinematics. Two algorithms were discussed, both of
which extend our previous work on efficient multi-robot coverage to accept for Dubins
constraints. Additionally, an experimental comparison of two algorithms presented
in our previous work without Dubins constraints were performed. As a result we
show in this work that further clustering of the area ensures 100% utilization of the
robots when Dubins coverage methods are used. The experiments assert that both
algorithms result in almost optimal solutions. Nevertheless, the DCRC algorithm
demonstrated a slight advantage over the DCAC algorithm in terms of coverage cost.
As a result, our algorithm of choice was DCRC for performing field trials on Lake
Murray, SC, USA.

Finally, we concluded with three dimensional coverage presented in Chapter 5.
With this work, we proposed a new approach to tackle underwater navigation around
complex structures based solely on visual input. The method is based on the diver’s
expertise in performing navigation while collecting data around a structure. Re-
ported preliminary results of 80% accuracy achieved from training on separate sets
of simulated and real underwater data showed that this approach is feasible and ca-
pable of performing some of the predefined behaviors. Thus, this is a step towards a

vision-based navigation system for coverage of shipwreck structures.
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6.2 PRELIMINARY APPLICATIONS

The area coverage path planning problem has a large spectrum of applications. In
this dissertation, our main emphasis was geared towards environmental monitoring
and surveying in the aquatic domain. This field represents a rich source of research for
coverage path planning. One interesting and important application for coverage path
planning is sampling lakes with ASVs( Figure 6.2a) to measure water quality, with
a focus on detecting and predicting the spread of Harmful Cyanobacterial Blooms
(HCBs)( Figure 6.1). In such applications, coverage patterns will be constrained by
the sensor setup, the possible predictive pattern of the spread of the bloom or the

morphology of the environment.

(a)

Figure 6.1: Harmful algal bloom in the western basin of Lake Erie.!

6.2.1 LAKE MONITORING SETUP AND BASIC PATTERN COMPARISON

An initial multi-modal monitoring system has been set up for monitoring Harmful

Algal Blooms (HABs) on the surface of fresh waters, such as lakes and reservoirs.

LA European Space Agency (ESA) Envisat satellite image taken on Oct. 8, 2011, using its
MERIS sensor.
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Table 6.1: Comparison of the coverage metrics for different ASV patterns.
Spiral and Bsd refer to spiral and boustrophedon patterns covering an
100mx100m area, while LSpiral and LBsd refer to the same patterns cov-
ering an 151 mx151 m area respectively.

Spiral Bsd LSpiral LBsd
Time 6m 29s Tm 46s 15m 58s 17m 55s
Length 745 m 869 m 1915m 2173 m
Area 7451m? 8689m? 19150m? 21730m?

The stations utilize the miniDOT [97] sensor in conjunction with an anti-fouling
wiper [96] to measure dissolved oxygen and temperature (Figure 6.2). Additionally,
miniature one-channel temperature data loggers (HOBO 64K Pendant sensors from
Onset) [87] are also deployed. The YSI EMM25 buoy is used to secure the string of
sensors on one end, at the other end a 4.53 kg mushroom anchor keeps the line from
drifting(Figure 6.2b). In addition to the sensor station, the ASV has been equipped
with a YSI EXO2 multiparameter sonde [140] to collect water quality samples near the

surface (at 0.5m depth) utilizing different (horizontal) sampling patterns (Figure 6.3).

(b)

Figure 6.2: (a) ASV sampling next to the deep water station at Lake Murray. (b)
The station setup ensures stability, even during extreme weather events.?

2Credit: Gevorg Dallkyan, https://sites.google.com/view/dallage
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(b)

Figure 6.3: GPS coordinates of deployed patterns recorded by PixHawk
with the deep station in the center (green landmark): (a) Spiral and (b)
Boustrophedon.

Different trajectories are employed in order to guide the ASV. Of particular in-
terest are the regions around the buoy deployments, across each lake, and the data
variance near shore and in the middle of the lake. Two different strategies, a spiral
pattern and a boustrophedon pattern have been utilized to investigate the variation
in the chlorophyll values around the testing stations; see Figure 6.3 for two sample
trajectories along. The patterns have been deployed several times on 100 mx100 m
and 151 mx151m areas around the deep station with an ASV’s sensor footprint of
10m (Figure 6.3). A comparison of the distance traveled and area covered in the two
patterns is presented in Table 6.1. The experiments show that there is only a slight
difference between boustrophedon and spiral patterns in terms of distance traveled,
area covered and time. This can be explained by the fact that, in a curved trajectory,
what is gained in the wider end is lost from the narrower end. For example, in the
coverage of a part of an annulus, the inner circle is shorter by the same amount that
the outer circle is longer, as compared to the middle. Note when deploying to cover

a small area around a point of interest, the spiral pattern is more applicable. When
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a rectangular patch needs to be covered, given the ASV turning radius constraints,
for smaller footprints, the Dubins vehicle coverage method is required [67].

With the initial setup of the sensor system and comparison of simple coverage
patterns, the next step is to integrate those patterns in larger surveying operations
— such as an informative sampling strategy with altering spiral and boustrophedon

patterns around the locations of interest.

6.2.2 SKELETON PATTERN: TOWARDS BETTER COVERAGE OF LAKES

The large areas, targeted together with the slow varying of parameters in water bod-
ies, make exhaustive complete coverage impractical and unnecessary. In addition, the
morphology of the lakes such as Lake Murray, SC (Figure 6.4), with many narrow in-
lets, can potentially pose difficulties for classical boustrophedon decomposition based
methods. We want to explore a set of strategies for the efficient data collection of

water quality in such environments when deploying an ASV.

(a)
Figure 6.4: View of Lake Murray’s inlets.

A possible approach for generating an ASV trajectory that visits a representative

area of the environment can be expressed through utilizing the medial axis of the
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water bodies and by pruning redundant branches. This will ensure that each collected
water sample is equidistant from the closest shores. Taking this into consideration,
we have developed two strategies for performing a coverage with the above-mentioned

constraints:

e Skeleton-based trajectory, for maximally reaching all inlets and collecting data

that can give an initial representation about the area (Figure 6.5).

e Skeleton-based zig-zag trajectory, for performing more detailed coverage and
possibly better than boustrophedon based approaches due to the flexibility of

reaching inlets of the lake (Figure 6.6).

50 100 150

(a) (b)

Figure 6.5: Skeleton-based approach.? (a) The trajectory along with
the skeleton in thick black. (b) The heatmap of trajectory.

The preliminary results show a possible advantage over the boustrophedon de-
composition based (BCD) method (Figure 6.7). When the sensor footprint is large,
the BCD-based approach sometimes fails to generate non-overlapping and evenly
spaced out passes. Also, since the BCD algorithm has to choose one single coverage

direction, it lacks the same ability of the skeleton-based approach to have coverage

3Credit: Jason Raiti for preliminary implementation of methods during Research Undergraduate
Experience (REU) summer program.
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Figure 6.6: Zig-zag coverage pattern. (a) Waypoints of the pattern on google
maps. (b) The heatmap of the pattern.

trajectories spread out in different directions throughout the area of interest, thus

providing better access to the inlets of the lake.

(a) (b) (c)

Figure 6.7: Boustrophedon area decomposition based efficient single robot coverage
with smaller sensor footprint in (a) and 4x larger in (b),(c).

More experiments have to be conducted to compare the proposed two new patterns
with BCD-based efficient coverage path planning techniques. In addition, they should
be also compared against Dubins coverage path planning algorithms. For future
consideration, the input to the algorithm should include resource constraints as well,

such as time allotment or maximal path length.

7



6.3 FUTURE WORK

Several other aspects of this work are of high importance and can be addressed in
future. Taking into account the challenges encountered during the field deployments
with autonomous surface vehicles, obstacle avoidance strategies must be implemented
for both underwater and above water obstacles. During the multi-robot coverage
experiments, in a few instances, two vehicles came too close to each other. We are
currently investigating an automated arbitration mechanism following the rules of
the sea [126] to avoid collisions.

Another topic that we are interested in for 2D environments is planning the cov-
erage path taking into account a model of the current in the river [80]. This model
can be used to associate different cost values depending on the direction of travel
with respect to the direction of the current.

Key challenges of the 3D coverage path planning work are related to the complex-
ity of understanding the underwater scene from limited amounts of data. To address
this, more restrictions and more systematic data labeling must be performed. Given
the extremely challenging circumstances of data collection of underwater shipwrecks,
the introduction of GAN-generated artificial training data is necessary for enabling
smooth transitions between real and simulated environments.

When working in an underwater domain, we are limited by the technical con-
straints of the autonomous platform to a greater extent than on the surface. The
constraints of underwater vehicles include but are not limited to short battery life,
limited computational power and high cost. To successfully execute online learning
based methods, such as the one presented in this thesis for 3D coverage, our main
underwater AQUAZ2 robot must be upgraded to include Jetson TX2 Module for com-
putations. In addition, a 3D reconstruction of the underwater structure should be
generated using the proposed method and a state of the art 3D coverage method to

show qualitative differences.
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APPENDIX A

EXPERIMENTAL PLATFORMS

A.1 AUTONOMOUS SURFACE VEHICLES: AFRL JETYAK

The main experimental platform used in this dissertation for deployment of 2D
coverage path planning algorithms were Autonomous Field Robotics Lab (AFRL)
Jetyaks — ASVs modeled after the Woods Hole Oceanographic Institution (WHOI)
Jetyak [61] (see Figure A.1). Our objective in developing this fleet was to to ensure
moderately long range surveying and sampling operations on aquatic surfaces with
low cost and lightweight vehicles [78].

Each jetyak is controlled using a Pixhawk PX4 micro-controller, and is capable of
communicating using 900 MHz radio modems, 2.4 GHz remote control radios, and a
2.4 GHz WiFi connection. The communication capabilities enable connectivity with:
a remote control transmitter, a remote computer termed Ground Control Station
(GCS), and other ASVs using an ad-hoc network. The AFRL Jetyak design en-
ables both manual and autonomous velocity changing operation on and off board, in
addition to autonomous waypoint navigation capability off-board.

At the heart of AFRL Jetyak design, 3DR Pixhawk 1 is selected that runs PX4
on the NuttX[84] operating system, along with the ArduPilot Software Suite to en-
able teleoperation and way-point navigation capabilities. All algorithms presented in
this dissertation whenever deployed on the AFRL jetyak, used way-point navigation
uploded offline through mission planner on the board or Pixhawk. This version of

the Pixhawk includes an internal compass and external 12C (inter-integrated circuit)
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Figure A.1: The AFRL jetyak used during the field deployment with dif-
ferent depth sensors mounted on it for surveying operations.

compass port for an external compass, included with most GPS antennas. Config-
uration of the PixHawk as a Rover [70] allowed us to start from a point where the
throttle and steering servos on the stock Mokai Jetyak are directly imitable. Both the
Hitec HS-5485HB! throttle linkage servo and the Torxis 1049032 steering servo are
controlled by modifying the Pulse Width Modulation (PWM) values in the PixHawk
to match their operating specifications. The latter steering servo is internally con-
trolled by the Polulu Jrk21V3 USB motor controller, which allows the user to access
the PWM cutoffs and allows direct calibration between the mechanical steering angle
and the input signal.

One of the main objectives of our design is to develop a highly modular platform
capable of deploying all types of sensors without the need to make structural changes

to the base fleet. Our design allows us to mount different sensors using strong and

'https://hitecrcd.com/products/servos/discontinued-servos-servo-accessories/
hs-5485hb-standard-karbonite-digital-servo/product

’https://gearwurx.com/product/torxis-industrial-outdoor/
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lightweight universal outboard mounting plate which is permanently attached to the
Jetyak. For the purposes of the coverage path planning research work discussed in

this dissertation, we used the following set of sensors:

e For bathymetric mapping of the lake and river three different type of depth sen-
sors: CruzPro DSP Active Depth, Temperature singleping SONAR Transducer;
Humminbird helix 5 chirp SI GPS G2 imaging sonar; long range 3DSS-DX-450

side scan transducer from Ping DSP[95].

e For enhancing coverage pattern discussed in Appendix B environmental force
receivers: Sparkfun weather station anemometer for wind speed measurements
and ST800/P120 paddle wheel sensor from Raymarine for water current mea-

surements.

All data has been recorded onboard of the Raspberry Pi and sometimes on an Intel
NUC processor that runs the Robot Operating System (ROS) framework [100]. The
latter provides a package management environment enabling add-on packages such
as MAVROS to interface with the PixHawk controller. This allows access and inte-
gration with IMU, GPS, heading, velocity, pose and several other Pixhawk telemetry
topics. We have included depth, wind, and current sensors as a standard component
to our Jetyak design, enabling operation in highly dynamic environments. Finally, in
order for the Jetyak to use sensor measurements for on-line path planning, the ROS
framework provides an integration of sensing and acting commands, namely provid-
ing topics for sending general navigation as well as channel-level steering and throttle

control commands directly to Pixhawk using MAVROS and the MAVLink protocol.

A.2 STEREO-RIG SUITE

The data collected in Chapter 5 were partially collected by a stereo-rig sensor suite

hardware (see Figure A.2b), designed at AFRL lab, with underwater cave map-
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ping [102] as the target application to be used by divers during cave exploration
operations. Nevertheless, this stereo-rig has been used in almost all data collection
experiments carried in our lab and it can be used for mapping a variety of underwater
structures and objects.

To assist vision-based state estimation, we employ an Inertial Measurement Unit
(IMU), a pressure sensor, and an acoustic sensor for accurate state estimation in
underwater environments. The specific sensors and electronics of the sensor suite
were selected for compatibility with the Aqua2 Autonomous Underwater Vehicles

(AUVs) [23]. In particular, the electronics consists of:

e two IDS UI-3251LE cameras in a stereo configuration,

Microstrain 3DM-GX4-15 IMU,

Bluerobotics Bar30 pressure sensor,

Intel NUC as the computing unit,

IMAGENEX 831L Sonar.

The two cameras are synchronized via a TinyLily, an Arduino-compatible board,
and are capable of capturing images of 1600 x 1200 resolution at 20 Hz. The IMU
produces linear accelerations and angular velocities in three axis at a frequency of
100 Hz. Finally, the depth sensor produces depth measurements at 1 Hz. To enable
the easy processing of data, the Robot Operating System (ROS) framework [100] has
been utilized for the sensor drivers and for recording time stamped data.

A 5 inch LED display has been added to provide visual feedback to the diver
together with a system based on AR tags that is used for changing parameters and
to start/stop the recording underwater [135].

In the first design (see Figure A.2a) the main unit, a square shaped aluminum

box — composed of two parts tighten together by screws — contained the computer,
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(a)

Figure A.2: (a) First version of the stereo vision setup, where the two cameras are
mounted externally to the main unit. (b) Second version of the sensor suite, where
the stereo camera is inside the main unit.

sensors, and other related electronics. The two cameras were sealed in aluminum
tubes with tempered glass in front of the camera lenses. The stereo camera and
display were mounted on the top of the main unit whereas the sonar was on the
bottom of it. Both the cameras and sonar were connected to the main unit by
underwater cables. The rationale behind such a design was to allow for an adjustable
stereo baseline. Unfortunately, the USB 3.0 interfacing standard used by the cameras
is not compatible with the underwater cables available in the market, resulting in
highly degraded performance for the cameras with multiple dropped frames.

In the second design (see Fig. A.3), we took into account the lessons learned
from the first design. In particular, a PVC tube was used instead of the aluminum
box. This made the enclosure lighter and positively buoyant. Rails at the bottom
allow for additional weights for ballasting. Furthermore, the main enclosure hosted
the two cameras as well. In this way, the cameras can be directly connected to the
computer with standard USB 3.0 cables, to avoid unnecessary transmission of data
over underwater cables as in the first design. In addition, the second design of the
sensor suite allows for modularity in terms of electronics used: a Plexiglas plate inside
the enclosure was used to mount all the electronics and can be easily removed for
troubleshooting or for changing broken or not up-to date parts: different computer,

cameras, or IMU.
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s

Figure A.3: Front top view of the assembled
sensor suite.

Within the framework of 3D coverage strategy, we only used the camera to ex-
tract image frames for our training. We manually moved the stereo-rig around the
shipwreck to mimic a coverage pattern and recorded all sensor data (see Figure A.2b).
For future applications, IMU and possibly depth sensor information can be also useful

contributions to our planning approach on predicting the robot’s next action.
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APPENDIX B

ENHANCING COVERAGE TRAJECTORY WITH CONTROL

When operating in dynamic aquatic environments precise and efficient control is im-
portant especially for small vehicles. While wind or small changes in current might
not drastically affect the trajectory of large ships, it adds significant noise in the
execution of mission plans of small Autonomous Surface Vehicles (ASVs); (see Fig-
ure B.1a). In order to achieve optimal path planning for the coverage of an area, an
accurate point to point navigation is a key component. In this section we present an
overview of a complete pipeline of achieving adaptive control to enhance coverage in
2D which takes into account the error in displacement caused by the forces such as

water currents and wind in order to increase the accuracy [58].

ited Controller

Figure B.1: The trajectory of ASV way-point navigator: (a) only using the PID
controller on Pixhawk; (b) with augmented waypoint navigation.

In order to execute any decisions in dynamically changing environments we col-
lected extensive data along different trajectories during different environmental con-

ditions. In particular water current, wind sensor data, along with the boat’s GPS
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coordinates and heading information were recorded. The control can be adjusted in
two modes: based on predictive values of water current and wind speed or for the
current readings of the sensors. In the first scenario a model of the environment is
represented by Gaussian Processes [134]. In the second scenario each measurement
is processed as it is received during the execution. After this step the strategy is the
same for both scenarios: the speed and orientation of the ASV is used to determine
the absolute values of each measurement which is used as an input for the linear
regression to predict the effect of the forces on the speed and direction of ASV. While
the target way-point is not reached, an intermediate way-point is calculated based on
the effect values. The speed is also adjusted based on the predicted error. Finally,
the ASV is sent to the newly calculated way-point. When the new target position
is processed by the navigation controller, it results in a smoother and more accurate
path, following the planned trajectory(see Figure B.1b). And finally the enhanced
control can be used to improve accuracy of different coverage techniques presented in

this dissertation for lake and river monitoring operations.

B.1 COVERAGE ENHANCEMENT IN DYNAMICALLY CHANGING CONDITIONS

The following framework presented in Jason Moulton’s Ph.D. [111] can be utilized to
address the problem of coverage operations in the presence of adversarial forces (wind,
currents, waves). It uses the onboard sensors to predict the effect of the force on the
navigation correctness and perform correction by introducing intermediate waypoints.
The proposed approach is using an ASV equipped with waypoint navigation, wind
and water current sensing capabilities. The main sensors used on the vehicle are
an NMEA 0183 depth sonar, a Sparkfun anemometer for wind, and the RayMarine
ST 800 paddle wheel speed sensors for current measurements. For analog to digital
conversion of current and wind sensors the drivers are provided by ArduinoMega

and Weathershield microcontrollers. The experiments were performed both on lake
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Murray and the Congaree river with different possible patterns to demonstrate the
effect of the forces on the trajectories.

The framework has the following components: modelling the environmental forces,
performing prediction of the effect of the forces on the navigation, augmentation of
waypoints or a feed-forward PID controller. This framework can be used after the
offline generation of waypoints for complete or partial coverage, to compensate for

any disturbances caused to the trajectories passing through the goal waypoints.

Modelling Environmental Forces When performing waypoint navigation it is
sometimes desirable to perform corrections beforehand rather than reactively by cur-
rent measurements of sensors. Collecting wind and water current data, we build
a map of the external forces speed and direction using Gaussian Processes with the
Matern 3/2 kernel (see Figure B.2). For more details on the method we direct readers

to consult the work by Moulton et al. [80].

Figure B.2: Force Maps of Congaree River: (a) wind speed map, (b)water
current speed map.

Prediction of the Force Affect For reactive response the direct measurements
are taken from the sensors. First, comprehensive data are collected to train a linear
model for predicting the displacement effect from the current sensor readings. The

displacement effect is calculated as x and y components of the error distance from
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desired location and the actual location of the boat. The trained linear model is used

online for prediction of this effect.

Augmentation of waypoints When the linear model is available either using the
current sensor readings or the predicted values from Gaussian Processes we perform
a waypoint augmentation. By changing the target global pose based on the mea-
surements and effects of the external forces an intermediate waypoint is generated for
smoothing the trajectory. This represents a version of a feed-forward controller where
instead of changing the velocity and heading, the corrections are performed by the
introduction of waypoints. Figure B.3 illustrates the main idea of this stage: black
solid line and position points denote the desired path that should be maintained. Blue
arrows represent the wind and current force vector acting on the ASV. Red points
and arrows represent the intermediate way-points provided to the Pixhawk navigator

and their associated target headings. For more details see Moulton et al. [79].

D dt..n -

Figure B.3: High-level illustration of way-point
navigation augmentation method.
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Experiments Figure B.la shows the effect of the environmental forces on the
planned trajectory when the speed of the ASV relative to the ground is increased.
This resulted in too much error accumulation in the PID controller and made it un-
able to overcome the external forces. This will usually result in an overshoot scenario
where the ASV harmonically oscillates back and forth over the desired trajectory.
When the augmentation stage is applied as can be observed from Figure B.1b a
more precise path-following strategy has been achieved. These results serve as proof
of concept for a feed-forward controller with waypoint augmentation that can improve
the optimlaity of the coverage pattern. As shown in Figure B.1, path following in
currents in all orientations to the ASV is qualitatively improved. Qualitative results
have been also reported by Moulton et al [80], which shows improvements in both
maximum error and percentage of the path that is more than a meter from the target
trajectory. Those results are confirming the intuition gained from qualitative results:
the augmented control algorithm provides a better waypoint and thus path following

strategy.
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