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Abstract—Classifying coral species from visual data is a chal-
lenging task due to significant intra-species variation, high inter-
species similarity, inconsistent underwater image clarity, and high
dataset imbalance. In addition, point annotation, the labeling
method used for coral reef images by marine biologists, is prone
to mislabeling. Point annotation also makes existing datasets
incompatible with state-of-the-art classification methods which
use the bounding box annotation technique. In this paper, we
present a novel end-to-end Convolutional Neural Network (CNN)
architecture, Multi-Patch Dense Network (MDNet) that can learn
to classify coral species from point annotated visual data. The
proposed approach utilizes patches of different scale centered
on point annotated objects. Furthermore, MDNet utilizes dense
connectivity among layers to reduce over-fitting on imbalanced
datasets. Experimental results on the Moorea Labeled Coral
(MLC) benchmark dataset are presented. The proposed MDNet
achieves higher accuracy and average class precision than the
state-of-the-art approaches.

Index Terms—Deep learning, Convolutional neural networks
(CNN), Marine images, Classification, Marine ecosystems

I. INTRODUCTION

Coral reef ecosystems are very important for a number of
reasons: they are hosts to many species and they play an
important role in the capture of COs in the water. Unfor-
tunately, coral reef populations are on a rapid decline [1].
Thus, monitoring the health of coral ecosystems through scuba
divers and new technologies, such as underwater robots, has
become more and more important, resulting in the acquisition
of millions of images. While image acquisition has evolved,
reef monitoring still requires the identification of the different
coral species, a task that is mainly performed by human
experts.

The automated detection of coral species in a video feed
is a challenging problem, due to the underwater environ-
ment that causes, among others, hazing, blurring, light varia-
tion/absorption. In addition, coral species exhibit high intra-
class and inter-class variability. Besides, coral reef are densely
populated resulting in complex spatial borders among the dif-
ferent classes. As a consequence, human experts often struggle
to analyze images and to accurately identify different coral
species [3]. Another challenge is the presence of numerous
dead corals on which different species of algae grows. These
algae together with dead coral exhibit similar shape and
texture to the live specimens [4] of coral species. As such,
the classification becomes harder using traditional handcrafted
features.

In recent years, object classification using Convolutional
Neural Network (CNN) has become a great success story. The
introduction of several new techniques using CNN such as
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Fig. 1: Sample images from MLC dataset [2] with annotated
points. Blue rectangles represent coral classes and red circles
indicate non-coral classes.

AlexNet [5], VGGNet [6], ResNet [7], and DenseNet [8] has
resulted in recognition rates surpassing human level accuracy
in popular benchmark datasets, e.g., [9], [10]. Although deep
learning architectures have shown superior performance for
visual recognition activities, there is limited work in the area
of coral classification.

For solving the classification problem, traditional deep neu-
ral networks require either image level annotation or bounding
box annotation. The MLC benchmark dataset [2] uses point
annotation. In the point annotation method, a number of points
are randomly sampled in the image and experts are asked
for each point whether the point is on a coral or not. Some
examples of point annotation on the MLC dataset is shown
in Fig. 1. This annotation method is popular among marine
biologists. Mahmood et al. [11] employing transfer learning
of CNN creates fixed sized patches centered on the labeled
point and resizes the cropped images to be used as input to
the proposed network. Resizing each patch, however, is an
expensive operation and causes loss of information. For the
MLC dataset, the cropped patches often include only a small
portion of the object it is labeled for—see Fig. 2g—while
sometimes cropping a smaller size patch (28 x 28) does not
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Fig. 2: (a) Example of point annotated image shows some points not on coral; (b) & (c) Pocillopora patches of size 28 x 28 and
56 x 56. For the Pocillopora patches, the texture and shape information is available at both crop sizes. However, for Montipora
patches, smaller patches contain no information about the coral object. Hence bigger patch size is necessary in such cases. (d)
& (e) & (f) & (g) Montipora patches of size 28 x 28, 56 x 56, 84 x 84, and 112 x 112, respectively.

include the coral at all as shown in Fig. 2d. Therefore, finding
the appropriate crop size is challenging.

A major bottleneck on coral classification is the imbal-
ance of the number of samples for classes of different coral
species—e.g., in the MLC dataset [2], Crustose Coralline
Algae (CCA) 48% vs. Acropora 0.01%. This inherent class
imbalance in coral datasets makes the CNN training process
complicated. Transfer learning has shown promising result
in handling imbalanced datasets in other domains. Transfer
learning refers to the approach where the representation from
state-of-the-art networks pre-trained on a large dataset (e.g.,
ImageNet [12]) is extracted and then fed to a classifier. An-
other approach is balancing the target dataset by augmenting
less frequent classes or sampling equal number of samples per
class. After balancing the dataset, a CNN can be trained from
scratch provided that enough samples are present compared to
the number of the hyper-parameters of the network. In practice,
for small but balanced datasets, fine-tuning large networks
(e.g., VGG [6]) provides excellent performance. Fine-tuning
is performed by disabling hyper-parameters update for most
of the initial layers of a pre-trained network and only training
few final layers.

In our proposed method, the Multipatch Dense Network
(MDNet) fits annotated points in parallel on patches of several
sizes (as big as 84 x 84 or even 112 x 112) and then
aggregates the learned representation to classify the image
with the appropriate coral species. Therefore, the network is
able to use information from different scales. Moreover, to
prevent over-fitting, the network is designed utilizing dense
connectivity between layers. In addition, we train the network
with a cost sensitive loss function to favor infrequent classes.
Our proposed network performs better on the benchmark MLC
dataset than state-of-the-art algorithms in terms of accuracy
and average class precision. To summarize, our primary
contributions are:

1) An end-to-end deep learning framework, MDNet, to

classify coral species.

2) The use of multi-scale patches from point annotated

visual data to train a deep learning model.

II. RELATED WORK

Most of the traditional approaches for coral classification
focused on pixel-based classifiers where the spectral properties

of each pixel of the image were used to determine each
coral’s class. Textural appearances were used by Mehta et
al. [13] to classify coral reef images. The approach used in
[13] could not handle illumination changes in the underwater
environment. Based on image color and texture features
extracted from the coral reef video frames, Marcos et al.
[14] developed an automated rapid reef classification system,
able to perform finer scale data acquisition and processing
compared to previously existing systems. Marcos et al. [14]
adopted the histogram of normalized chromaticity coordinates
(NCC) to extract color features, and the local binary patterns
(LBP) descriptor to extract texture features from the coral
reef images. Stokes et al. [15] proposed a coral classification
method based on the discrete cosine transform and a k-
nearest neighbor classifier. Even though the results appeared
promising, only a small dataset, containing just 16 images,
was used. It is not clear whether the approach proposed in
[15] would generalize well. Early work by Beijbom et al. [2]
proposed a multiple scale classification algorithm using texture
and color descriptors. The MLC dataset with 400,000 expert
annotations was introduced. Their approach is the first one that
addressed automated annotations of coral reef survey image on
a large scale. The Maximum Response (MR) filter bank [2]
was used for texture and color feature extraction. The filter was
applied to each color channel in the L X a X b color space and
then the filter response vectors were stacked. Beijbom et al.
[2] used Support Vector Machines with Radial Basis Function
kernel as classifier.

Mahmood et al. [11] proposed a method using learned fea-
tures and hand-crafted features from multi-scale patches. First,
four patches centered on the annotated points were extracted
and resized to the input size of VGGnet [6]. Then, feature
representations were extracted from the last layer of VGGnet
(16 layer configuration) before the first fully connected layer.
At this point, hand-crafted features were extracted and con-
catenated with extracted features from VGGnet. Finally, these
concatenated features are fed to a 2-layer MLP (multilayer
perceptron) classifier. While our proposed network also utilizes
several patch sizes, our model learns from several patches with
no resizing operations and aggregates the learned features to
produce a prediction. Moreover, our approach is an end-to-
end model while the approach proposed by Mahmood et al.
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Fig. 3: Block diagram of the proposed coral classification framework.

[11] is a multi-step process. Class dependent costs are used to
calculate the loss of the network to reduce the effect of class
imbalance.

More recently, DenseNet [8] has shown promising result
in the classification of popular object (non-coral) datasets
such as CIFAR-10, CIFAR-100, SVHN, and ImageNet using a
smaller number of hyper-parameters. Huang et al. [8] showed
that dense connections between layers allow the network to
learn faster because of the improved flow of information and
the faster propagation of gradients during back-propagation.
Dense connections refer to the fact that each layer is connected
to all subsequent layers up to the loss layer. Because of this
connection between the loss layer and each previous layer, the
network learns in a deeply supervised manner, which helps
reducing over-fitting in smaller size training sets.

III. PROPOSED METHOD

We propose a novel deep learning framework, Multi-Patch
Dense Network (MDNet), for coral classification inspired
by DenseNet [8] architecture. The benchmark dataset MLC
follows point annotation technique. The point annotation tech-
nique suggests that the annotated point is located on an object;
thus, the comparatively smaller patches (28 x 28) containing
the annotated points in the center will best reflect the object.
In practice, this idea in general holds true for most smaller
patches. However, there is a number of annotated points that
are not exactly on the object; see Fig. 2. Surprisingly, there
even smaller patches where no object is present. On the other
hand, larger patches (112 x 112 or 84 x 84) always contain
the object it is annotated for. However, larger patches, in
many cases, may contain several different species of coral and
parts of the background (non-coral). In our empirical analysis,
we observed complex spatial boundary among corals species,
which is why, it is nearly impossible to find a patch size that
will contain only the object, applicable for all points. Thus,
it is imperative to consider both smaller and larger patches to
extract useful information such as texture and shape.

The key idea proposed in this paper is to start with a larger
patch (112 x 112) and iteratively crop towards the center. As a
result, the network can utilize the varying patch sizes to learn
the texture and appearance of distinct coral species. Another

important feature of the network is that it is densely connected
among layers to reduce over-fitting.

A. Network Architecture

Our network architecture consists of several building blocks
inspired by DenseNet. We first explain these building blocks
and then present our network architecture.

1) Dense Layer: Consider a single patch xy. We define
a composite function dense layer, D; where [ denotes the
layer. D; is a combination of three standard CNN operations
in sequence: batch normalization (BN) [16], rectified linear
unit (ReLU) [17], and a 3 x 3 convolution. The output of the
l-th dense layer is denoted by x;.

2) Transition Layer: The transition layer consists of a 1 x 1
convolution followed by a 2 x 2 average pooling with stride
2. The transition layer is placed between dense blocks.

3) Dense Block: Several dense layers are connected se-
quentially to create a dense block. Each of the dense layers
in the dense block is connected to all subsequent dense layers
in the same block in a feed-forward fashion, as shown in Fig.
4. For the [-th dense layer, there are [ inputs consisted of
the feature maps of all preceding layers, [z, ..., z;—1]. Here
[zo, ..., 2;—1] indicates the concatenated feature maps produced
in layer O, ..., — 1. Therefore, the input of the [-th layer is:

x1 = Di([xo, 21, ..., 21-1]) (D

Within a dense block, there is no pooling layer. Each
layer has input from all the preceding layers within the same
dense block, so the number of feature maps grows fast. This
proliferation of feature maps may exceed the limit of GPU
memory. Therefore, our network is designed with a smaller
number of dense layers per block.
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Fig. 4: Tllustration of a dense block.




4) CNN Architecture: MDNet is shown in Fig. 3. We define
a dense pipeline as a sequence of 3 dense blocks connected
by transition layers. The input size of our proposed network
is 112 x 112. The input image, ¢, is fed to a dense pipeline.
In parallel, the input is connected to center crop layer, crop,
which crops the input images to 84 x 84 size. Another dense
pipeline takes the output of the crop; layer. Again, crop; layer
is followed by another center crop layer crop, and a dense
pipeline. The crop; layer extracts a 56 x 56 size patch from the
center of the input. In parallel, crop, is connected to a center
crop layer crop; which extracts a 28 x 28 patch. The crop,
layer is again connected to a dense pipeline. At this point, the
outputs of the four parallel dense pipelines are converted to
a 1-D vector and concatenated. These concatenated features
are fed to two fully connected layers with 2048 hidden units
followed by a softmax layer.

To measure the loss of the proposed model, we have used
cross-entropy. The softmax layer takes the learned represen-
tation, f; and interprets it to the output class. A probability
score p; is also assigned for the output class. If we define the
number of coral classes as K, then we get

pi= ) e )

Yexp(fi) 7T
and

L=-Y gilog(p) 3)

where L is the loss of cross entropy of the network. Back
propagation is used to calculate the gradients of the network.
If the ground truth of an input image is denoted as g, then,
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5) Cost Sensitive Training: To tackle the class imbalance

problem, we use cost sensitive training [18]. The output of the

softmax layer, p; is modified by a cost matrix C' to calculate

class dependent costs. Therefore, the modified class dependent
output y,, of the network is as follows:

Yn = Cp,n exp(fi)
" > Cpmexp(fi)
where p is the desired class and NV is the number of neurons

in the output layer. The modified output of the network, v,
is then used to calculate the class dependent loss:

L=-Y" gilog(yn) (6)

“4)

®)

The cost function only affects the loss calculation, and
does not change the gradients in back-propagation [18]. The
diagonal values of the cost weight matrix, C, represent the
weight for each class of K. The weight of a class k; is

calculated as: g
k’.
Zk:l S/w

where Sj;, is the number of samples in class ;.

ki=1

B. Model Training

1) Preprocessing: To address the challenge of point an-
notated data, the following preprocessing steps are followed.
A patch of size 112 x 112 is extracted for every annotation
point with the annotated point in the center of the patch.
We perform normalization on the patches before feeding
to the network. Normalization changes the range of pixel
intensity values and transforms an n-dimensional image I :
{X € R"} = {Xmin,---s Xmax} With intensity values in
the range (Xmin, Xmax) into a new image Iy : {X C
R™} — {Ymin, --s Ymax with intensity values in the range
(Yiin,s Ymax)- The linear normalization of a gray-scale digital
image is performed according to the formula:

Ymax - Ymin

Xmax -

IN = (I_Xmin) X

+ Ymin (8)

2) Augmentation: For the MLC dataset, all the images are
collected using the same protocol: using a frame over coral
reef. Therefore, we only choose to augment these datasets
using random horizontal flip, random image channel shift,
and random rotation between 20° and -20°. Random image
channel shift is chosen to make the network robust to color
suppression since red color is the first color absorbed in
underwater images.

3) Training Hardware and Parameters: We train the model
on two Nvidia P100 GPUs with a mini-batch of 512. We im-
plemented our network using Keras with Tensorflow backend.
After some experiments, we found the following parameters
to work best for our model: learning rate 0.01, weight decay
le — 4 every 100 iterations and Nesterov momentum 0.9.

IV. EXPERIMENTS & RESULTS

MDNet has been tested on a standard benchmark dataset
for coral species classification, MLLC Moorea Labeled Corals
(MLC) dataset [2]. MLC dataset [2] consists of a subset of
images, collected at the Moorea Coral Reef Long Term Eco-
logical Research site (MCR-LTER). The images are collected
from three different habitats over a three year period (2008-
2010). Images of each particular year are considered as a
separate dataset. In total, there are 2055 images that have a
large variety in coral shape, color, scale, and viewing angle.
For our experiments, images of the nine most frequent classes
of the MLC dataset were used; where five are corals and four
are non-corals.

A. Experimental Setup

For the MLC dataset, we set up our experiments in a similar
way to Beijbom et al. [2]. In the first set up—Experiment 1—
we randomly split data collected on 2008 into 80/20 train/test
set. In the second set up, Experiment 2, we train our model
on 2008 transect and test on 2009 transect. In the third set up,
Experiment 3, we train on 2008 and 2009 transects combined,
and test on 2010 transect. We report the performance of the
models in terms of accuracy and average class precision [19].

Baseline: We consider the work by Mahmood et al. [11]
as baseline and we call their method CF. As there is no



Accuracy(%) ACP(%)
Model Expl [ Exp2 [ Exp3 Expl [ Exp2 [ Exp3
CF 77.9 70.1 84.5 69 63 68
VGGNet 76.0 68.4 79.2 65 61 65
ResNet 82.1 79.2 83.1 72 65 79
DenseNet 76.0 79.7 83.0 69 71 73
MDNet 83.4 80.1 85.2 76 73 81

TABLE I: Overall classification accuracies and average class
precision (ACP) for different models on MLC dataset.

open source implementation of CF, we only report results
on the MLC dataset as the authors [11] showed in their
work. We also evaluate the classification performance of
other state-of-the-art algorithms: DenseNet [8], ResNet [7] and
VGGNet [6], by using the corresponding authors’ open source
implementation. We evaluated different architectures of these
state-of-the-art algorithms. However, we choose the following
architectures to report as they performed best against their
variations: DenseNet with 121 layers, ResNet with 50 layers,
and VGGNet with 16 layers. We used pre-trained weights to
train ResNet and VGGNet models, since the dataset is quite
small compared to the number of hyper-parameters of these
networks.

B. Classification Performance

The overall classification accuracy and precision on the
MLC dataset is shown in Table I. Our method significantly
outperforms the baseline networks on MLC dataset. For both
ResNet and VGGNet architectures, we initialize the networks
with ImageNet pre-trained weights. We trained both ResNet
and VGGNet models in two setups. In the first setup, we
trained all the parameters of the networks using the MLC
dataset [2]. In the second setup, we only trained the fully
connected layers of the networks while all previous layers
remained fixed on the pre-trained weights. For VGGNet and
ResNet, fine-tuning all the hyper-parameters provided the best
result. Therefore, we only report the performance of VGGNet
and ResNet in the second setup. For DenseNet, we choose the
first setup, that is, to fit all the parameters of the network on
the dataset. Therefore, we initialize the DenseNet model with
ImageNet pre-trained weights and then train the entire model.

CF is built utilizing the extracted feature representation from
VGGNet’s last layer before the first fully connected layer. So,
the performance gain by CF is due to the use of several patch
sizes and combination of hand-crafted features. Moreover,
the accuracy gain of the CF is lower than the state-of-the-
art models in some cases. Our proposed model outperforms
these models and achieves 83.4% accuracy for Experiment
1, 80.1% accuracy for Experiment 2, and 85.2% accuracy for
Experiment 3. MDNet achieves competitive accuracy gain over
the baseline methods because it uses different size patches
along with cost sensitive training.

Table I reports also the average class precision for all the
models. We observe that our proposed method achieves sig-
nificantly higher average precision than other baseline models.

The result indicates that the proposed network generalizes
well, and predicts the less frequent classes more accurately.

V. CONCLUSION

In this paper, we presented a novel approach, termed MD-
Net, for coral classification which outperforms the state-of-
the-art algorithms in a standard benchmark dataset for coral
species classification. We devised a method to effectively
tackle point annotated datasets and make them compatible
for use in a CNN. In addition, we improve classification
performance in the presence of the class imbalance problem
in coral datasets by utilizing implicit deep supervision and
employing cost sensitive training of the proposed network.

Future work includes designing an online coral annotation
method capable of detecting corals on embedded computers.
This online coral annotation method will enable autonomous
monitoring of coral reef health using different underwater
robots. Currently, in the proposed work, we specify the input
size for the network. Such specification may not produce the
best results when tested on different types of data with point
annotation. Therefore, we are currently exploring the possible
application of reinforcement learning to automate the selection
of patch size for a dataset. The deployment of the proposed
trained network on a Neural Computation Stick will enable
the utilization of the proposed technique by scientists in the
field at a minimal cost.
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