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Abstract—Classifying coral species from visual data is a chal-
lenging task due to significant intra-species variation, high inter-
species similarity, inconsistent underwater image clarity, and high
dataset imbalance. In addition, point annotation, the labeling
method used for coral reef images by marine biologists, is prone
to mislabeling. Point annotation also makes existing datasets
incompatible with state-of-the-art classification methods which
use the bounding box annotation technique. In this paper, we
present a novel end-to-end Convolutional Neural Network (CNN)
architecture, Multi-Patch Dense Network (MDNet) that can learn
to classify coral species from point annotated visual data. The
proposed approach utilizes patches of different scale centered
on point annotated objects. Furthermore, MDNet utilizes dense
connectivity among layers to reduce over-fitting on imbalanced
datasets. Experimental results on the Moorea Labeled Coral
(MLC) benchmark dataset are presented. The proposed MDNet
achieves higher accuracy and average class precision than the
state-of-the-art approaches.

Index Terms—Deep learning, Convolutional neural networks
(CNN), Marine images, Classification, Marine ecosystems

I. INTRODUCTION

Coral reef ecosystems are very important for a number of

reasons: they are hosts to many species and they play an

important role in the capture of CO2 in the water. Unfor-

tunately, coral reef populations are on a rapid decline [1].

Thus, monitoring the health of coral ecosystems through scuba

divers and new technologies, such as underwater robots, has

become more and more important, resulting in the acquisition

of millions of images. While image acquisition has evolved,

reef monitoring still requires the identification of the different

coral species, a task that is mainly performed by human

experts.

The automated detection of coral species in a video feed

is a challenging problem, due to the underwater environ-

ment that causes, among others, hazing, blurring, light varia-

tion/absorption. In addition, coral species exhibit high intra-

class and inter-class variability. Besides, coral reef are densely

populated resulting in complex spatial borders among the dif-

ferent classes. As a consequence, human experts often struggle

to analyze images and to accurately identify different coral

species [3]. Another challenge is the presence of numerous

dead corals on which different species of algae grows. These

algae together with dead coral exhibit similar shape and

texture to the live specimens [4] of coral species. As such,

the classification becomes harder using traditional handcrafted

features.

In recent years, object classification using Convolutional

Neural Network (CNN) has become a great success story. The

introduction of several new techniques using CNN such as

Fig. 1: Sample images from MLC dataset [2] with annotated

points. Blue rectangles represent coral classes and red circles

indicate non-coral classes.

AlexNet [5], VGGNet [6], ResNet [7], and DenseNet [8] has

resulted in recognition rates surpassing human level accuracy

in popular benchmark datasets, e.g., [9], [10]. Although deep

learning architectures have shown superior performance for

visual recognition activities, there is limited work in the area

of coral classification.

For solving the classification problem, traditional deep neu-

ral networks require either image level annotation or bounding

box annotation. The MLC benchmark dataset [2] uses point

annotation. In the point annotation method, a number of points

are randomly sampled in the image and experts are asked

for each point whether the point is on a coral or not. Some

examples of point annotation on the MLC dataset is shown

in Fig. 1. This annotation method is popular among marine

biologists. Mahmood et al. [11] employing transfer learning

of CNN creates fixed sized patches centered on the labeled

point and resizes the cropped images to be used as input to

the proposed network. Resizing each patch, however, is an

expensive operation and causes loss of information. For the

MLC dataset, the cropped patches often include only a small

portion of the object it is labeled for—see Fig. 2g—while

sometimes cropping a smaller size patch (28 × 28) does not
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Fig. 2: (a) Example of point annotated image shows some points not on coral; (b) & (c) Pocillopora patches of size 28×28 and

56×56. For the Pocillopora patches, the texture and shape information is available at both crop sizes. However, for Montipora

patches, smaller patches contain no information about the coral object. Hence bigger patch size is necessary in such cases. (d)

& (e) & (f) & (g) Montipora patches of size 28× 28, 56× 56, 84× 84, and 112× 112, respectively.

include the coral at all as shown in Fig. 2d. Therefore, finding

the appropriate crop size is challenging.

A major bottleneck on coral classification is the imbal-

ance of the number of samples for classes of different coral

species—e.g., in the MLC dataset [2], Crustose Coralline

Algae (CCA) 48% vs. Acropora 0.01%. This inherent class

imbalance in coral datasets makes the CNN training process

complicated. Transfer learning has shown promising result

in handling imbalanced datasets in other domains. Transfer

learning refers to the approach where the representation from

state-of-the-art networks pre-trained on a large dataset (e.g.,

ImageNet [12]) is extracted and then fed to a classifier. An-

other approach is balancing the target dataset by augmenting

less frequent classes or sampling equal number of samples per

class. After balancing the dataset, a CNN can be trained from

scratch provided that enough samples are present compared to

the number of the hyper-parameters of the network. In practice,

for small but balanced datasets, fine-tuning large networks

(e.g., VGG [6]) provides excellent performance. Fine-tuning

is performed by disabling hyper-parameters update for most

of the initial layers of a pre-trained network and only training

few final layers.

In our proposed method, the Multipatch Dense Network

(MDNet) fits annotated points in parallel on patches of several

sizes (as big as 84 × 84 or even 112 × 112) and then

aggregates the learned representation to classify the image

with the appropriate coral species. Therefore, the network is

able to use information from different scales. Moreover, to

prevent over-fitting, the network is designed utilizing dense

connectivity between layers. In addition, we train the network

with a cost sensitive loss function to favor infrequent classes.

Our proposed network performs better on the benchmark MLC

dataset than state-of-the-art algorithms in terms of accuracy

and average class precision. To summarize, our primary

contributions are:

1) An end-to-end deep learning framework, MDNet, to

classify coral species.

2) The use of multi-scale patches from point annotated

visual data to train a deep learning model.

II. RELATED WORK

Most of the traditional approaches for coral classification

focused on pixel-based classifiers where the spectral properties

of each pixel of the image were used to determine each

coral’s class. Textural appearances were used by Mehta et

al. [13] to classify coral reef images. The approach used in

[13] could not handle illumination changes in the underwater

environment. Based on image color and texture features

extracted from the coral reef video frames, Marcos et al.

[14] developed an automated rapid reef classification system,

able to perform finer scale data acquisition and processing

compared to previously existing systems. Marcos et al. [14]

adopted the histogram of normalized chromaticity coordinates

(NCC) to extract color features, and the local binary patterns

(LBP) descriptor to extract texture features from the coral

reef images. Stokes et al. [15] proposed a coral classification

method based on the discrete cosine transform and a k-

nearest neighbor classifier. Even though the results appeared

promising, only a small dataset, containing just 16 images,

was used. It is not clear whether the approach proposed in

[15] would generalize well. Early work by Beijbom et al. [2]

proposed a multiple scale classification algorithm using texture

and color descriptors. The MLC dataset with 400,000 expert

annotations was introduced. Their approach is the first one that

addressed automated annotations of coral reef survey image on

a large scale. The Maximum Response (MR) filter bank [2]

was used for texture and color feature extraction. The filter was

applied to each color channel in the L×a× b color space and

then the filter response vectors were stacked. Beijbom et al.

[2] used Support Vector Machines with Radial Basis Function

kernel as classifier.

Mahmood et al. [11] proposed a method using learned fea-

tures and hand-crafted features from multi-scale patches. First,

four patches centered on the annotated points were extracted

and resized to the input size of VGGnet [6]. Then, feature

representations were extracted from the last layer of VGGnet

(16 layer configuration) before the first fully connected layer.

At this point, hand-crafted features were extracted and con-

catenated with extracted features from VGGnet. Finally, these

concatenated features are fed to a 2-layer MLP (multilayer

perceptron) classifier. While our proposed network also utilizes

several patch sizes, our model learns from several patches with

no resizing operations and aggregates the learned features to

produce a prediction. Moreover, our approach is an end-to-

end model while the approach proposed by Mahmood et al.



Fig. 3: Block diagram of the proposed coral classification framework.

[11] is a multi-step process. Class dependent costs are used to

calculate the loss of the network to reduce the effect of class

imbalance.

More recently, DenseNet [8] has shown promising result

in the classification of popular object (non-coral) datasets

such as CIFAR-10, CIFAR-100, SVHN, and ImageNet using a

smaller number of hyper-parameters. Huang et al. [8] showed

that dense connections between layers allow the network to

learn faster because of the improved flow of information and

the faster propagation of gradients during back-propagation.

Dense connections refer to the fact that each layer is connected

to all subsequent layers up to the loss layer. Because of this

connection between the loss layer and each previous layer, the

network learns in a deeply supervised manner, which helps

reducing over-fitting in smaller size training sets.

III. PROPOSED METHOD

We propose a novel deep learning framework, Multi-Patch

Dense Network (MDNet), for coral classification inspired

by DenseNet [8] architecture. The benchmark dataset MLC

follows point annotation technique. The point annotation tech-

nique suggests that the annotated point is located on an object;

thus, the comparatively smaller patches (28 × 28) containing

the annotated points in the center will best reflect the object.

In practice, this idea in general holds true for most smaller

patches. However, there is a number of annotated points that

are not exactly on the object; see Fig. 2. Surprisingly, there

even smaller patches where no object is present. On the other

hand, larger patches (112 × 112 or 84 × 84) always contain

the object it is annotated for. However, larger patches, in

many cases, may contain several different species of coral and

parts of the background (non-coral). In our empirical analysis,

we observed complex spatial boundary among corals species,

which is why, it is nearly impossible to find a patch size that

will contain only the object, applicable for all points. Thus,

it is imperative to consider both smaller and larger patches to

extract useful information such as texture and shape.

The key idea proposed in this paper is to start with a larger

patch (112×112) and iteratively crop towards the center. As a

result, the network can utilize the varying patch sizes to learn

the texture and appearance of distinct coral species. Another

important feature of the network is that it is densely connected

among layers to reduce over-fitting.

A. Network Architecture

Our network architecture consists of several building blocks

inspired by DenseNet. We first explain these building blocks

and then present our network architecture.

1) Dense Layer: Consider a single patch x0. We define

a composite function dense layer, Dl where l denotes the

layer. Dl is a combination of three standard CNN operations

in sequence: batch normalization (BN) [16], rectified linear

unit (ReLU) [17], and a 3× 3 convolution. The output of the

l-th dense layer is denoted by xl.

2) Transition Layer: The transition layer consists of a 1×1
convolution followed by a 2 × 2 average pooling with stride

2. The transition layer is placed between dense blocks.

3) Dense Block: Several dense layers are connected se-

quentially to create a dense block. Each of the dense layers

in the dense block is connected to all subsequent dense layers

in the same block in a feed-forward fashion, as shown in Fig.

4. For the l-th dense layer, there are l inputs consisted of

the feature maps of all preceding layers, [x0, ..., xl−1]. Here

[x0, ..., xl−1] indicates the concatenated feature maps produced

in layer 0, ..., l − 1. Therefore, the input of the l-th layer is:

xl = Dl([x0, x1, ..., xl−1]) (1)

Within a dense block, there is no pooling layer. Each

layer has input from all the preceding layers within the same

dense block, so the number of feature maps grows fast. This

proliferation of feature maps may exceed the limit of GPU

memory. Therefore, our network is designed with a smaller

number of dense layers per block.

Fig. 4: Illustration of a dense block.



4) CNN Architecture: MDNet is shown in Fig. 3. We define

a dense pipeline as a sequence of 3 dense blocks connected

by transition layers. The input size of our proposed network

is 112× 112. The input image, x0, is fed to a dense pipeline.

In parallel, the input is connected to center crop layer, crop
1

which crops the input images to 84× 84 size. Another dense

pipeline takes the output of the crop
1

layer. Again, crop
1

layer

is followed by another center crop layer crop
2

and a dense

pipeline. The crop2 layer extracts a 56×56 size patch from the

center of the input. In parallel, crop
2

is connected to a center

crop layer crop
3

which extracts a 28 × 28 patch. The crop
3

layer is again connected to a dense pipeline. At this point, the

outputs of the four parallel dense pipelines are converted to

a 1-D vector and concatenated. These concatenated features

are fed to two fully connected layers with 2048 hidden units

followed by a softmax layer.

To measure the loss of the proposed model, we have used

cross-entropy. The softmax layer takes the learned represen-

tation, f i and interprets it to the output class. A probability

score pi is also assigned for the output class. If we define the

number of coral classes as K, then we get

pi =
exp(f i)∑
i exp(f i)

, i = 1, ...,K (2)

and

L = −
∑

i

gi log(pi) (3)

where L is the loss of cross entropy of the network. Back

propagation is used to calculate the gradients of the network.

If the ground truth of an input image is denoted as gi, then,

∂L

∂fi
= pi − gi (4)

5) Cost Sensitive Training: To tackle the class imbalance

problem, we use cost sensitive training [18]. The output of the

softmax layer, pi is modified by a cost matrix C to calculate

class dependent costs. Therefore, the modified class dependent

output yn of the network is as follows:

yn =
Cp,n exp(f i)∑
i Cp,n exp(f i)

(5)

where p is the desired class and N is the number of neurons

in the output layer. The modified output of the network, yn,

is then used to calculate the class dependent loss:

L = −
∑

i

gi log(yn) (6)

The cost function only affects the loss calculation, and

does not change the gradients in back-propagation [18]. The

diagonal values of the cost weight matrix, C, represent the

weight for each class of K. The weight of a class ki is

calculated as:

ki = 1−
Ski∑
k=1

Ski

(7)

where Ski
is the number of samples in class ki.

B. Model Training

1) Preprocessing: To address the challenge of point an-

notated data, the following preprocessing steps are followed.

A patch of size 112 × 112 is extracted for every annotation

point with the annotated point in the center of the patch.

We perform normalization on the patches before feeding

to the network. Normalization changes the range of pixel

intensity values and transforms an n-dimensional image I :
{X ⊆ R

n} → {Xmin, ..., Xmax} with intensity values in

the range (Xmin, Xmax) into a new image IN : {X ⊆
R

n} → {Ymin, ..., Ymax} with intensity values in the range

(Ymin, Ymax). The linear normalization of a gray-scale digital

image is performed according to the formula:

IN = (I −Xmin)
Ymax − Ymin

Xmax −Xmin

+ Ymin (8)

2) Augmentation: For the MLC dataset, all the images are

collected using the same protocol: using a frame over coral

reef. Therefore, we only choose to augment these datasets

using random horizontal flip, random image channel shift,

and random rotation between 20◦ and -20◦. Random image

channel shift is chosen to make the network robust to color

suppression since red color is the first color absorbed in

underwater images.

3) Training Hardware and Parameters: We train the model

on two Nvidia P100 GPUs with a mini-batch of 512. We im-

plemented our network using Keras with Tensorflow backend.

After some experiments, we found the following parameters

to work best for our model: learning rate 0.01, weight decay

1e− 4 every 100 iterations and Nesterov momentum 0.9.

IV. EXPERIMENTS & RESULTS

MDNet has been tested on a standard benchmark dataset

for coral species classification, MLC Moorea Labeled Corals

(MLC) dataset [2]. MLC dataset [2] consists of a subset of

images, collected at the Moorea Coral Reef Long Term Eco-

logical Research site (MCR-LTER). The images are collected

from three different habitats over a three year period (2008-

2010). Images of each particular year are considered as a

separate dataset. In total, there are 2055 images that have a

large variety in coral shape, color, scale, and viewing angle.

For our experiments, images of the nine most frequent classes

of the MLC dataset were used; where five are corals and four

are non-corals.

A. Experimental Setup

For the MLC dataset, we set up our experiments in a similar

way to Beijbom et al. [2]. In the first set up—Experiment 1—

we randomly split data collected on 2008 into 80/20 train/test

set. In the second set up, Experiment 2, we train our model

on 2008 transect and test on 2009 transect. In the third set up,

Experiment 3, we train on 2008 and 2009 transects combined,

and test on 2010 transect. We report the performance of the

models in terms of accuracy and average class precision [19].

Baseline: We consider the work by Mahmood et al. [11]

as baseline and we call their method CF. As there is no



Accuracy(%) ACP(%)
Model Exp1 Exp2 Exp3 Exp 1 Exp 2 Exp 3

CF 77.9 70.1 84.5 69 63 68

VGGNet 76.0 68.4 79.2 65 61 65

ResNet 82.1 79.2 83.1 72 65 79

DenseNet 76.0 79.7 83.0 69 71 73

MDNet 83.4 80.1 85.2 76 73 81

TABLE I: Overall classification accuracies and average class

precision (ACP) for different models on MLC dataset.

open source implementation of CF, we only report results

on the MLC dataset as the authors [11] showed in their

work. We also evaluate the classification performance of

other state-of-the-art algorithms: DenseNet [8], ResNet [7] and

VGGNet [6], by using the corresponding authors’ open source

implementation. We evaluated different architectures of these

state-of-the-art algorithms. However, we choose the following

architectures to report as they performed best against their

variations: DenseNet with 121 layers, ResNet with 50 layers,

and VGGNet with 16 layers. We used pre-trained weights to

train ResNet and VGGNet models, since the dataset is quite

small compared to the number of hyper-parameters of these

networks.

B. Classification Performance

The overall classification accuracy and precision on the

MLC dataset is shown in Table I. Our method significantly

outperforms the baseline networks on MLC dataset. For both

ResNet and VGGNet architectures, we initialize the networks

with ImageNet pre-trained weights. We trained both ResNet

and VGGNet models in two setups. In the first setup, we

trained all the parameters of the networks using the MLC

dataset [2]. In the second setup, we only trained the fully

connected layers of the networks while all previous layers

remained fixed on the pre-trained weights. For VGGNet and

ResNet, fine-tuning all the hyper-parameters provided the best

result. Therefore, we only report the performance of VGGNet

and ResNet in the second setup. For DenseNet, we choose the

first setup, that is, to fit all the parameters of the network on

the dataset. Therefore, we initialize the DenseNet model with

ImageNet pre-trained weights and then train the entire model.

CF is built utilizing the extracted feature representation from

VGGNet’s last layer before the first fully connected layer. So,

the performance gain by CF is due to the use of several patch

sizes and combination of hand-crafted features. Moreover,

the accuracy gain of the CF is lower than the state-of-the-

art models in some cases. Our proposed model outperforms

these models and achieves 83.4% accuracy for Experiment

1, 80.1% accuracy for Experiment 2, and 85.2% accuracy for

Experiment 3. MDNet achieves competitive accuracy gain over

the baseline methods because it uses different size patches

along with cost sensitive training.

Table I reports also the average class precision for all the

models. We observe that our proposed method achieves sig-

nificantly higher average precision than other baseline models.

The result indicates that the proposed network generalizes

well, and predicts the less frequent classes more accurately.

V. CONCLUSION

In this paper, we presented a novel approach, termed MD-

Net, for coral classification which outperforms the state-of-

the-art algorithms in a standard benchmark dataset for coral

species classification. We devised a method to effectively

tackle point annotated datasets and make them compatible

for use in a CNN. In addition, we improve classification

performance in the presence of the class imbalance problem

in coral datasets by utilizing implicit deep supervision and

employing cost sensitive training of the proposed network.

Future work includes designing an online coral annotation

method capable of detecting corals on embedded computers.

This online coral annotation method will enable autonomous

monitoring of coral reef health using different underwater

robots. Currently, in the proposed work, we specify the input

size for the network. Such specification may not produce the

best results when tested on different types of data with point

annotation. Therefore, we are currently exploring the possible

application of reinforcement learning to automate the selection

of patch size for a dataset. The deployment of the proposed

trained network on a Neural Computation Stick will enable

the utilization of the proposed technique by scientists in the

field at a minimal cost.
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