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ABSTRACT

The holy grail of robotics is producing robotic systems capable of efficiently executing all

the tasks that are hard, or even impossible, for humans. Humans, undoubtedly, from both

a hardware and software perspective, are extremely complex systems capable of executing

many complicated tasks. Thus, the complexity of many state-of-the-art robotic systems

is also expected to progressively increase, with the goal to match or even surpass human

abilities. Recent developments have emphasized mostly hardware, providing highly com-

plex robots with exceptional capabilities. On the other hand, they have illustrated that one

important bottleneck of realizing such systems as a common reality is real-time motion

planning.

This thesis aims to assist the development of complex robotic systems from a com-

putational perspective. The primary focus is developing novel methodologies to address

real-time motion planning that enables the robots to accomplish their goals safely and pro-

vide the building blocks for developing robust advanced robot behavior in the future. The

proposed methods utilize and enhance state-of-the-art approaches to overcome three dif-

ferent types of complexity:

1. Motion planning for high-dimensional systems. RRT+, a new family of general

sampling-based planners, was introduced to accelerate solving the motion planning prob-

lem for robotic systems with many degrees of freedom by iteratively searching in lower-

dimensional subspaces of increasing dimension. RRT+ variants computed solutions orders

of magnitude faster compared to state-of-the-art planners. Experiments in simulation of

kinematic chains up to 50 degrees of freedom, and the Baxter humanoid robot validate the

effectiveness of the proposed technique.
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2. Underwater navigation for robots in cluttered environments. AquaNav, a real-time

navigation pipeline for robots moving efficiently in challenging, unknown, and unstruc-

tured environments, was developed for Aqua2, a hexapod swimming robot with complex,

yet to be fully discovered, dynamics. AquaNav was tested offline in known maps, and

online in unknown maps utilizing vision-based SLAM. Rigorous testing in simulation, in-

pool, and open-water trials show the robustness of the method on providing efficient and

safe performance, enabling the robot to navigate by avoiding static and dynamic obstacles

in open-water settings with turbidity and surge.

3. Active perception of areas of interest during underwater operation. AquaVis, an

extension of AquaNav, is a real-time navigation technique enabling robots, with arbitrary

multi-sensor configurations, to safely reach their target, while at the same time observing

multiple areas of interest from a desired proximity. Extensive simulations show safe behav-

ior, and strong potential for improving underwater state estimation, monitoring, tracking,

inspection, and mapping of objects of interest in the underwater domain, such as coral

reefs, shipwrecks, marine life, and human infrastructure.
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CHAPTER 1

INTRODUCTION

From Talos, the giant mechanical protector of Crete, to robotic systems in modern popular

culture, robots with exotic capabilities performing inhuman tasks with ease have been an in-

triguing concept for thousands of years. In particular, some robotic systems exceed human

capability, exercising effortless control over multiple components to complete complex

tasks all within challenging environments, and these are simultaneously the most exciting

to humanity’s imagination and most inspiring to scientists throughout the ages. Popular

examples of such systems are shown in Figure 1.1.

For generations upon generations, such systems were only introduced in mythological

or artistic contexts. However, novel developments in the field of Robotics and Computer

Science in recent decades have allowed the systematic study and the discovery of the foun-

dations for developing and materializing such complex robotic systems.

There are many — very meaningful but generally simple — tasks that could be suc-

cessfully executed by simple robots [10–14]. For such tasks, such as cleaning the floor,

demining, or even waking-up heavy sleepers, simple robots can perform robustly and re-

liably; introducing more complicated robots would not only be an extravagance but also

a less reliable option. On the other hand, although simple robots could exhibit complex

behaviors, there are more tasks for which robots could be useful that require robotic sys-

tems of high complexity. Especially for tasks for which mobility is crucial, humans are

essential due to the efficient and complex mobility of the human body — an overactuated

mobile manipulator which has 244 degrees of freedom [15]. However, the capabilities of

human operators are also stressed and limited in many real-world scenarios, such as in the

1



(a) (b)

(c) (d)

Figure 1.1 Mythological and fictional complex robotic systems from pop-culture: (a)
Talos from Greek mythology (Bronze Age), (b) Maria from “Metropolis” (1927), (c)
Rosie from “The Jetsons family” (1962), and (d) Mechagodzilla from “Godzilla vs.

Mechagodzilla” (1974).

underwater domain, especially when operation in such scenarios is combined with different

underlying objectives and multitasking.

Developing complex robotic systems in the present is not only for the sake of excite-

ment or futurism. Rather, it has become essential to the development and sustainability

of our society, with simple robots already assisting human workers or users at home or in

the production pipeline. Furthermore, the automation of complex, repetitive, hard, or even

dangerous tasks for human operators has been a leading idea for many manufacturers and

distributors. Some examples of systems following this trend can be seen in Figure 1.2
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(a) (b) (c)

Figure 1.2 Real complex robotic systems: (a) Boston Dynamics’ Handle, (b) Houston
Mechatronics’ Aquanaut, and (c) Stanford’s Ocean One [1].

Notably, given the hard situations that the SARS-COVID19 pandemic created for our

societies by interrupting manufacturing and distribution processes, autonomy has become

an even more essential concept that is driven by necessity.

Additionally, a great interest arose in the last decades for operations in the underwater

domain, serving various fields and disciplines. Firstly, underwater archaeologists are inter-

ested on discovering, documenting and retrieving underwater archaeological artifacts. In

the case of shipwrecks, this is a constant battle with time, given the constant deterioration

due to underwater conditions. Secondly, marine biologists are focusing on minimal dis-

turbance while studying marine life and the coral reefs’ ecosystems, crucial for the health

of our planet. It is also very important that essential underwater infrastructure be regu-

larly inspected and maintained to avoid financial or environmental catastrophes, particu-

larly within the energy sector or in aquaculture. Finally, in the defence and security sector,

the vastly unexplored underwater domain has been a primary focus for decades in order to

guarantee civilian or operational safety on multiple fronts, such as deminining, search and

rescue, and border surveillance.

At the present time, maritime operations require human operators due to the challenges

arising from the underwater domain. But even though the kinematic abilities of the human

body are enough to navigate and perform even complex operations, there exist many chal-

lenges that limit the extend of operations and risks to the health of the operators. Operations
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with human divers are limited to a maximum depth of 600 meters and require essential life-

support equipment that significantly reduces the kinematic and sensing capabilities of the

operators progressively as a function of the target depth. Additionally, operations during

deep dives are very time-limited at the target depth with respect to the overall dive duration.

Last but not least, small hardware failures, miscalculations, bad weather, underwater cur-

rents, wildlife or even terrains with cluttered obstacles (such as shipwrecks or underwater

caves) constantly place at great risk not only the missions but also the operators. These are

challenges that a capable complex autonomous system will be able to overcome, and in the

case of a failure, the system can avoid the expense of human lives.

In general, from a computational perspective, for any operation that could be auto-

mated, a typical robotic system is developed by addressing and successfully solving two

fundamental problems:

• State Estimation, which is the problem of producing estimates regarding the state of

the robot and environment, and

• Motion Planning, which is the problem of producing a sequence of motions for the

robot to achieve a specific goal, assuming State Estimation is solved to a satisfactory

level.

Robotic systems that are capable of operating successfully in challenging environments

need to be able to solve both problems in real time so that the system will be able to react

robustly, intelligently, and rapidly to the changes of the environment. For robots of high

complexity, the motion planning problem is considered their computational bottleneck,

with even state-of-the-art methods failing to perform satisfactorily in real-time.

The contribution of this thesis is a set of novel enhancements and frameworks that

provide real-time solutions to the motion planning problem for systems of high complexity.

More specifically, the contributions include three methods that solve three different facets

of this problem:
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1. RRT+ [16]: A family of novel sampling-based techniques that plan rapidly, in real-

time, for robotic systems with many Degrees of Freedom (DoFs). They were tested

against modern state-of-the-art planners in simulation for a kinematic chain and the

Baxter humanoid robot, solving challenging motion planning problems orders of

magnitude faster.

2. AquaNav [17]: A novel light-weight real-time replanning framework that combines

state-of-the-art sampling-based techniques and path optimization methods for effi-

cient offline and online 3D autonomous underwater navigation. It was applied on

an agile Autonomous Underwater Vehicle (AUV) with no complete dynamics model

called Aqua2 [18], and it was tested on challenging scenarios in simulation, in-pool,

and open-water trials. To the author’s knowledge, AquaNav is the first framework for

underwater robots that enables 3D navigation in complex unstructured terrain with

strong safety guarantees that take into account the shape of the robot, and real-time

replanning offered by a robust but computationally light pipeline.

3. AquaVis [19]: An extension of AquaNav that employs, for the first time, an AUV

with an arbitrary multi-sensor configuration to navigate safely while also observing

multiple points of interests, extracted automatically, from a desired distance.

Although not explicitly presented in the thesis, all the above contributions were in-

formed, motivated, and inspired by other relevant works of the author on vision-based state

estimation [20–23], localization [9, 24], reconstruction [25], and kinematics [26].

The thesis is structured as follows: Chapter 2 discusses the background on motion

planning, RRT+ is described in Chapter 3, AquaNav in Chapter 4, and information about

AquaVis is shown in Chapter 5. Finally, the thesis concludes with a discussion in Chapter 6

and conclusions in Chapter 7.
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CHAPTER 2

BACKGROUND

2.1 THE MOTION PLANNING PROBLEM

Motion planning is the fundamental problem of enabling autonomy for a robotic system to

decide a sequence of actions in order to transition safely from an initial state to a target state

or to a target collection of states (region) that accomplish a task, by avoiding the obstacles

of the environment. It is also referred in the field as the piano movers problem, Figure 2.1.

Typically, the motion planning problem is formulated as a state space search prob-

lem [27], where the state corresponds to instances of relevant properties of the robot, and

the state space is formed by the collection of all possible states. In practice, the state of

the robot is represented by a vector consisting of all the relevant variables of the system.

In the context of robotics, each such independent variable that contributes to the mobility

of the robot and describes a single simple kinematic ability is called a degree of freedom

or DoF. For example, DoFs could be variables that describe revolute or prismatic joints for

manipulators, or world frame coordinates and velocities for mechanical systems such as

cars, Figure 2.2. DoFs can be controllable, meaning that a control command could directly

and independently affect it, or passive, meaning that they are affected indirectly by con-

trolling other DoFs. Given the state space and a query, the result of a successful search is a

sequence of valid states that, if followed by the robot, the goal region is reached.

The state space is formed based on the DoFs, since by definition, each DoF contributes

one variable, thus adding one dimension to the problem. Then, every point of the state

space represents a state of a robot, and it is often called a configuration. The set of all pos-
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Figure 2.1 A solution for an instance of the piano movers problem. The goal is to
produce the motions which should be applied to the piano to move it from an initial to a

goal position. Figure was borrowed from Kuffner and LaValle [2].

sible such states of a robotic system is called the configuration space, commonly denoted

as C . Examples of configuration spaces for different systems are shown in Figure 2.3.

The configuration space could be discrete, continuous, or less often a collection of

volumes. If the configuration space is discrete, then it is simply a set of distinct states. An

example of a discrete continuous space could be a robot bounded to move on a 2D grid,

with a discrete transition model, thus the robot can only get into specific finite positions. If

the Configuration Space is continuous, meaning that all the DoFs considered are continuous

variables, then, as a mathematical concept, it is a space with volume and other geometrical

properties, often non-Euclidean. An example of a continuous C is a robot moving on a

surface, with no discretized states were the robot can freely move, thus the robot can be

anywhere on the surface. A configuration space is a collection of volumes, if it is formed

by both continuous and discrete actuators, introducing discontinuities. A C that consists

of a collection of volumes could be achieved by combining DoFs that form a continuous

space and DoFs with discrete values that are forming a discrete space – such systems are

called hybrid. An example of such system could be a robot that moves on a 2D surface
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(a) (b)

Figure 2.2 The Degrees of Freedom for (a) a 2R manipulator, and (b) a car. The state of
the manipulator can be described using the angles of the revolute joints R1, R2, and the

state of the end-effector if considered, and for the car with the position X and Y , the
orientation θ , and, potentially, the angular velocity ω and linear velocity V .

but at the same time carries a module that can move only in discrete positions, such as a

gripper, which could be only in an open or closed configuration.

In this thesis, the main focus will lie on motion planning for systems with continuous

configuration spaces, and discretizations will be avoided for two important reasons:

• Most real world robotic systems and applications need to perform robustly on real,

thus continuous, environments, and often discretization fails to sufficiently model the

reality.

• Even when the environment and the system could be modeled discretely to an ac-

ceptable resolution, by discretizing the actions, the true capabilities of the robot are

often underutilized. This could lead to less efficient solutions, or even to a decrease

in the probability that a solution will be found.

Motion planning problems can also be classified not only with respect to the continuity

of C but also their transition model into:

8



(a) (b)

Figure 2.3 Example of two different Configuration Spaces: (a) for a point robot moving
in 2D, and (b) for a 2R manipulator, such as the one depicted in Figure 2.2-a, with joints

that can perform full rotations. The C at (a) is formed by simply the 2D coordinates of the
robot, thus it results into a Euclidean plane. On the other hand the C of the manipulator

consists of two angles, forming a non-euclidean doughnut-like space.

• Holonomic, where the number of DoFs is equal to the number of the controllable

DoFs.

• Non-Holonomic, where the number of DoFs is larger than the number of the control-

lable DoFs.

That means that if a system is holonomic, every DoF is controllable, and could be con-

trolled directly and independently, so from any given state of the C the system can po-

tentially transition to other states at any direction. An example of such system could be

manipulators where each joint is controlled independently, such as the one shown in Fig-

ure 2.2-a. However, if a robotic system is non-holonomic, there exist DoFs which cannot

be controlled directly, thus from any given state of C , the system can transition only to a

subset of C . An example of a non-holonomic system could be a car, where lateral motion

is impossible, such as the one shown in Figure 2.2-b.
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Another dimension to classify motion planning problems is whether only kinematic or

dynamic constraints are taken into account. Kinematic constraints refer to constraints while

transitioning from one state to the other, placed by the limitations of the actuators of the

robot, for example due to angular restrictions to joints, or the environment due to obstacles.

Dynamic constraints also restrict mobility in real world systems due to other attributes,

such as inertia, center of mass displacements, etc. In the first case, only a kinematically

valid path needs to be found which the robot could follow without regard to attributes that

are affected by motion, where in the second case, the robotic system is subject to velocities,

accelerations and external forces that are potentially limiting the available transitions. An

example of such system could be aggressive autonomous driving, where safe transitions

require effort to satisfy acceleration and velocity bounds.

For any given motion planning problem where obstacles are present, C consists of two

complementary subsets:

• Cfree that consists of all the valid states where the robot is not in collision with the

obstacles of given environment or in other invalid states, and

• Cobs which consists of all the invalid states of the system due to collisions or other

constraints.

Even for simple problems, mapping C directly from the workspace could become counter-

intuitive and extremely challenging, as shown in Figure 2.4.

The motion planning problem could be formed as a search problem with the goal

of finding a path between two configurations that lie entirely in Cfree, Figure 2.4. The

hardness of the general motion planning problem is well-known, proven to be PSPACE-

complete [28]. The runtime of even the best known exact search algorithm is exponential

in the dimension of the configuration space [29].

Thankfully, advances in the field of Robotics and Computer Science have led to dif-

ferent approaches that robustly solve difficult and challenging motion planning problems.
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(a) (b)

Figure 2.4 An example instance of (a) the planning problem an (b) the unfolded
approximate C -space for a 2R manipulator, with R1 being able to rotate only from 0 to π .

At (a) the black circle indicates and obstacle that produces the Cobs. The manipulator
starting at configuration A should achieve configuration B, but there is no possible path

within Cfree.

Most approaches can be categorized within three big families, which are discussed in detail

in the next sections.

2.1.1 SAMPLING-BASED PLANNERS

Sampling-Based planners are randomized methods that aim to find a path between an initial

and goal configuration by picking samples, mostly at random, to explore Cfree and use them

to form graphs. If the initial and the goal configurations are nodes of such a graph, and

they both belong in the same connected subgraph, then the motion planning query can be

reduced to a simple path search on the subgraph between these two corresponding nodes.

Major representatives of planners in this category are PRMs [30] and RRTs [31].

If in the resulting graph, the initial and goal nodes are not in a common connected

subgraph, then it is inconclusive whether a solution, exists or not. Thus, sampling-based

planners are not complete methods in strict terms, but they might have Probabilistic Com-

pleteness. Probabilistic Completeness means that assuming a solution for a planning query
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exists, the possibility of discovering it tends to 1 as the execution time of these meth-

ods tends to infinity. The guarantee of the Probabilistic Completeness is proven for both

PRMs [30] and RRTs [31] with uniform sampling.

At first glance, Probabilistic Completeness might seem a weak guarantee by giving

the impression that some problems might require searching for an indefinite amount of

time and, unless a solution is found, we can never decide whether a solution exists or not.

Indeed, in theory these are two issues that sampling-based planners fall short for some

problems, but in practice they are used with a timeout, and they are capable of finding

solutions for many planning problems sufficiently fast. When they finish by reaching a

sufficient timeout without discovering a solution, then we can safely assume that a solution

is unlikely to exist, or unlikely to find easily. Due to the random nature of these methods,

restarting them could have beneficial results [32].

Sampling-based planners can be categorized with respect to the reutilization of the

graph they are constructing and the optimality of the solution they provide. The next sec-

tions will address the multiple and single query planners along with their variances that

guarantee optimal or near-optimal solutions.

MULTIPLE QUERY PLANNERS

Sampling-based multiple query planners focus on producing a data structure tailored to a

specific environment that can be used to plan for multiple queries producing solutions from

different initial to goal configurations [30, 33–35].

The major representative of such planners, that has inspired many other variants, are the

Probabilistic RoadMaps or PRMs [30]. The original PRM planner operates in two phases:

The learning and the query phase, Figure 2.5.

During the learning phase, a number of random samples are picked from C with some

timeout. Then, the samples in Cobs are discarded and the ones in Cfree are utilized to form

a graph by connecting neighboring nodes with each other within a predefined proximity.
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(a)

(b) (c)

(d) (e)

(f) (g)

Figure 2.5 An environment example shown at (a), the PRM learning process at (b-d),
and PRM query process at (e-g). Initially in the learning process, random samples are

drown from C (b), nearby nodes in Cfree are connected (c), and finally a connected graph
in Cfree is produced (d). During the query process, the initial (red) and goal (green)

configurations are added (e), connected to the graph with the closest nodes (f), and finally
a path solving the planning problem is found (g).
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The edges are added in the graph if and only if the transitions, provided by a local plan-

ner, lie entirely in Cfree. In order to determine the collision-free samples and transitions,

a collision checker is needed, typically as a boolean function classifying configurations or

path segments as valid or in-collision. In case the result after these operations is a set of

disconnected disconnected subgraphs, additional sampling could be deployed to connect

these subgraphs and all small disconnected subgraphs are discarded. Lastly, the graph is

kept minimal for efficiency by discarding edges and often forming a spanning tree. Re-

ducing the connectivity is important because it affects the run-time performance of path

finding queries in the later steps.

During the query phase for given initial and goal configurations, the corresponding

nodes are created and connected to the closer valid node of the PRM graph constructed

during the learning phase. Then, graph search techniques, such as Dijkstra’s algorithm [36],

are deployed to find a path connecting the two nodes. When found, the path is returned as

the solution to the motion planning query, moving the robotic system from the initial to the

goal configuration. The same process is repeated for any other future planning queries.

SINGLE QUERY PLANNERS

Sampling-based single query planners are focused on producing a data structure tailored to

a specific query. Such planners have to restart for any future queries. Such techniques focus

on building trees instead of connected graphs [37–39]. Expansive Spaces Trees (ESTs) [39]

and Rapidly Exploring Random Trees (RRTs) [31] are the major representatives for such

methods, with RRTs prevailing in the robotics community for the last 2 decades.

The main idea that both ESTs and RRTs follow is establishing the initial configuration

as the root of the tree and then expanding the tree in Cfree until a solution is found. The main

key difference is that the ESTs “push” the tree by choosing existing nodes of the tree, and

expanding them into unexplored regions, while the RRTs “pull” the tree towards random

samples selected uniformly in Cfree. In general RRTs are faster, easier to implement for
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many different problems, and are widely used. For all the above reasons, this section will

focus only on RRTs.

As mentioned above, RRTs attempt to expand a tree in Cfree in hopes that the tree

will reach towards and connect with the goal. Figure 2.6 shows an example of the RRT

process. The tree is initialized with the initial configuration as the first node. Then for

each iteration, a new sample is picked randomly from C . The closest node of the tree

to this random sample is selected. Starting from that node, a new node is created in the

direction of the random node for a predefined incremental distance or until an state in Cobs

is detected.

Similarly to PRMs, RRTs employ a boolean function for collision checking, that returns

whether a selected state is in Cfree or Cobs. The process continues iteratively until a solution

is found, by successfully adding a vertex in the goal region as a leaf or a timeout has reached

without finding a solution. An additional bias towards the goal is often introduced to ensure

that the goal will be reached fast, by directly sampling the goal with some probability.

When the search is successful, the solution is extracted by traversing the tree from the goal

node to the root.

DIFFERENCES BETWEEN PRMS AND RRTS

As discussed in the previous sections, although both PRMs and RRTs are probabilistically

complete techniques that solve the problem of motion planning, PRMs focus on processing

multiple queries utilizing the same graph, while RRTs focus on processing a single query

by creating a tree for each one. This fact has a number of very important consequences

regarding the strengths and the shortcomings of each method, which are not easily noticed

at first glance. Indeed many variants of both methods have been introduced mitigating

many shortcomings, but most of them introduce new assumptions with different trade-

offs, so the discussion will focus strictly on comparing the general algorithms as presented

above.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2.6 An example of the RRT execution for a given query. (a) shows the query with
the obstacles indicated with black, and the red and green circles indicating the initial and
goal configuration respectively. At (b) a random sample is picked shown with purple, the

tree is extended towards it at (c), and similarly for (d). At (e) the tree cannot extend to that
random sample due to detected collision. The goal is samples with a bias in order to drive
the search efficiently at (f). The search is completed at (g) and the solution is returned by

traversing backwards the tree from the goal at (h).
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To start with the most noticable one, PRMs are ideal for a well mapped static environ-

ment were a robot moves freely undisturbed. They can find solutions for multiple consecu-

tive goals much faster by utilizing the same graph, while for the same problems RRTs will

need to restart building a tree from the beginning for each different query. But PRMs are

often impractical for cases where the environment is subject to changes, which is a very

common feature of real world scenarios. The reason is that PRMs are based on obtaining a

valid graph on the learning phase using collision checks. Even the smallest change in the

environment can result on nodes of the graph and edges that were initially considered in

Cfree change to Cobs, altering the output of the collision checker, thus the solution produced

in the query phase could be invalid. On the other hand, RRTs, by restarting each time for

different queries, are naturally adapted to the current state of the environment, so assuming

the changes in the environment are tracked, RRTs will always provide valid solutions.

Another point of difference is that in general, PRMs require more time to provide a

solution to a motion planning query, while RRTs are in general faster. There are two main

reasons why this is happening: Number of samples needed and operations needed for each

sample.

On the first front, PRMs sample uniformly, seeking to add enough nodes to sufficiently

represent the whole of Cfree. Thus, the number of samples is expected to be higher. Also,

potentially many subgraphs are constructed in regions that might not contribute to the solu-

tion, while they might even be in unreachable subspaces of the C with respect to the initial

and goal configurations. RRTs, though, can provide solutions very fast, even while using

only few samples that aggressively extend the tree with Voronoi bias, while at the same

time, no computational effort is spent on unreachable areas of the C .

Regarding the operations needed for each sample, for each iteration, RRTs need a

search to find the closest node to the randomly sampled configuration, which can be exe-

cuted with linear complexity, and can be significantly improved to logarithmic using K-D

Trees [40]. Then the algorithm extends to a new node by checking whether the new edge
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is in Cfree or by extending greedily to the furthest possible valid node. Checking the tran-

sitions for collisions or finding the furthest valid nodes, for some problems, could be con-

stant time operations for each obstacle, especially when known and well-studied geometric

polytopes are used.

In the general case, especially when useful and efficient workspace decompositions

cannot be found, the collision checking is performed by consecutively checking single

states produced by interpolating (often linearly) from the closest node to the random sam-

ple. Of course, in such cases the collision checking method has resolution completeness

and the complexity of evaluating an edge is typically linear in the length of the edge.

For PRMs, in order to construct the graph for a given sample, more operations are

needed since a search needs to find all the nodes in proximity to the random sample, in-

stead of just one. Thus, the simplest implementation has linear complexity similarly to the

RRTs, and O(k+ logn) for the k closest nodes and n nodes in total, which requires more

computations than RRTs [41]. Since RRTs for each iteration evaluate only one edge, while

PRMs k edges, generally PRMs in total are more costly to construct for each sample. Ad-

ditionally, PRMs perform extra operations and efforts for connecting disjoint subgraphs,

increasing the computational expenses further.

The last and most important difference between RRTs and PRMs, is not quantitative and

performance related, but strictly qualitative: PRMs, unlike RRTs,are naturally incapable of

planning for non-holonomic systems or for systems under kinodynamic constraints.

The graph created by PRMs is an undirected graph where transitions are allowed from

and to both nodes of an edge. On the other hand, RRTs produce a directed graph in a form

of a tree, where the transitions are strictly performed from the parent nodes to the children

nodes. Thus, RRTs can naturally capture transitions that are valid only from one direction,

by using a corresponding collision checker, which are so crucial during planning for non-

holonomic systems. Similarly kinodynamic constraints can be enforced during collision
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checking or extension by picking valid transitions as determined by the kinematics and

dynamics of the robotic system.

For all the above reasons, although PRMs are still widely used mostly for operations

in known, generally static environments, RRTs are preferred especially for environments

that are prone to changes, and for complex systems that with large volumes of C , non-

holonomic kinematics, and kinodynamic constraints.

ASYMPTOTICALLY OPTIMAL PLANNERS

The goal of PRMs and RRTs is to produce a feasible solution to transition a robotic system

for an initial configuration to a goal configuration. Both techniques have been very suc-

cessful on solving many problems but the solutions are often jerky, and almost certainly far

from optimal.

The first optimal sampling-based motion planners based on PRMs and RRTs, were

introduced by Karaman and Frazzoli [3], and termed PRM* and RRT* respectively. The

planners produce paths that attempt to minimize a cost-to-go function with the goal of

providing a valid path that also minimizes the cost close to optimality, Figure 2.7.

Both PRM* and RRT* keep the basic characteristics of the original planners and they

only introduce an extra value carrying the cost-to-come of the node and an extra operation.

Also only one extra distance parameter that defines the neighborhood of a node is needed,

with the condition that it is strictly larger than the incremental distance used. That operation

aims to relink and change the edges of the graph locally, so that the transitions are updated

with respect to the most efficient path. The graph that is constructed and iteratively updated

is called Rapidly-exploring Random Graph, or RRG for short. Regarding RRT*, the extra

updating steps are performed after the new node is added in the tree. An example execution

is shown in Figure 2.8.

In the first step, the goal is to find the most efficient way to connect the new node to the

tree. For a given update distance metric, all the nodes inside the hypersphere defined by the
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Figure 2.7 A comparison of the RRT (left) vs the RRT* (right) search of the C . As it
can be observed, the paths produced by the classic RRT are jerky and far from optimal,
while RRT* produces near-optimal smooth paths. Figure is borrowed from the original

RRT* paper [3]

update distance and the newly added node are picked, and collision checks are performed

for all the edges connecting this node with the ones in proximity. Out of all the edges

that are collision free, the one that provides the minimum cost-to-come to the new node is

selected and that node is added to the tree replacing the old one, and the cost-to-come is

recorded.

The second step is the inverse, and the goal is to find whether by adding this node,

more efficient paths are created for the ones in proximity. To achieve that, all the edges

starting from the new node to all the neighboring ones are evaluated and the ones that are

collision free are picked. Then for every neighboring node, if the cost-to-come decreases

by adding the new node and edge, then the corresponding edge replaces the old one and

the cost-to-come value is updated.

These small modifications are enough to guarantee asymptotic optimality, meaning that

as the execution time tends to infinity, the solution tends to the optimal one. Unlike PRMs

and RRTs, the goal of the RRT* and PRM* are not to find a path and then terminate, but

they find a path and then iteratively optimize it until a user specified timeout.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2.8 An example of the RRT* enhancement. Taking as example the solution of
Figure 2.6 (a), a new configuration (purple) is sampled from C (b). The sample is

connected with the closest node (c) and then the RRT* modifications are being applied
within a proximity shown with the red circle. Connections to the new node are attempted
from the nearby nodes (d) and the one with the minimum cost-to-come is picked (e). Then
connections from the new node to all the neighboring ones are attempted (f) and the ones
that minimize the cost to go to these nodes are established (g). If the solution is altered the

new minimized solution is returned (h),
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These approaches are very powerful, since they introduce the notion of any-time motion

planning, with the developers being able to decide a timeout, when they can be almost

certain that a solution is found and it can be used at anytime, while any extra iterations are

only improving the path. But the computational cost for updating and relinking the RRG

is in general very high in comparison to the performance of the original planners. Thus

applications utilizing such techniques are mostly limited to off-line planning.

However, strong progress in moving towards fast near-optimal solutions has mitigated

to a certain extend the negative trade-offs and new asymptotically optimal sampling-based

motion planners have been introduced. Some representatives worth mentioning are:

• Informed-RRTs [42] where nodes that will not contribute to a better solution are

discarded and the sampling is restricted iteratively into smaller ellipsoids. In general

they provide a great accelaration over the RRT* baseline, but they remain generally

slow if run long enough due to oversampling.

• Fast Marching Trees (FMT*) [43] that use preselected sets of samples and employ

fast graph based techniques to determine the best way to connect them. They are

generaly faster, but the solution is resolution dependant, since they operate on pres-

elected sets of configurations. So they need to rerun to provide solutions with better

resolution.

• Batch Informed Trees (BIT*) [44–48] that combine both Informed-RRTs and FMT*,

by reducing the search space using ellipsoids, while at the same time the work on pre-

selected sets of random samples. They restart the search every time a better solution

is found by increasing the resolution of the set. Extensions improve the performance

by introducing a specific ordering in the preselected sample set.
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2.1.2 OPTIMIZATION-BASED PLANNERS

As shown in the previous sections, sampling-based techniques are probabilistically com-

plete approaches that are able to produce solutions for many problems, but before the in-

troduction of near optimal planners, the paths were highly suboptimal. Execution of the

raw solutions with real robots resulted in non-smooth, aggressive and jerky motions, thus

efforts were focused on optimizing an existing valid solution to improve the quality of the

path with some metric. So, in general, optimization-based planners process as inputs an

initial path, specifications for constraints and cost functions, and they output an optimized

path given the criteria of the objective function.

Up until CHOMP [4], most path optimization techniques [49–53] required an initial

valid trajectory, so a sampling-based planner was always necessary. But CHOMP [4]

dropped this requirement for the first time, providing optimized solutions even from in-

valid initializations. In particular, it was proven very robust for finding solutions for many

problems simply by initializing with a linear interpolation between the initial and goal

configurations.

In the beginning, CHOMP accepts an initial trajectory as input in a form of sequence of

configurations. Then it forms an optimization problem where these variables are the DOFs

of each configuration of this sequence. They are subject to constraints on path length and

distance from obstacles. The objective function is formed as a combination of cost func-

tions penalizing collisions, keeping kinodynamic constraints during the transitions consis-

tent between the states, and minimizing path length. The problem is solved by using an

iterative covariant gradient descent scheme with proper updates to ensure smoothness.

Although CHOMP performs well in many instances, it was shown to be effective mostly

for convex problems. Also due the formulation of the cost function, the robots were rep-

resented as collections of spheres, with the convex function often requiring more compu-

tational resources and for the plans to not allow for high planning accuracy due to that

approximation.
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Other techniques based on CHOMP have attempted to extend the capabilities of CHOMP [5,

54,55]. Although all these techniques are very capable of solving many problems, success-

ful optimization still relies highly on the initial paths and often local minimum issues are

present. Thus, when completeness and guarantees are necessary, path optimization tech-

niques should be used as postprocessing steps to sampling-based planners.

TRAJOPT

Trajopt [5] is a popular path optimization framework that is capable of quickly producing

paths that satisfy constraints and optimize desired cost functions. In this section, a short

description of Trajopt [5] will be given, since it is one of the core components of AquaNav.

Trajopt models the motion planning problem in a very similar way to CHOMP [4], but

it has two major differences (Figure 2.9):

First, instead of solving the optimization problem with projected gradient descent, Tra-

jopt utilizes sequential quadratic programming. There is a major trade-off that Trajopt ex-

changes with this choice. Every iteration is more computationally expensive than CHOMP,

but convergence require fewer iterations. Thus, in general, Trajopt solves most problems

faster.

The second difference is between the obstacle avoidance cost function used by Trajopt

and CHOMP. CHOMP, as mentioned before, models the shape of the robot as a collection

of spheres, thus reducing accuracy. On the other hand, Trajopt operates using the exact

shape of the robot, as represented by a triangular mesh, and compares minimum distances

to avoid collisions between 3D meshes. Additionally, on that front, Trajopt is less my-

opic than CHOMP since, instead of trying to simply avoid the obstacles, initially it treats

avoiding the obstacles aggressively as hard constraints, making it more capable of avoiding

local minimum issues. In more details, comparing precise 3D shapes rather than unions of

spheres could be more effective because a single direction to avoid collision is produced for
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(a) (b)

(c) (d)

(e) (f)

Figure 2.9 Two different examples on the left and the right column respectively,
highlighting the differences between CHOMP [4], and Trajopt [5] for local state and

global trajectory optimization. The robot is shown with blue, and the obstacles with black.
(a-b) show the initial problems, (c-d) the response of CHOMP, and (e-f) the response of
Trajopt. For the first one (a) the robot is inside an obstacle. CHOMP’s formulation with

spheres can produce contradictory costs making optimization more difficult , while trajopt
at (e) produces a single cost with the locally optimal direction to avoid collision. The red
arrows are indicating the direction of the gradient. For the second one (b), the trajectory
passes through obstacles. CHOMP could guarantee that the states will be collision free,
but cannot do the same for some transitions (red vs green). But Trajopt guarantees also

collision free transitions (f).

every shape in Trajopt, but multiple different directions can be produced for every different

sphere for CHOMP.

To conclude, the obstacle avoidance cost function used by Trajopt allows for continuous-

time safety by taking into account the swept-out volumes of the robot in the workspace for
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every step, thus accelerating convergence and reducing the number of states needed to rep-

resent the problem in contrast with CHOMP. This is achieved by appending the obstacle

avoidance cost function by using instead of only the mesh of the robot, the convex hull

formed by the meshes of each two consecutive states. This formulation ensures that also

the in-between transitions of the trajectory guarantee a clearance, which is an important

characteristic we employ in the later sections on robot motions prone to oscillations.

2.1.3 SEARCH-BASED PLANNERS

Search-based Planners, also called lattice-based planners, or planning motion primitives,

are methods that reduce the motion planning problem into a graph-search problem by dis-

cretizing the action space of the robot.

These methods might not guarantee that they can find a solution (if one exists), such as

sampling-based planners, or produce motions that optimize an objective, such as the path-

optimization methods. But they can have resolution complete guarantees and, in general,

they enable the robots to find sufficient solutions much faster than the other alternatives.

Especially, they can be practically very capable for systems under kinodynamic constraints

with well known models that need to decide on a trajectory in a matter of milliseconds.

The key idea of such techniques when applied in continuous spaces is to use a finite

subset of actions, for which the must has to choose for each step. These actions are applied

for a small duration and the exact outcome can be calculated very quickly deterministi-

cally for both the forward kinematics or also dynamics. When the resulting motions are

pre-computed, they are called motion primitives, and they can be used directly by simply

superimposing these motions on specific states. An example execution of such planner can

be seen in Figure 2.10.

Starting from a known initial state, with a goal to achieve, search techniques such as

A* are used to generate new states by interpolating from the action set, validating them

with fast collision checking, and exploring greedily using heuristics. When a path is found,
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2.10 An example execution of planning with motion primitives on the problem
instance of Figure 2.6-a. Initially, transitions (blue arrows) are applied on the initial

configuration (a). Then, greedily the new nodes are explored using a heuristic (b), while
transitions that lead to collisions are discarded (c). Then collisions are detected for

transitions (d), the search can backtrack and explore alternative paths (e). The process
continues (f-g), until a solution (green) reaching the goal to some proximity (light green)

is achieved (h).
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moving the robot from the initial to the goal configuration, the path is returned as a se-

quence of actions, and the robot by executing these actions achieves the goal. In motion

planning for robots with sensors, new observations are collected and the map is constantly

being updated. For such cases variants of A* [56], such as D* [57] and D*-Lite [58] are

used, where nodes that were explored before are intelligently updated, saving calculations

and improving computational efficiency without degrading optimality guarantees.

Such an approach offers big advantages, by accelerating the planning procedure for

even very complicated systems subject to dynamic constraints. Solving a graph search

problem is generally orders of magnitude faster than sampling-based and optimization-

based techniques. Also, there is no need for complex on-line calculations of kinody-

namic constraints, since all the motions considered already satisfy such constraints and

their outcome is precomputed offline. Fast and safe response could be achieved easily and

only actions that cause collisions should be checked, even for very redundant and high-

dimensional systems.

On the other hand, as mentioned in the beginning of the section, such techniques highly

underutilize the robot, given that only very few representative motions are considered from

the action space. Increasing the number of actions doesn’t scale well with real-time per-

formance, thus complex systems might show more suboptimal behavior compared to the

other techniques. Given these limitations, there are no guarantees that the motion primi-

tives chosen are capable of solving a problem that could be trivial for the other methods

discussed in the section. Also, even the specific goal is not guaranteed to be reached, and

more often a goal area is considered, within the goal is considered achieved.

Another issue is that these methods require a well defined heuristic to effectively ex-

plore the configuration space, which often is not a trivial problem to resolve. Lastly, search-

based techniques can be used only for systems with well-known and well-studied behavior,

where the outcomes of the selected actions are captured accurately. This is especially im-

portant given that small inaccuracies could lead to error propagation with disastrous results.
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CHAPTER 3

RRT+: REAL-TIME MOTION PLANNING FOR

HYPER-REDUNDANT SYSTEMS

3.1 INTRODUCTION

Despite the dramatic development of robotics in recent decades, robots are still far from

outperforming humans in operations for which they are not specialized. Complex robots

such as mobile manipulators, snake robots, and humanoids have been presented mostly

in experimental contexts. The fact that the best known mobile manipulator is the adult

human body which has 244 degrees of freedom [15], and the fact that modern planners

cannot provide plans fast enough for such a system, emphasizes the need for improve-

ment. Sampling-based motion planning algorithms such as rapidly exploring random trees

(RRTs) [31] and probabilistic roadmaps (PRMs) [30] are able to avoid explicit reconstruc-

tion of the free configuration space, which Canny’s algorithm [29] relies upon, but they

cannot avoid the underlying curse of dimensionality. Indeed, Esposito’s Conditional Den-

sity Growth Model (CDGM) for RRTs [59] predicts that the expected number of samples

required for an RRT to explore a certain volume fraction with a given probability grows

exponentially with the Configuration Space dimensionality. For this reason, even though

modern sampling-based planners have exhibited dramatic improvements over the original

RRT and PRM techniques, computing real-time solutions for systems with 10 or more de-

grees of freedom such as hyper-redundant manipulators, snake-like robots, or humanoids,

remains a significant challenge. Moreover, this challenge prohibits real-time applications

of such high dimensional systems even when only simple kinematic constraints need to be
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(a) (b)

Figure 3.1 (a) A Baxter robot in a heavily cluttered environment. (b) A 50-DoF kinematic
chain moving amidst obstacles.

satisfied, such as producing trajectories that avoid obstacles. More complex planning prob-

lems that require producing paths that satisfy dynamic constraints, or guaranties optimality

for some criteria, such as energy efficiency, inertia reduction, etc, are open problems that

have yet to be addressed using fast, real-time efficient, methods. But rapidly generating

solutions, even if they are highly sub-optimal, would provide great utility for planners such

as InformedRRT* [42] and Batch Informed Trees [44] that rely on initial paths to reduce

the search space, and to fast path optimization-based planners such as TrajOpt [5]. In gen-

eral, techniques such as the above require initial valid paths, in order to avoid excessive

computational costs for large search spaces, and/or addressing local-minimum issues that

are difficult to overcome.

This chapter addresses the path planning problem in high-dimensional configuration

spaces for holonomic systems. The main contribution is introducing an algorithmic en-

hancement that:

• Substantially accelerates the discovery of solutions for systems with many DoFs, up

to two orders of magnitude compared to the original state-of-the-art planners.
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• Inherits the fundamental properties of the original planners, such as completeness or

the local connection strategy.

• Is general enough to be applied to a large variety of holonomic robotic systems.

• Is scalable and linear with no explicit limitations on the number of dimensions.

• Requires no user-defined mapping functions, although simple generic policies could

be developed to provide solutions even faster.

The proposed enhancement, rather than directly enabling planning for systems subject

to desired constraints, aims to produce solutions that could be utilized quickly by path

optimization methods that require an initial path to produce a desired solution such as

CHOMP [4], STOMP [54], or Trajopt [5] variants. More specifically, assuming a feasi-

ble initial solution is provided fast enough —which is typically the most time consuming

part of the process— path optimization techniques could be deployed to optimize quickly

the given path into a desired path that satisfies dynamic or energy efficiency constraints in

real-time.

The approach is based on the observation that, for many redundant systems, often only a

subset of the kinematic abilities are needed to complete a task [26]. Therefore, we propose

beginning the search in a lower dimensional subspace of the configuration space C in

the hopes that a simple solution will be found quickly. An important property of these

subspaces is that a solution lying entirely inside these subspaces should be feasible, in the

absence of obstacles, so the initial and goal configurations must lie inside every subspace.

The proposed method, by construction, generates subspaces that satisfy this constraint.

After a certain number of samples are generated, if no solution is found, we increase the

dimension of the search subspace and continue sampling in the larger subspace. We repeat

this process until a solution is found. In the worst case, the search expands to include the

full-dimensional configuration space — making the completeness properties identical to

the original version of the planer.
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To evaluate this approach, we modified three well-established planners — RRT [31],

RRT-Connect [2], and Bidirectional T-RRT [60] — to produce RRT+, RRT+-Connect, and

Bidirectional T-RRT+, with the + symbol indicating that the planners are enhanced using

the idea described above. All three planners were compared to the original planners and

to KPIECE [61] and STRIDE [6]. These planners were tested on a planar hyper-redundant

arm, varying from 12 to 30 DoFs, and on a simulated Baxter humanoid robot, both shown

in Figure 3.1, utilizing OMPL [62] and the MoveIt! framework [63]. In many cases, our

experiments indicate that a solution is found much faster using the proposed approach and

the run time appears to be less sensitive to the full dimension of the configuration space.

For example, our enhanced version of Bidirectional T-RRT [60] found solutions for the

Baxter robot 200 times faster than the original planner, outperforming the other planners

we tested by a large margin, providing solutions in real-time. Perhaps surprisingly, the

proposed method does not seem to trade-off path length for speed; in most cases, path

quality was slightly improved.

The remainder of this chapter is structured as follows: Section 3.2 provides the prob-

lem statement and Section 3.3 reviews other approaches for motion planning for high-

dimensional systems. Section 3.4 provides technical details of the enhancement, consid-

ering important issues such as how the search subspaces are selected, how to generate the

samples in those subspaces, and when to expand the search dimension. Section 3.5 presents

our experiments applying the enhancement to three well-established planners: RRT [31],

RRT-Connect [2], and Bidirectional T-RRT [60].

3.2 PROBLEM STATEMENT

The RRT+ family of planners solves the motion planning problem. In simple words, given

an initial state, a goal desired state and environment, the planner should output a sequence

of intermediate states that move the robot to the goal region by avoiding the obstacles.
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More formally, using the same notation as shown in Chapter 2, let C denote a configu-

ration space with n degrees of freedom, partitioned into free space Cfree and obstacle space

Cobs with C = Cfree ∪Cobs. The obstacle space Cobs is not explicitly represented, but in-

stead can be queried using collision checks on single configurations or short path segments.

Given initial and goal configurations qinit,qgoal ∈ Cfree, we would like to find a continuous

path within Cfree from qinit to qgoal.

For purposes of sampling, we assume that each degree of freedom in C is parameterized

as an interval subset of R, so that

C =
[
c(min)

1 ,c(max)
1

]
×·· ·×

[
c(min)

n ,c(max)
n

]
⊆ Rn. (3.1)

Note that we treat C as Euclidean only in the context of sampling; other operations such

as distance calculations and the generation of local path segments utilize identifications on

the boundary of C as appropriate for the topology. The focus of this work is on holonomic

systems, thus transitions are allowed from a state A∈ C to another state B∈ C as long as

no collisions occur.

3.3 RELATED WORK

The problem of motion planning has been proven to be PSPACE-hard [64]. During the

late 1990s, sampling-based methods were introduced and shown to be capable of solving

challenging motion planning problems, but without guarantees of finding the solution in

finite time [27]. The two most prominent representatives of those algorithms are proba-

bilistic roadmaps (PRMs) by Kavraki et al. [30], which are useful for multiple queries in

stable environments, and RRTs by LaValle [31], that are more suitable for single query ap-

plications. Two other variations of RRTs were used in this study: RRT-Connect by Kuffner

and LaValle [2], which extends the tree more aggressively in each iteration, and T-RRT by

Jaillet et al. [60], which plans efficiently in cost-maps.
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Although the performance of these techniques can be affected substantially by the num-

ber of degrees of freedom of the system, some studies have used them successfully for a

variety of high dimensional robotic systems including hyper-redundant arms, mobile ma-

nipulators, multi-robot systems, and humanoid robots.

A method that uses PRMs and finds collision-free paths for hyper-redundant arms was

presented by Park et al. [65]. Other studies use RRTs for motion planning of redundant

manipulators, such as the work of Bertram et al. [66], which solves the inverse kinematics

in a novel way. Weghe et al. [67] apply RRTs to redundant manipulators without the need

to solve the inverse kinematics of the system. A study by Qian and Rahmani [68] combines

RRTs and inverse kinematics in a hybrid algorithm that drives the expansion of RRTs by a

Jacobian pseudo-inverse.

Other works have applied RRTs to mobile manipulators. Vannoy et al. [69] propose

an efficient and flexible algorithm for operating in dynamic environments. The work of

Berenson et al. [70] provides an application of their technique to a 10-DoF mobile manip-

ulator.

For multi-robot systems, many sampling-based algorithms have been proposed. The

study of van den Berg and Overmars [71] uses a PRM and presents a prioritized technique

for motion planning of multiple robots. Other studies use RRT-based algorithms such as

the study by Carpin and Pagello [72] which introduced the idea of having multiple parallel

RRTs for multi-robot systems. The work of Wagner [73] plans for every robot individually

and, if needed, coordinates the motion in higher dimensional spaces. Other studies propose

efficient solutions using a single RRT [74, 75].

Sampling-based planning algorithms have been applied to humanoid robots in Kuffner

et al. [76, 77]. Other studies, such as the work of Liu et al. [78], use RRTs for solving the

step selection problem for humanoid robots.

Regardless of the application, several studies explicitly attempt to reduce the depen-

dence on dimensionality in sampling-based motion planning. Vernaza and Lee [79] extract
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structural symmetries in order to reduce the apparent dimension, providing near-optimal

solutions but only for known environments where the cost function is stable. Yoshida [80]

tries to sample in ways that exploit the redundancy of a humanoid. Wells and Plaku [81]

reduce the dimensionality for 2-D hyper-redundant manipulators by modeling the end-

effector as a single mobile robot, and the other links as trailers being pulled. While there

are many specialized approaches to reducing the dimension, few of these apply to general

robot systems.

Planning in high-dimensional spaces has also been addressed with path optimization

techniques such as CHOMP [4], STOMP [54], and Trajopt [5]. These techniques can pro-

duce high-quality paths and deal with narrow passages by optimizing an initial trajectory

that could be highly infeasible. But often the optimization depends on the initial path and

can produce infeasible solutions due to local minima issues. Thus these techniques very of-

ten are used as a post-processing step on the result from a time consuming sampling-based

motion planner, whose overhead is the focus of our study.

Very recent works propose the application of machine learning techniques to drive the

tree growth or produce heuristics so a solution will be found faster. For example, the

work of Zha et al. [82] proposed a framework based on a Gaussian Mixture Model with

reported 30%−200% acceleration on the computation speed, in comparison to the original

planners. On the other hand, Klamt and Behnke [83] proposed an A* approach with a

learned heuristic produced from a Convolutional Neural Network to plan paths efficiently

for a high-dimensional robot.

More relevant to our work are planners that attempt to focus sampling in the relevant re-

gions of the configuration space. Gipson et al. developed STRIDE [6], an EST-based plan-

ner that samples non-uniformly with a bias toward unexplored areas of the configuration

space. Yershova et al. [84] proposed an approach to focus sampling in the most relevant re-

gions. KPIECE [61] by Şucan and Kavraki uses random 2D and 3D projections to estimate

the coverage of Configuration Space C where the density of samples is lower, provided a
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fast planner for high-dimensional configuration spaces. Gochev et al. [85] proposed a mo-

tion planner that decreases the effective dimensionality by recreating a configuration space

with locally adaptive dimensionality. Kim et al. [86] present an RRT-based algorithm for

articulated robots that reduces the dimensionality of the problem by projecting each sam-

ple into subspaces that are defined by a metric. Shkolnik and Tedrake [87] plan for highly

redundant manipulators in the low dimensional task space with the use of Jacobian trans-

pose and Voronoi bias. As shown by Şucan and Kavraki [88], even random projections

of the configuration space can provide good estimates for its coverage. Recent work of

Chamzas et al. [89] proposes a novel framework for experience-based sampling, where it

decomposes the workspace to local primitives which are stored in a database and on the

planning phase corresponding local-planners are synthesized to bias sampling. Lastly, the

work of Bayazit et al. [90] where a PRM was used to plan in subspaces of the configura-

tion space, creates paths that solve an easier problem than the original, by shrinking the

obstacles and then iteratively optimize the solution until the solution becomes valid. Other

examples include [6, 71, 73, 79–81, 85, 86].

The observation that high-dimensional systems are often overactuated has been very

recently highlighted. Lee et al. [91] were able to find efficient solutions by simplifying the

kinematic abilities of humanoids, while the method proposed by Jia et al. [92] provided a

method for solving fast motion planning problems with dynamic constraints by remapping

the problem into a grid based search.

This paper introduces the idea of iteratively searching in lower-dimensional subspaces,

and emphasizes the potential of using such an approach for efficient motion planning on

arbitrary hyper-redundant systems. Unlike previous works, this approach tries to find paths

that are not only confined entirely to a subspace but also in a subspace in which a solution

can exist, since the initial and goal configurations are part of the subspace. Contrary to

the work of Bayazit et al. [90], the approach searches in subspaces that are strictly lower-

dimensional, leading to faster computation of the solution.
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The main advantage of our approach, excluding the major acceleration on the compu-

tation of a solution in comparison to the state-of-the-art, is that it can be adapted easily

to enhance many of the existing algorithms. The proposed enhancement does not use

approaches that do not scale well with the dimensionality, such as grids, and more im-

portantly, no user defined mapping functions are needed, although if applied they could

provide even better performance.

3.4 METHOD DESCRIPTION

(a) (b) (c)

Figure 3.2 Sampling in one, two and three dimensions in C . Red lines indicate the
boundaries of C , the yellow dots indicates qinit , and the green dots indicate qgoal .

3.4.1 PLANNING IN SUBSPACES

The proposed method is based on searching for a solution in lower dimensional subspaces

of C , in expectation that such a path might be found faster than searching in the entirety of

C . The underlying idea is to exploit the redundancy of each system for each problem. To

achieve this, the algorithm starts searching in the unique linear 1-dimensional subspace of

C that contains qinit and qgoal. If this search fails, the planner expands its search subspace

by one dimension. This process continues iteratively until the planner finds a path, or until

it searches in all of C . In each subsearch, the tree structure created in lower dimensions is

kept and expanded in subsequent stages.
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Algorithm 1: RRT+

Input : A configuration space C , an initial configuration qinit, and a goal
configuration qgoal.

Output: RRT graph G
1 Csub← 1-d subspace of C , through qinit and qgoal
2 G.init(qinit)
3 while True do
4 qrand← sample drawn from Csub
5 qnear←NearestVertex(qrand,G)
6 qnew←NewConf(qnear,qrand)
7 G.AddVertex(qnew)
8 G.AddEdge(qnear, qnew)
9 if done searching Csub then

10 if dim(Csub)< dim(C ) then
11 Expand Csub by one dimension.
12 else
13 return G

Algorithm 1 summarizes the general approach as applied to RRT. Lines 2 through 8 en-

capsulate the typical RRT algorithm [31]. The rest show the proposed modifications, with

emphasis on line 4, which calls the novel sampler. These enhancements are implementing

the following behavior: The planner starts optimistically by searching in one dimension,

along the line passing through qinit and qgoal. If this search fails to find a path—a certainty,

unless there are no obstacles between qinit and qgoal—the search expands to a planar sub-

space that includes qinit and qgoal, then to a 3D flat,1 and so on until, in the worst case, the

algorithm eventually searches all of C ; see Figure 3.2.

The description in Algorithm 1 leaves three important elements unspecified. First, the

algorithm needs a method for selecting and representing the subspace Csub (Lines 1 and

11). Second, a method is required for sampling from this subspace (Line 4). Third, the

conditions that must be met before moving to the next subsearch must be defined (Line 9).

The choices explored in this study are described in the next sections.

1We use the term flat to refer to a subset of Rn congruent to some lower-dimensional Euclidean space.

38



It is worth noticing that the enhanced planners inherit the transition method of the orig-

inal planners (Lines 6 and 8), since only the sampling stage is altered. Thus the collision

checking and the transition functions are also inherited directly from the original planners,

and the proposed enhancement does not affect those elements in any way.

3.4.2 REPRESENTING AND SAMPLING FROM SUBSPACES

The central idea is to search for solutions in subspaces of progressively higher dimensions.

The primary constraint on these subspaces is that they must contain both qinit and qgoal.

Subspaces that violate this constraint cannot, of course, contain a path connecting qinit

to qgoal. In general, the algorithm’s selections for Csub should ideally be directed by the

likelihood that a solution will exist fully within Csub. However, it is not clear how this

likelihood should be computed. Instead, we consider a simple random technique that is

quite effective, especially for highly-redundant systems.

The choice that we investigate —one that trades generality for simplicity— is the pri-

oritized release of the degrees of freedom. The idea is that initially all the DoFs will be

constrained to vary linearly together, so that the available subspace Csub is the single line

connecting qinit to qgoal. Each time the search is ready to expand to a higher dimensional

subspace, one DoF is chosen to be released. For the released DoFs, instead of enforcing the

above-mentioned linear constraints, they take values from their range, independently from

the other DoFs. More formally, given a set Pcon ⊆ {1, . . . ,n} of DoFs to be constrained, we

can form Csub by constraining the DoFs in Pcon to form a line passing from qinit and qgoal

and allowing the remaining DoF to vary freely. In each step, one randomly-selected DoF

from Pcon is removed, thus increasing the dimensionality of Csub.

Next, the algorithm requires a technique for drawing samples from Csub. The sampling

uses a very efficient linear time method that initially generates a sample within C along the

line between qinit and qgoal by selecting a random scalar r and applying:

q(i)rand = (q(i)goal−q(i)init)r+q(i)init. (3.2)
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Algorithm 2: Prioritized Sampler
Input : Initial configuration qinit, goal configuration qgoal, set of constrained

DoFs Pcon, boundaries of the random number r rmin, rmax.
Output: Sample configuration q

1 q← random point in C along line L from qinit to qgoal with rmin and rmax
2 for i ∈ 1, . . . ,n do
3 if i /∈ Pcon then
4 q[i]← Random(0, 1)∗(c(max)

i − c(min)
i )+ c(min)

i
5 return q

The algorithm then modifies qrand by inserting, for each DoF not in Pcon, a different random

value within the range for that dimension; see Algorithm 2. More specifically, the sampler

starts by having all the DoFs constrained, thus a random sample is generated along line L,

and no value is modified in the loop that follows. When a DoF has been removed from

Pcon, then a random sample is selected on the 1-D line L, but the corresponding value of the

released DoF is altered with a random value from its entire range. Thus, the sample will

be drawn from a 2-D plane extended by the corresponding basis vector of that dimension.

The process continues by releasing an additional DoF at every iteration, until a solution is

found or all DoFs are released and planning proceeds on the complete configuration space,

as with the original planner.

To ensure that the samples along the line L between qinit and qgoal remain within C , we

compute rmin and rmax using Algorithm 3 and select a scalar r randomly from the interval

[rmin,rmax]. The ComputeBoundaryValues function calculates the line passing from qinit

and qgoal (lines 1 and 2), finds the intersections of the line with all the different c(min)
i and

c(max)
i flats (lines 3 through 5), and returns the limits rmin and rmax (line 16). When r takes

the value rmin or rmax then the resulting sample is one of the two intersection points of the

line and the boundaries of C (lines 6 through 12). The ComputeBoundaryValues function

is called only once before the planning loop.
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Algorithm 3: ComputeBoundaryValues
Input : Initial configuration qinit , goal configuration qgoal , dimensionality of

configuration space n, limits of configuration space c(min), c(max).
Output: Minimum value of scalar rmin, maximum value of scalar rmax

1 D← qgoal−qinit
2 L = Dt +qinit
3 for i← 1 to n do
4 for c in {c(min)

i ,c(max)
i } do

5 Find the intersection p = Dtp +qinit of L and c
6 if p ∈ C then
7 Find tp so p = Dtp +qinit
8 if (tp ≤ 0) then
9 rmin← tp

10 else
11 rmax← tp

12 return rmin, rmax.

The prioritized method provides an efficient and easy way to sample from projections

of arbitrary dimensionality, while, as stated before, it provides valuable understanding that

may be utilized while developing new prioritization policies for each robotic system.

3.4.3 TERMINATING THE SUBSEARCHES

The only remaining detail to be discussed is how long the search in each subspace should

continue. A set of timeouts {t1, t2, . . . , tn} is generated in which ti corresponds to the amount

of time spent in the ith iteration. Ideally, the planner should stop searching in subspaces that

seem unlikely to provide a solution. For simplicity, in this work the timeouts are precom-

puted by assuming that the ti follows a geometric progression. The idea is to exponentially

increase the number of samples in each successive subsearch, acknowledging the need for

more samples in higher dimensions.

The proposed approach uses two different parameters specified by the user. The first

parameter T is the timeout for the entire algorithm. The second parameter α > 1 is a factor

describing a constant ratio of the runtime between successive subsearches. The total time
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Algorithm 4: RRT+

Input : Initial configuration qinit, goal configuration qgoal, timeout T , factor α .
Output: RRT graph G

1 Pcon← {1,2, . . . ,n}
2 G.init(qinit)
3 rmin, rmax← ComputeBoundaryValues(qinit, qgoal, n, c(min), c(max))
4 {t1, t2, . . . , tn}← FindSampleSize(T , α , n)
5 for i← 1, . . . ,n do
6 for ti time do
7 qrand←PrioritizedSampler(n, qinit, qgoal, Pcon, rmin, rmax)
8 qnear←NearestVertex(qrand,G)
9 qnew←NewConf(qnear,qrand)

10 G.AddVertex(qnew)
11 G.AddEdge(qnear, qnew)
12 Extract(Pcon)
13 return G

T available to the algorithm can be expressed in terms of α and a base time t0:

T =
n

∑
i=1

t0α
i. (3.3)

Solving for t0 we obtain:

t0 =
α−1

α(αn−1)
T. (3.4)

Using this t0 every ti can be computed as:

ti = αti−1. (3.5)

In this study, good performance was achieved when α took a value between 1 and 2

and T was scaled linearly with the dimensions of the configuration space. Moreover, in the

experiments it is shown that the T parameter does not negatively affect the performance

beyond a certain value. If the T value is too small, the search in the lower subspaces

terminates early and the value of the proposed enhancement is reduced, since the original

algorithm’s sampling in the entire C is applied.

Finally, putting everything together, RRT+ is presented in Algorithm 4.
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3.5 EVALUATION

For the experiments, three new planners were developed using the OMPL framework [62].

These planners work by applying the proposed technique to three RRT variants: (1) RRT [31]

with default goal bias of 0.05, (2) RRT-Connect [2], and (3) the BiT-RRT [60] by assum-

ing a uniform cost-map. The BiT-RRT is intended to test the effect of our method on a

powerful cost-map planner.

3.5.1 EXPERIMENTS WITH A 2D HYPER-REDUNDANT MANIPULATOR

In order to test the ability of the new planners to adapt to different problems, the prior-

itization of the degrees of freedom was chosen randomly for each run. We demonstrate

that, given enough redundancy, even a random prioritization provides results much faster

(up to two orders of magnitude). A computer with a 6th Generation Intel Core i7-6500U

Processor (4MB Cache, up to 3.10 GHz) and 16GB of DDR3L (1600MHz) RAM was

used.

OMPL’s standard example of a 2D hyper-redundant manipulator, created for STRIDE [6],

was used in order to test and compare the enhanced planners in a standard way. Two differ-

ent environments were tested 100 times each for a kinematic chain with varying degrees of

freedom (between 12 to 20): A Cluttered Random environment and a Horn environment;

see Figure 3.3. The initial and goal configurations were the same as shown in Figure 3.3,

so a qualitative comparison in problems with different redundancies could be done.

In all cases, the enhanced versions of each planner were faster and in most cases sig-

nificantly faster than the original ones. The average and the median times for the Random

Cluttered environment are presented in Figure 3.4, and in Figure 3.5 the same for the Horn

environment. As can be seen, as the dimensions of the configuration space increase the

proposed enhancement outperforms the original algorithm (lower is better).

The BiT-RRT+ not only outperformed the BiT-RRT by a wide margin but also outper-

formed all the other planners using uniform sampling. Additionally, it provided competi-
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(a) (b)

(c) (d)

Figure 3.3 The two different environments, called Random Cluttered and Horn [6]. In
(a) and (c) the two planning problems are presented. The red chain indicates the initial
configuration (qinit) and the green chain represents the goal configuration (qgoal). In (b) and
(d), solutions for the two environments, produced by RRT+-Connect, are shown using a
random color palette.

tive results for robust planners with biased sampling such as KPIECE [61] and STRIDE [6],

which as expected perform much better in less redundant environments. Interestingly, for

each problem, the single fastest solution across all trials was generated by BiT-RRT+. This

suggests that a good choice of prioritization may give results faster in a consistent way.

Additional experiments with the fastest planners were performed by varying the number

of degrees of freedom between 12 and 30 for the Cluttered environment. The performance

of the BiT-RRT+ in Figure 3.6 demonstrated superior performance in increased dimension-
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Figure 3.4 The average (a) and the median (b) time for the Random Cluttered
environment.

ality. Also the BiT-RRT+ provided the fastest results among all the planners. Even with

random prioritization only after the 29 dimensions due to insufficient prioritizations the

median run-time of BiT-RRT+ becomes slightly larger than KPIECE and STRIDE.

As shown in Figure 3.7, our method does not significantly affect the path quality as

measured by path length.
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Figure 3.5 The average (a) and the median (b) time for the Horn environment.

We also demonstrate that the performance of the planners is relatively insensitive to T

across a wide range, as shown in Figure 3.8. In order to study the sensitivity by including

also the outliers, T was used for Equation 3.4, and in case a solution was not found in

T time, the planners continued sampling uniformly in C until a solution was found. Al-

though a good tuning may positively affect the efficiency, no clear trend is observed on the

efficiency of the enhanced planner as a function of T .
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Figure 3.6 Comparison of the median time for the Cluttered Random environment from
12 to 30 dimensions of BiT-RRT and BiT-RRT+, KPIECE and STRIDE. Interestingly,

BiT-RRT+ is more than 200 times faster than BiT-RRT for 30 DoF.

Figure 3.7 The average path length for the Horn environment after the standard path-
simplification method of OMPL.

Lastly, we demonstrated further the capability of the enhancement to solve very chal-

lenging problems with many dimensions in real-time, by simply using random prioritiza-

tions. BiT-RRT+ was benchmarked along with KPIECE [61] and STRIDE [6] on a 50-DoF

manipulator in the Cluttered environment (Figure 3.1-b) with a small time-out of only 1
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Figure 3.8 Sensitivity to T from 0 to 10000 with step 500, given α = 1.6 for 200 runs per
value of RRT+-Connect in the Random Cluttered environment for 15 degrees of freedom.

Success Average Median
rate (%) (s) (s)

BiT-RRT+ 66 0.29±0.25 0.44
KPIECE 34 0.19±0.26 0.65
STRIDE 39 0.24±0.27 0.58

Table 3.1 Success rate, average and median of 100 trials for the 50-DoF kinematic chain,
with a time-out of 1 second. BiT-RRT+ is close to twice more successful than KPIECE [61]
and 1.7 times more successful than STRIDE [6], with shorter median computation time for
the solution.

second. As shown in the results (Table 3.1) BiT-RRT+ is twice as effective for solving fast

problems of such high-dimensionality, with a shorter median time than the other two state-

of-art techniques, illustrating the potential of the method on generating paths for real-time

applications. Note that the original algorithm, BiT-RRT, is not reported, since it was not

able to successfully produce any solution within the given time-out.
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(a) (b) (c)

Figure 3.9 The initial (a) and goal (c) configuration, along with the path (b) used in the
experiments with the Baxter. The table is indicated with red, and the four pillars are

indicated with blue.

3.5.2 EXPERIMENTS WITH BAXTER

Experiments are presented for the Baxter humanoid robot (Figure 3.1) with 14 degrees of

freedom using the OMPL [62] and MoveIt! framework [63] with an Intel i7-7700 8-core

processor (3.6GHz), and 32 GiB RAM.

Given knowledge of the system, instead of choosing the prioritizations randomly, a

generic task-independent policy was used to show that even naive policies can eliminate

the outliers observed in the earlier experiments and lead to superior performance. The

policy was giving priority to the joints closer to the base.

We tested the enhanced planners in a cluttered workspace, which consisted by a table

and four parallel pillars. As shown in Figure 3.9, Baxter starts with the manipulators in the

relaxed position below the table and the goal is to reach the configuration that both arms

fit between the pillars. Moreover, in order to make the problem more challenging for the

enhanced planners, one of the manipulators should end up above the other, reducing even

more the redundancy of the problem and forcing our planners to explore subspaces with

high dimensionality. The RRT+, RRT+-Connect, BiT-RRT+ were compared with their

original versions, and also with KPIECE and a bidirectional version of KPIECE provided

in OMPL, called BiKPIECE, for 100 trials. A timeout of 60 seconds was used for each

run.
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As shown in Figure 3.10, each enhanced planner outperformed the corresponding non-

enhanced planner. In particular, RRT+-Connect and BiTRRT+ provided solutions much

faster than BiKPIECE and KPIECE. Non-bidirectional planners had difficulty finding a so-

lution, showing the difficulty of the problem close to the goal region. The enhanced plan-

ners, even when they were failing in the case of RRT+, produced solutions very quickly (in

less than 5 seconds) showing the advantage of sampling in lower-dimensional subspaces.

Similar to the experiments presented in the previous section, the fastest planner among all

was the BiTRRT+. Most of the solutions from RRT+- were found in an 8-dimensional

subspace, and from RRT+-Connect and BiTRRT+ in a 6-dimensional subspace.
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Figure 3.10 The histograms comparing the enhanced planners, with the original ones
(a-b-c) along with the histograms of KPIECE and BiKPIECE (d). The red line at 60

seconds indicates the Timeout, and the results after that line should be considered failures.
The timeout was chosen to facilitate the large number of tests.
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CHAPTER 4

AQUANAV: ROBUST 3D UNDERWATER NAVIGATION FOR

AN AUV WITH COMPLEX DYNAMICS

4.1 INTRODUCTION

This section addresses the problem of navigation for underwater structure inspection and

mapping. Underwater structure mapping is an important capability applicable to multiple

domains: marine archaeology, infrastructure maintenance, resource utilization, security,

and environmental monitoring. While the proposed approach is not limited to the un-

derwater domain, this work addresses the challenging conditions encountered underwater,

with a special focus on shipwreck mapping. Underwater mapping has traditionally focused

on acoustic sensors [93–96]. However, most inspections require visual input [97–99]. The

state-of-the-art in autonomous operations is to observe the target structure from far enough

to avoid navigation in cluttered spaces, while remotely controlled operations present en-

tanglement hazards. As a result, most inspections suffer from gaps due to occlusions and

low-resolution due to the water effects on the camera sensor. The presented work enables

autonomous operations underwater close to the structure to be inspected; before, this was

only partially possible with teleoperation.

Maps of underwater structures such as wrecks, caves, dams, and docks are often avail-

able either through acoustic sensing [100] or via photogrammetry [101, 102]. In this paper

we present an augmentation of Trajopt [7], a popular path-optimization open source pack-

age for (mobile) manipulators, to facilitate 3D trajectory planning of an AUV utilizing

either a known map or an online constructed local map. The proposed method is real-
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Figure 4.1 Aqua2 AUV navigating over the Stavronikita shipwreck, Barbados.

ized on an Aqua2 vehicle [18]. The Trajopt planner is augmented with a sampling-based

correction scheme that resolves the local minima problem. Furthermore, different map rep-

resentations were tested including geometric primitives and point-cloud implementations.

AUVs moving in 3D underwater are prone to external forces, such as currents, and in-

ertia. As such, when a robot switches between motion directions, a significant drift may

appear. This effect was taken into consideration when designing the safety distance and the

linear velocity of the vehicle. When the motions were too aggressive, excessive drift was

observed. Utilizing a complete hydrodynamics model of the Aqua2 would resolve such

issues, but such a model has yet to be introduced. Previous works [103–105] attempted

to provide such analysis but they significantly restricted the mobility of the robot since it

was allowed to turn only by no more than one axis each time. The above also makes it

infeasible to directly account for the dynamics during planning. It is noteworthy, though,

that fast motion planners such as KPIECE [61] that utilize physics simulators to plan with

kinodynamic constraints can solve the planning problems for systems with non-trivial dy-

namics. But considering that the Aqua2 hexapod robot has a very large control space,

limited computing resources to accommodate for physics simulators operating in parallel,
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and non trivial task-dependant projections —required by KPIECE [61]— the use of such

techniques requires excessive resources for a real-time response.

The proposed method was rigorously tested in simulation and in the pool. Utilizing the

Gazebo simulator [106] with an underwater extension that emulates the kinematic behavior

of the Aqua2 vehicle, the tested environments demonstrated changes in depth and attitude

in three dimensions for realizing the produced trajectories. Furthermore, tests at an indoor

diving pool, with various obstacle setups, verified the validity of the proposed approach.

The proposed approach provides contributions in two conceptual areas: path planning

of mobile robots in 3D and underwater navigation in cluttered environments. More specif-

ically, we augmented the Trajopt package enabling operations of an autonomous mobile

robot in three dimensions. We introduced a fast warm-starting method to avoid local min-

ima issues using an RRT-based approach. Furthermore, we demonstrated the use of Tra-

jopt for online planning based on convex decomposition of unordered point clouds. The

proposed framework enabled underwater operations in cluttered spaces. In particular, a

light-weight geometric navigation framework utilizing the full 3D motion capabilities of

the Aqua2 AUV enabled operations with a known map or in unknown areas of cluttered

underwater environments. Autonomous operations of real-time planning and replanning

were paired with visual inertial state estimation in environments of substantial complexity,

even without utilizing a known hydro-dynamics model.

The next section provides an overview of related work. Section 4.2 describes the Aqua2

AUV employed and the problem statement. The proposed approach is detailed in Section

4.4, while experimental results are presented in Section 4.5. The paper concludes with

lessons learned and directions of future work.
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(a)

(b)

(c)

Figure 4.2 The dimensions of the Aqua2 from (a) top, (b) side , and (c) front
perspectives.

4.2 PROBLEM STATEMENT

4.2.1 SYSTEM OVERVIEW

The primary target system of AquaNav is the Aqua2 amphibious platform [107], pictured

in Figure 4.1. Aqua2 is an amphibious hexapod robot, approximately 65cm× 45cm×

13cm in size and 10kg in weight, Figure 4.2. In its aquatic configuration, Aqua2 uses the

motion from six flippers, each independently actuated by an electric motor, to swim. Aqua2

has 6 degrees of freedom, of which five are controllable: two directions of translation

(forward/backward and upward/downward), along with roll, pitch and yaw.

54



(a) (b)

Figure 4.3 (a) The top and (b) the side view of the FOV of the Aqua2 highlighted in
yellow.

The robot’s computational system consists of two units, one responsible for vision and

high-level planning and the other responsible for control related computations Each of these

computers is based on dual-core Intel Core i3-6100U CPU @ 2.30GHz running Ubuntu

16.04 LTS.

The robot’s primary sensing modality is vision [18]. It is equipped with three iDS USB

3.0 UEye cameras: two facing forward and one in the back. The front-facing cameras are

used for navigation and data collection, whereas the back camera is used for communica-

tion with the operator using AR tags to send commands [108]. In addition to these cameras,

Aqua2 also has an IMU and a pressure sensor which are used for controlling the motions

and can be utilized for visual-inertial state estimation [8, 109–111]. The fields of view of

the cameras are 120 degrees (horizontal) and 90 degrees (vertical) tilted downward by 40

degrees from the horizontal plane, as shown in Figure 4.3.

An important challenge of underwater robotic systems is navigating with currents and

other fluid dynamics phenomena that can threaten the success of the mission. Regarding the

Aqua2, which has a propulsion system of unique capabilities but also unique complexity,

previous work [103–105] provided some analysis on the dynamics of the Aqua vehicle.

However, the model is still inaccurate and, moreover, the on-board computing resources do

not allow for utilizing a physics-based simulator online.
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To move the robot, a PD controller proposed by Meger et al. [112] is utilized, which

employs the IMU and the depth sensor data. This closed-loop controller accepts commands

in the form:

com = ⟨v,h,d,q⟩ (4.1)

in which v is the desired forward linear velocity, h is the desired heave (that is, upward or

downward linear velocity), d is the desired depth to reach and q the desired orientation for

the robot to move in the world frame. The controller, while performing relatively stably and

robustly, possesses oscillations that are present which should be mitigated during planning.

4.2.2 PROBLEM DEFINITION

Let the robot’s pose be described using the vector

s =
[

x y z qw qx qy qz

]
, (4.2)

in which ps = [x,y,z] represents the position of the robot in the world frame and qs =

[qw,qx,qy,qz] contains the coefficients of the unit quaternion specifying the robot’s orienta-

tion. Also let sinit indicate the initial pose of the robot, sgoal the desired goal, O a collection

of polytopes defined by a set of geometric primitives representing the observed or known

3D obstacles of the environment, PCs for a state s the polytope defined by a set of geomet-

ric primitives g representing the volume the robot occupies in state s, and dsafe a desired

clearance. The goal is to produce a trajectory S = [sinit ,s1,s2, . . . ,sn−1,sgoal] so that:

min
g∈

⋃
s∈S

PCs
min
o∈O
|g−o| ≥ dsafe (4.3)

The trajectory should guarantee also that the desired clearance is kept also during the

transitions. Let the set of all transition states between two consecutive states si−1 and si,

produced by continuous linear interpolation denoted by Lsi
si−1 . The volume Lsi

si−1 could be

described as the convex hull of PCsi−1 ∪PCsi . Then for every si ∈ S−{sinit}:

min
g∈Lsi

si−1

min
o∈O
|g−o| ≥ dsafe (4.4)

56



In other words, a trajectory is needed to be produced from sinit to sgoal so that for

every state on the trajectory, a clearance of at least dsafe is maintained. Then the motion

commands generated to follow the above trajectory should not oscillate the robot more

than dsafe from the original planned trajectory. Figure 4.4 shows an example of the motion

planning problem with the basic elements introduced above.

(a)

(b)

Figure 4.4 An instance of the navigation planning problem (a), and with an executed
trajectory (b).

More formally, let Pexec denote the set of all states of the continuous path executed by

the robot and Rgoal a goal radius that defines a ball G with center psgoal . The goal is achieved

and the path is considered potentially satisfiable if and only if:
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{s ∈ Pexec|ps ∈ G} ̸= /0 (4.5)

Let Dr indicate the distance from the assumed center of the robot Cr to its furthest point:

Dr = min
g∈PCs0

|g−Cr| (4.6)

The executed path Pexec is considered safe if and only if ∀s ∈ Pexec where the robot

transitions from si−1 to si with si ∈ {S−{sinit}}, we have:

|(ps− psi−1)× (ps− psi)|
|psi− psi−1|

< dsafe−Dr (4.7)

assuming the initial and goal configurations do not violate the desired clearance. The first

part of the above equation calculates the euclidean distance of the point ps from the line

connecting two consecutive states lsi
si−1 = {ps|s ∈ Lsi

si−1}; then the trajectory Pexec is consid-

ered to be valid and the robot reaches the goal successfully while avoiding the obstacles

safely.

Finally, a planned path is considered valid if it’s potentially satisfiable and safe, so if

and only if Equation 4.3 holds and the oscillations from the original trajectory are bounded

during execution for any Pexec as stated in Equations 4.5 and 4.7. For our navigation pur-

poses, we are interested strictly in valid paths, since they guarantee both reaching the goal

successfully and safely avoiding obstacles.

4.2.3 DISCUSSION ON THE ASSUMPTIONS

Less rigorously, by producing valid paths during motion planning, the solution guarantees

that for every waypoint and transition, if followed precisely without any oscillation, the

robot will have a distance of at least dsafe. Then, if the robot, during execution, remains

no further than dsafe−Dr from the planned path, the robot will reach the goal avoiding any

collisions.

As stated earlier, an accurate dynamics model has yet to be introduced for the Aqua2

platform, so by utilizing simply a PD controller [112] based on periodic gaits the system
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often becomes unstable and oscillates. A way to practically overcome this issue is to ac-

count for the maximum expected oscillation, given a certain speed, and achieve safety by

guaranteeing a minimum clearance larger than the maximum expected oscillation during

the planning process. A value for this maximum expected oscillation can be found experi-

mentally during field trials and by using offline physics based simulators.

Focusing on the Aqua2 platform when operating in challenging environments, assum-

ing a valid goal, robust state estimation, clear visibility of the obstacles, and a valid value

of a maximum expected oscillation, the navigation problem could be reduced successfully

to path planning with a desired clearance dsafe. This assumption, although arguably sound-

ing reductive by dismissing the true complex dynamic model of the robot, led to superior

navigation capabilities as tested in pool trials, and in challenging high-current conditions

during open-water deployments.

In the case that at least one of the above assumptions does not hold, there is no guar-

antee that the robot will safely and successfully reach the goal. Especially regarding the

importance of the desired clearance and how it affects planning due to a worst-case ori-

entated policy that applies to the entire trajectory, it is true that solutions that the robot

might be able to execute safely will be discarded, and this can lead to inability to find any

valid solutions in very cluttered environments, though they might exist. However, this is

a necessary trade-off between safety and completeness due to the absence of a sufficient

dynamics and kinematics model for the robot.

Last but not least, notice that Equations 4.3 and 4.4 are describing a strict and very

conservative approach. Paths that might partially violate the above conservative constraints

might lead to superior performance and ways to rank and pick the best solution that violates

the least these constraints could be considered. In the experiments the robot is shown to

be able to perform robustly also in very cluttered environments with narrow passages, in

which clearance is partially violated.
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4.3 RELATED WORK

In environments with complex dynamics, such as underwater, one of the main challenges

is to generate safe paths. Real-time underwater navigation remains a fundamental, yet to

be addressed sufficiently problem [113]. Several methods have been explored to correct

the deviations caused by inertia and currents, including the FM* planning system [114].

Other methods rely on observations about the structure of the terrain [115] and satellite im-

agery [116] to estimate the effects of currents. Genetic algorithms [117] and mixed integer

linear programming approaches [118] have also been used to support the computation of

paths in dynamic underwater environments.

The work of Hernandez et al. [119] provided an online sampling based framework for

an AUV in 3D, accounting also for the dynamics of the system. The proposed framework,

although able to work in real-time, needed close to half a minute for producing solutions

with clearance guarantees. Moreover, during the online experiments the replanning was

close to 1Hz but the robot was constrained to a constant depth reducing the planning space

to 2D. When accounting for currents, other studies [120, 121] utilize sampling-based tech-

niques and a complete dynamic model of the AUV, but are only shown to work in unclut-

tered environments with few obstacles.

Another challenge in underwater path planning is to generate paths rapidly enough to

be able to compute and execute them online. Green and Kelly demonstrated a branching-

based method for quickly generating safe paths in a 2D environment [122] which has since

been the basis of several optimizations [123–126]. Path planning has also been optimized

by reducing many candidate paths to equivalence classes [127].

Though optimal sampling-based techniques [3, 42–44] provide near-optimal solutions

and have improved over time, they, in general, require more computational resources, more

time, and often an exhaustive search of the configuration space. Some studies on online

underwater navigation with sampling-based techniques quickly generate safe paths, how-
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ever, they are limited to 2D motions [128] or require additional assumptions regarding the

vertical relief [129] without exploiting the full potential of available 3D motions.

In some applications, it is necessary for AUVs to navigate in an environment with-

out global knowledge of the environment. In such cases, obstacles are observed, often by

stereo vision as has been done on aerial vehicles [130]. Exploration of an unknown environ-

ment by aerial vehicles has been performed using a 3D occupancy grid using probabilistic

roadmaps (PRM) and the D* Lite algorithm for planning [131]. Although underwater and

aerial domains provide different challenges, both require path planning in 3D. For an AUV

such as Aqua2, whose movements do not correlate exactly with control inputs, planning

becomes even more difficult. Other AUVs have also been used for path planning, such

as RAIS [132] and DeepC [133]. Another AUV, REMUS [134], used obstacle avoidance

specifically for exploration of shallow waters.

The Aqua2 AUVs have a variety of swimming gaits in order to enable tasks such as

swimming in a straight line, on the side, in a corkscrew motion, or performing a barrel

roll [135]. Visual tags were used to enable the AUV to navigate over structures [112].

Furthermore, the robot learned a reactive controller for navigating over the coral reef while

maintaining a safe distance [136, 137].

4.4 METHOD DESCRIPTION

The objective of this work is to develop algorithms that enable the Aqua2 robot to navigate

reliably and safely through a dense field of obstacles, given start and goal poses sinit and

sgoal. Figure 4.5 presents an overview of the proposed system.

4.4.1 TRAJECTORY PLANNING

Motion planning in this context must balance several competing constraints, including the

need for efficiency, the possible need to replan, and the limited computational power avail-

able on the robot (particularly when one considers the other essential tasks of perception,
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Figure 4.5 System architecture.

mapping, etc.). In addition, because of its complex —yet not readily modeled— dynamics

and kinematics combined with the unpredictable nature of maritime currents, the system

is quite susceptible to disturbances. Thus, the planner should provide solutions that satisfy

some minimum clearance to avoid collisions.

To satisfy this challenging trade-off, the proposed system utilizes an optimization-

based planning approach. Specifically, the implementation uses Trajopt [7], which has

been proven as a very robust method for manipulators and mobile manipulators in 2D.

It is computationally efficient and takes into account not only the states but the complete

path between them using the transition between states, contrary to alternatives such as
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CHOMP [4] and STOMP [54]. To the best of authors’ knowledge, Trajopt has not yet been

used for 3D motion planning for mobile robots, nor in the underwater domain, in the past.

The main idea behind Trajopt is to represent the path S from sinit to sgoal as an ordered

list of waypoints, each of which is a pose for the robot. Starting from an initial set of

waypoints —generally based on the linear interpolation between sinit and sgoal— Trajopt

forms a convex optimization program, in which each degree of freedom of each waypoint

is a variable, the obstacles are encoded as constraints, and the objective is to minimize a

weighted form of the path length. An important advantage is that, because of this general

form, one can insert additional content-specific constraints, such as a maximum depth.

As mentioned in Chapter 2, Trajopt is a very robust and efficient path optimization

package, capable of solving fast challenging motion planning problems. In a nutshell,

using the notation introduced before, Trajopt attempts to minimize the following function:

f (S) = min
S

n−1

∑
i=1
||si+1− si|| (4.8)

where S = {s0,s1, . . . ,sn} the set of n states considered during optimization. The above

equation is the sum of square displacements that minimizes the path length.

Then collision constraints are enforced for every state s ∈ S−{s0,sn}:

h(s) = ∑
o∈O
|dsafe− sd(PCs,o)| (4.9)

where O is the set of obstacles, PCs the 3D volume of the robot in state s, and sd a singed

distance metric between 3D objects. More details for the sd function can be found in the

original Trajopt paper [5].

The above constraint, given successful convergence, guarantees that each state will

keep at least dsafe from the closest obstacle, but has no guarantees on the in-between tran-

sitions. In order to enforce continuous-time safety, instead of applying Equation 4.9, the

following function is applied for each si−1,si ∈ S consecutive states:
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H(si,si+1) = ∑
o∈O
|dsafe− sd(Lsi

si−1
,o)| (4.10)

where as defined before, Lsi
si−1 is the convex hull of PCsi−1 ∪ PCsi . For the purpose of

AquaNav, an additional constraint was added to avoid surfacing shown at Equation 4.11.

4.4.2 INPUT METHODS

Trajopt optimizes the distance between the swept-out volumes of the robot’s trajectory and

the obstacles; as shown in Figure 4.6. For efficiency, Trajopt expects the map to be stored

in a form where the normal vectors between the robot’s body and the obstacles can be

extracted rapidly. One geometric method for presenting the obstacles to Trajopt, suitable

in cases where the environment is well-known, consists of specifying the obstacle shapes

and locations as instances of a set of built-in primitives, typically as rectangular boxes.

We also implemented a version that utilizes a point cloud input representation, which

can be produced directly from raw sensor data. First, the point cloud is provided as input

to the fast surface reconstruction algorithm of Zoltan et al. [138]. Then, the algorithm

approximates the produced mesh via a collection of convex polytopes which can be directly

processed by the Trajopt optimizer.

4.4.3 CONSTRAINTS

The objective function is parameterized by coefficients for the path length and the obstacle

avoidance and by a distance parameter dsafe, measuring the maximum distance from the

obstacles where the cost will be applied. These parameters required tuning for the under-

water environment and the AUV used; Section 4.5 describes the specific values utilized in

our experiments.

Our system employs an additional term in the cost to ensure that the robot will not reach

the surface, and will remain entirely underwater. The cost function cz was applied on the z
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(a) (b) (c)

Figure 4.6 Path optimization with Trajopt [7] in three different stages: (a) The initial
path is generated by simple interpolation from sinit to sgoal with possibly some states in
collision. (b) An intermediate stage during optimization. (c) The final trajectory, shown
with the distances to the swept-out volumes.

coordinate of all the states si ∈ S, and defined as follows:

cz(zi) =


zi + ε if zi >−dsafe

0 otherwise
(4.11)

where ε > 0. Assuming that on the surface z = 0, the condition in Equation 4.11 penalizes

every state above −dsafe ensuring that the robot will remain underwater, accounting also

for potential inaccuracies in control.

4.4.4 OVERCOMING LOCAL MINIMA

A problem that many optimization-based motion planners, including Trajopt, face is the

possibility that the optimization may converge to a local minimum. Though generally rare

in the implemented system, this situation can present a safety hazard for the robot, because

the completed path may not necessarily maintain safe distance from the obstacles. Local

minima can be present, for example, either (a) when the path is passing through an obstacle

and there is no free space in a dcheck radius that Trajopt is using to check for obstacles, or (b)

when the path is passing through a narrow passage and the desired clearance dsafe from the
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(a)

(b)

Figure 4.7 Failure cases of the Trajopt optimization. In (a) the optimization is stuck and
the robot passes through a narrow passage violating the clearance dsafe(light red). In (b)

the robot passes through an obstacle that is larger than the dcheck (light blue).

obstacles cannot be maintained. As shown in Figure 4.7, there are two different situations

in which optimization fails due to local minima issues:

1. The path passes through a big obstacle where no free space exists in a radius dcheck,

or

2. The path passes through a narrow passage that violates the desired clearance.

Fortunately, it is straightforward to verify whether or not the output of Trajopt does

indeed avoid the obstacles correctly, by checking for collisions or large cost values. Typi-
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cally, such issues are resolved with warm-starting of the optimization process: a fast motion

planner is used to generate beforehand a set of valid paths and these paths are used con-

secutively to initialize the optimization until a valid solution is found. An example of such

work [139] for Trajopt uses the BiT-RRT [140] planner.

We propose the following novel iterative warm-starting approach, using BiT-RRT [140],

by inserting virtual obstacles into the planning process. The optimization step works with

the motion planner in the following manner:

1. The optimization result is checked and in case of failure, the waypoint with the high-

est cost is selected.

2. The map used by the motion planner is altered by adding a virtual obstacle of size

dsafe in the position of that waypoint.

3. The planner plans a path avoiding the new high cost area of local minimum with a

smaller than dsafe distance from obstacles during collision checks.

4. The new path is used to initialize the path optimization process and the procedure

continues if needed.

This process forces the planner to identify an alternative path that avoids the most prob-

lematic portion, in terms of the cost function, of the previous path. An example execution

of this procedure is shown in Figure 4.8.

4.4.5 TRAJECTORY FOLLOWING

LOCALIZATION

The problem of underwater localization has proven to be extremely challenging [20,22] due

to the lighting variations, hazing, and color loss [141]. We tested two solution strategies

for this problem.

67



(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 4.8 An example of the warm-restarting procedure.
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Primitive Estimator A primitive estimator has been employed using the depth sensor,

the attitude estimation from the IMU and the expected forward speed of the AUV (based

on the swimming pattern utilized). Though subject to drift over long distances, this es-

timator has guided the Aqua2 vehicles for a variety of basic maneuvers and swimming

patterns. During operations with a known map, this primitive estimator is utilized to track

the planned trajectory.

SVIn During operations in an unknown environment, more accurate localization may be

useful, in addition to the required ability to detect nearby obstacles. Visual Inertial state

estimation, introduced by Rahman et al. [8] and later extended to utilize depth measure-

ments and loop-closures [142], is used for simultaneously localizing and mapping nearby

obstacles. The resulting point-cloud produced by SVIn enables the AUV to navigate safely

around obstacles.

WAYPOINT SEEKING

The optimization stage of the proposed pipeline produces in a timely manner a path p, as

an ordered set of consecutive goal states that should be sequentially achieved by the robot.

Then, the PD controller, with control commands as shown in Equation 4.1, is utilized

to follow the path. The current framework, for simplicity considers only purely forward

motion setting h = 0.

The PD controller controls the desired depth by linear interpolation. Assuming that the

current state of the robot is sc and the current i goal position is pi in the world frame, to

guarantee smooth transitions that are bounded inside the calculated safe swept-out volumes

of the optimization stage, the desired depth d is calculated as

d = zpi−1 +

(
1− zsc

zpi−1

)(
zpi− zpi−1

)
, (4.12)

where zpi−1 is the depth of the previous achieved goal (base case zpi−1 = sinit), zpi the depth

of the current goal, and zsc is the current measured depth. The idea is to ensure the linear
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change of depth from one position to the other and ensure linear transitions similar to the

ones assumed by Trajopt.

Regarding the desired orientation, the pitch is adjusted automatically from the desired

depth and the roll does not affect the direction of the motion, thus only the computation

of the desired yaw oyaw is needed, with respect to the translation error et = pi− sc. Given

the position of the robot, the yaw changes in such a way that the AUV will always move

towards facing the goal.

Lastly, assuming the possible deviation is bounded by dsafe for a given speed and that

the optimization was successful, the AUV should safely navigate from one goal to the next

one. As a result of the above, given a threshold of dreached, the goal is declared reached, if

the error et is less than dreached and a local minimum is detected, since otherwise the robot

will be sliding away due to disturbances.

4.5 EVALUATION

Extensive experiments were performed using the Gazebo simulator, and in numerous de-

ployments of the Aqua2 AUV at two pools in our university, a shallow swimming pool

of dimensions 50m× 25m× 2m and a deep diving pool of dimensions 25m× 15m× 4m.

The main objective of the various experiments was to demonstrate the reliable navigation

functionality of Aqua2 using the proposed framework. In all of the experiments the AUV

had a constant speed of 0.4m/s — the expected operational speed — and a bounded mo-

tion with a minimum obstacle avoidance distance of dsafe = 0.6m. Obstacle avoidance and

path length coefficients were adjusted to relatively high values 200 and 100, respectively,

favoring safety over path length optimality, while the number of waypoints was determined

either by the distance from the current position to the goal — placing a state every 1.5m —

or by the number of states provided by the Trajopt planner. The experiments tested plan-

ning on a known map, with a focus on efficient trajectories, and online, using the camera

for obstacle avoidance and frequent replanning.
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(a)

(b)

Figure 4.9 Simulated trajectories executed by the robot in Gazebo. (a) An environment
with a narrow opening (the ceiling is not shown); (b) A cluttered environment with multiple
pipes.

4.5.1 KNOWN MAP — OFFLINE PLANNING

During planning with a known map, the input map was a set of geometric primitives

(planes, boxes, cylinders, etc.) and the iterative warm-starting process was used. All plans

were produced in less than half a second.
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SIMULATED ENVIRONMENT

Two different environments are presented here highlighting different challenges for Tra-

jopt. In the first environment, called the Window environment, two rooms, separated by a

wall with an opening (window) between them and open to one side demonstrates path op-

timality; see Figure 4.9(a). The original path results in a local minimum. After the iterative

warm-starting method is used the solution through the window is found. Furthermore, for

this experiment the AUV has to keep a horizontal pose during motions that causes larger

drifting from inertia. For this purpose, in this single case we increased dsafe to 1m.

The second environment, called the Cluttered environment, focuses more on the capa-

bility of our method, inherited from Trajopt, to minimize oscillation while passing through

a sequence of obstacles that need accurate motions with fast orientation changes; see Fig-

ure 4.9(b). In this environment not only was the roll adjusted during optimization adapting

to the motion, but also the Aqua2 is guided to pass in a parallel motion between each pair

of pillars, thus maximizing the distance from both of them, for increased safety.

Safe navigation for the Aqua2 is achieved only if during the motion the trajectory fol-

lowing method does not violate the assumed clearance dsafe by the planning process. For

these challenging scenarios, where the robot changes orientations fast, the oscillations are

shown in Figure 4.10. The error at time t, et , is calculated as the Euclidean distance of the

measured simulation odometry sc, to the line formed by the previous pi−1 and the current

local goal pi:

et =
|(sc− pi−1)× (sc− pi)|

|pi− pi−1|
(4.13)

POOL TRIALS

Four different environments were used at the two pools in our university, demonstrating

operations with the Aqua2 AUV; see Figures 4.13, 4.14, 4.15, and 4.16. The placement

of the obstacles followed the created map used as input to the augmented Trajopt planner.
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Figure 4.10 Error diagrams for the Room (a) and the Cluttered (b) environment, as mea-
sured from the simulation. The red squares indicate the local goals achieved, and the red
line marks dsafe, where errors larger than that should be considered unsafe.

Figure 4.11 Navigating inside a shipwreck model in simulation. Model of “Shipwreck,
Hooe Lake, Plymouth” from Sketchfab.
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(a)

(b)

(c)

Figure 4.12 (a),(b) show representative photos from the deployments in the pool in an
unknown environment. Please note the plastic toys spread at the bottom of the pool to
produce detectable features in a featureless pool. (a) Avoiding two obstacles in the shallow
swimming pool; (b) Avoiding two obstacles in the deep diving pool. (c) presents the online
map produced by SVIn [8] as a screenshot of RViz for the environments of (b), the robot
avoids the first cylinder, moves forward and then avoids the second, while using the features
from the bottom of the pool to localize.
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(a)

(b) (c)

Figure 4.13 A trajectory of the simulated environment (a), and 2 snapshots of the in-pool
executed trajectory at (b) and (c). The robot was forced to keep constant roll orientation to
test a bottom monitoring behavior.

In the first environment, Figure 4.13, the Aqua2 was forced to maintain an attitude facing

the floor, a situation that maximizes drift during yaw changes. The robot was able to

successfully avoid all the obstacles and quickly self-correct its orientation. For the other

three environments, the attitude of the AUV was optimized by the planner. In the second

environment, Figure 4.14, the robot avoided the two vertical pipes and passed over the

diagonal one. Three horizontal pipes were used to force the AUV in continuous depth

changes; see Figure 4.15. Finally, three vertical pipes resulted again in obstacle avoidance

with a roll at 45◦; see Figure 4.16.
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(a)

(b) (c)

Figure 4.14 A trajectory of the simulated environment (a), and 2 snapshots of the in-pool
executed trajectory at (b) and (c).

4.5.2 SENSOR BASED PLANNING — ONLINE

The deployment of the proposed framework online highlighted some computational chal-

lenges. First, the state estimation consumes a large fraction of the computing resources.

Second, the most computationally expensive component of the motion planning pipeline is

the convex decomposition step, using approximately 70−80% of the total planning time.

For efficiency, the convex decomposition parameters were adjusted to produce many small

convex polyhedra, instead of a few large ones. A history of the observations was kept to

account for the limited field of view of the AUV. In all cases, the replanning frequency was

on average at 1Hz.
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(a)

(b) (c)

Figure 4.15 A trajectory of the simulated environment (a), and 2 snapshots of the in-pool
executed trajectory at (b) and (c).

SIMULATED ENVIRONMENT

The model “Shipwreck, Hooe Lake, Plymouth” from Sketchfab1 was simplified and used

in the Gazebo simulator. For computational efficiency, no texture was used in the simulator

and the basic point-cloud was acquired from the model using a resolution of 100× 75

points. The AUV was guided through the inside of the shipwreck, while avoiding the

observed obstacles; see Figure 4.11. The complex environment presented in Figure 4.9(b)

was used for online navigation resulting in similar results.

1http://sketchfab.com/
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(a)

(b) (c)

Figure 4.16 A trajectory of the simulated environment (a), and 2 snapshots of the in-pool
executed trajectory at (b) and (c).

POOL TRIALS

Additional real pool experiments were conducted using state estimation from the robust

underwater SLAM package SVIN [142] with additional sand-toys weighted and placed

on the floor to improve the odometry estimation together with obstacles to test obstacle

avoidance; see Figure 4.12. The same configuration was used with the online simulation

framework with the difference that the AUV was constrained at constant depth to maintain

tracking using the features on the floor. The two environments, at the shallow and deep

pool, used two vertical obstacles resulting in similar obstacle avoidance trajectories. Fig-

ure 4.12(c) presents the overall recorded trajectory and features detected from SVIn [142].

During one of the experiments the AUV’s motion brought it towards a diver recording the

experiment, who, to the diver’s relief, was treated as another obstacle and was avoided.
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OPEN WATER DEPLOYMENTS

Finally, open water deployments were conducted last January, at the Bellair’s Research

Institute of McGill University, in Holetown, Barbados. The experiments aimed to test

the online capabilities of AquaNav in open-water challenging conditions, on the left for

constant depth and roll and on the right for moving unconstrained in 3D.

Given the very challenging conditions due to turbidity and high-currents, SVIn was

assisted by dead-reckoning. In all cases AquaNav was able to reach the goals and suc-

cessfully avoid static or dynamic obstacles such as divers or schools of fish. As shown

in Figure 4.17 three different behaviors were tested in order to emphasize the modularity

and the adaptive nature of the framework. For the first experiment, the robot was forced

to remain at constant depth and no roll was allowed. For the second the robot was able to

change depth and no roll was allowed. Then, the robot was fully utilizing its 3D kinematic

capabilities. In all cases, despite the high currents the robot kept safe distance from all

obstacles and safely navigating to the predefined goal.
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(a)

(b)

(c)

Figure 4.17 Aqua2 using AquaNav navigating over a coral reed in open-water trials, for
(a) constant depth and no roll, (b) variable depth and no roll, (c) fully 3D locomotion.
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CHAPTER 5

AQUAVIS: PERCEPTION-AWARE AUTONOMOUS

NAVIGATION FOR UNDERWATER VEHICLE

5.1 INTRODUCTION

Underwater operations using Autonomous Underwater Vehicles (AUVs) is a research topic

that attracts attention of an increasing number of researchers and organizations in both aca-

demic and industrial settings. Pushed by recent advancements in hardware, real-time state

estimation, and motion planning techniques, this strong current towards realizing autonomy

in the underwater domain is supported by many potential applications, such as marine ar-

chaeology, underwater infrastructure inspection and maintenance, energy and resource uti-

lization, public security, and environmental monitoring. Moreover, due to climate change

threatening maritime infrastructure and requiring constant monitoring in isolated and hard

to reach marine environments, underwater autonomy is becoming more essential than ever.

Currently, most —if not all— essential underwater tasks are performed by human op-

erators directly who risk their health or even lives, or remotely by controlling ROVs which

require significant human resources and logistics. In the first case, even excluding the

risks, operations are constrained by water conditions, and especially the hard limitations

on maximum depth and operation duration set by human biology. In the second case,

even excluding the deployment costs, tethered operations are limited to unconfined spaces

and generally uncluttered environments. Also, the human operators are controlling the

ROV based on limited information from its sensors, which potentially leads in delays and
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underutilization of the platform’s capabilities due to very conservative and overcautious

operation.

Autonomous Underwater Vehicles (AUV) could perform tasks underwater without ad-

ditional motion, depth, and duration limitations and especially without any risk to human

lives. But AUVs deal with other important issues that are raised in the underwater envi-

ronment, both with hardware and software. Especially, autonomous underwater 3D navi-

gation for agile robots using vision-based state estimation, and motion uncertainty, is very

challenging for various reasons. A major bottleneck of underwater autonomy is robust

vision-based SLAM [20,22], leading many state-of-the-art platforms to rely completely on

dead-reckoning in order to avoid the visibility challenges of the underwater domain such

as color attenuation, turbidity, and lack of color saturation, illumination, and feature-rich

areas. A second important bottleneck is real-time motion planning, which should deal with

motion uncertainty and safe operations in proximity to underwater structures and cluttered

environments for monitoring, mapping, and exploration purposes.

Previous work has addressed these issues providing robust solutions for visual-inertial-

based underwater state-estimation, by introducing SVIn [8] and SVIn2 [142], and a com-

plete robust underwater navigation framework, called AquaNav [17], which was presented

in Chapter 4. Though AquaNav provided safe and efficient paths that avoided obstacles in

real-time, it had no consideration on the future visibility of the few feature-rich areas of

the underwater domain, which SVIn2 and many other vision-based SLAM techniques rely

upon. Additionally, for the same reasons, AquaNav lacks the awareness needed for inspec-

tion, mapping, and monitoring purposes, since often the way for the robot to avoid detected

obstacles, involves motions that steer the robot away from the feature rich obstacles. For

example, as shown in Figure 5.1 the robot might turn right in order to avoid the obstacles

perceived on the bottom left corner, but such motion might drive the robot away from high-

textured areas forcing the vision-based SLAM method to lose track. Thus, introducing a

new methodology for solving the important problem of active perception [143] extends
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autonomy by driving the robot towards feature-rich areas, for minimizing state-estimation

uncertainty or for observing areas of interest.

In order to achieve such desired behavior, it is highly important to combine perception

and motion planning, in order to avoid the obstacles, but also keep feature-rich objects in

the cameras’ field of view. Bringing perception and motion planning closer not only assists

state-estimation, but also produces trajectories that track and monitor points of interest,

such as fish, corals, and structures. Such behavior is preferred for exploration and monitor-

ing strategies that should collect diverse and meaningful-to-humans information [144,145].

Figure 5.1 An example robot view of the Aqua2 while operating underwater. The red
frame highlights feature-rich areas, while yellow areas with few poor-quality features.

AquaNav might drive away from the red area Aqua2 to avoid collisions, but such
maneuver might result to loss of view of these essential to state-estimation features.

This chapter proposes a novel formulation for active perception and a novel framework

for a real-time perception-aware underwater navigation framework, called AquaVis [19].

The proposed pipeline builds on the existing AquaNav pipeline and enables an underwa-

ter robot with an arbitrary multi-camera configuration to perceive multiple visual objec-

tives, extracted automatically, along the path for mapping, monitoring, or localization pur-

poses, by introducing two novel cost-functions in the optimization process. The objective

of AquaVis is to extend the capabilities of AquaNav [17] so that motions will be gener-
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ated enabling the robot not only to move efficiently and avoid obstacles safely, but also

to observe objects of interest while performing these motions, Figure 5.2. These visual

objectives can be perceived online and from a desired distance, while at the same time

the robot safely reaches the desired goal. Though the primary focus lies on multi-camera

configurations, as shown in the experiments, other sensors such as sonars and LIDARs, or

combinations of sensors of different capabilities and attributes, could be used within the

proposed approach to offer more robust performance.

Observing objects of interest rather than being our primary focus — which is the view

of the typical coverage problem [146–149] — it is considered a secondary objective with

the primary being the efficient and safe navigation to the specified goal position. In the

ideal case a solution would be a sequence of motions where if followed by the robot, the

goal is reached, any collisions are being avoided, the path length is kept minimal and during

any transition at least one point of interest is being observed during at each state.

The contributions of AquaVis, upon successful completion, will be:

1. A system able to safely navigate through cluttered challenging environments; an

inherited property from AquaNav [17].

2. A perception-aware method for a forward moving robot that is capable of tracking

multiple visual objectives along the path.

3. A navigation scheme able to track objects from a desired proximity mitigating tur-

bidity.

4. A high-level local planning technique, that allows modifications, adjustments, and

exhibits sophisticated performance.

5. Experiments validating the performance of the method in different scenarios and for

different multi-sensor configurations.
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(a)

(b)

(c)

Figure 5.2 An instance navigation around obstacles (grey) and feature-rich visual
objectives indicated with stars (a). AquaNav, might emphasize on avoiding obstacles and
minimize the path length, ultimately potentially losing track (b), while AquaVis attempts
to safely navigate by avoiding obstacles and at the same time let the robot observe some

nearby visual objectives.

5.2 PROBLEM STATEMENT

Building upon the formulation of AquaNav described in section 4.2.2, let the set of v ob-

jects to be potentially observed denoted by V , and Fs denoting the visibility manifold at
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Figure 5.3 The visibility formulation of Equation 5.1. Fclose
s is shown with light yellow,

FFOV
s with light blue and the visibility manifold Fs with light green for the state s of the
robot. The visual objectives v1, v2, and v3 are indicated with stars. Only v2 is visible

because it is inside Fs, while v1 and v3 are not observed.

state s for a robot with a single camera, within the robot observes objects. Let also Fclose
s

be the sphere centered at the camera’s focal point with radius rclose, before when nothing

that close is considered visible, and similarly F f ar
s the sphere with radius r f ar > rclose be-

hind which nothing that far is considered visible at state s. If FFOV
s defines the spherical

sector of the field of view of the camera, then:

Fs = (FFOV
s ∩F f ar

s )−Fclose
s (5.1)

For a given state s of the robot and a point of interest v∈V —also called visual objective—

we say that the robot observes the point of interest if v ∈ Fs, Figure 5.3.

The same formulation could be generalized in robots carrying arbitrary multi-sensor

configurations. If C is a set of sensors, and Fc
s represents the visibility manifold for sensor

c with c ∈C, computed by Equation 5.1, then the visibility manifold for a robot at state s

could be provided by:

Fs =
⋃
c∈C

Fc
s (5.2)
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Figure 5.4 The visibility manifold Fs for 2 cameras mounted on the robot is shown in
light green. Visual objectives v1, v2, and v3 are indicated with stars. Only v2 is visible
because it is inside Fs, while v1 and v3 are not observable from the robot’s current state s.

An example of the visibility manifold for Aqua2 utilizing both the forward looking stereo

camera and a bottom-looking back camera is shown in Figure 5.4. It is worth noting that

such formulation do not introduce any constraints on the type of the sensor or robot. Al-

though not studied in the current dissertation, the same formulation is applicable to robots

of arbitrary type, such as manipulators, mobile manipulators, humanoids, etc.

Finally, the goal is to maximize the number of states of the executed trajectory where

the robot observes at least one visual objective. More formally, if Pexec is the executed

continuous path of the robot approximated by P∼exec = [s1,s2, . . . ,sn], where n approximates

Pexec with arbitrary precision, then the path’s success in maintaining visibility of the visual

objects is quantified via the following function:

M(P∼exec) =
|{si ∈ P∼exec | Fsi ∩V ̸= /0}|

n
(5.3)

Equation 5.3 provides the percentage of the trajectory where at least one point of inter-

est is visible. When M(P∼exec) = 1 during the entire path the robot was observing at least

one point of interest, while on the other hand when M(P∼exec) = 0 the robot is unable to

observe any points of interest.
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Thus, the goal of AquaVis is to produce a path that minimizes the path length (Equa-

tion 4.8), under the continuous clearance constraints (Equation 4.10) similar to AquaNav,

but additionally maximizing visibility of certain targets (Equation 5.3).

5.3 RELATED WORK

The problem of active perception was first introduced by Aloimonos et al. [150] and Ba-

jcsy [151], and then by Feder et al. [152] in the late 1990s, in the context of exploration.

They introduced a framework that made local decisions to improve pose estimates during

mapping based on uniquely identified landmarks. Stachniss and Burgard [153] provided a

method that improved localization using SLAM, by attempting loop-closing.

Makarenko et al. [154], used a laser range scanner, extracted landmarks that were used

with an Extended Kalman Filter, and they proposed a method that could be parameterized

to trade-off exploring new areas with uncertainty. Martinez et al. [155] achieved reducing

pose and map estimates with Gaussian Processes. The work of Rekleitis introduced a

exploration vs exploitation based framework to reduce uncertainty for a single robot by

visiting previously mapped areas [156], with extensions to using sonar sensors [157], and

also multi-robot systems [158]. Zhang et al. [156, 159, 160] employed hybrid metric-

topological maps, to reduce localization and mapping uncertainty. All these early works

presented to this point, were considering only the 2D case.

More recent studies have expanded the problem from 2D to 3D, with the main plat-

form considered being quadrotors, although few studies utilizing manipulators exist [161].

These studies are more related to our proposed objective, but in general they are not pro-

viding visibility distance constraints and unlike Aqua2 latteral motions and on the spot yaw

rotations where considered. Other major differences will be highlighted.

The work of Forster et al. [162] provided a method to minimize uncertainty of a dense

3D reconstruction, but it was based on a direct method that have weak performance un-

derwater due to turbidity, and mostly fly-over motions were performed without a robust
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obstacle avoidance method. Penin [163] introduced a framework for producing trajecto-

ries taking into account the field of view limitations of the camera, but it was restricted to

tracking only 4 points in close proximity to each other, no obstacles were considered, and

computational expenses do not allow for real-time behavior.

The work of Spica et al. [164] combined visual servoing with Structure from Motion.

They moved the camera with the objective of increasing the quality of the reconstruction.

Discarding the difference regarding our goal of improving localization, instead of map-

ping, their method did not considered obstacles and operation in cluttered environments.

Constante et al. [165] proposed to use a photometric method to drive the robot close to

regions with rich texture and features, but similarly to [162] direct methods are not ex-

pected to perform well underwater and also the motions were constrained to fly-overs and

near-hovering.

Sheckells et al. [166] provided an optimal technique for visual servoing, but no ob-

stacle avoidance methods were introduced for cluttered environments and only one visual

objective, consisting of features, was considered for the duration of the trajectory. But

for a forward moving robot with a forward looking camera set, such as Aqua2, without

the capability of lateral motions, in most cases more than one visual objective needs to be

considered to keep track. Additionally, the works of Nageli et al. [167, 168] focused on

visual-objectives tracking, rather than achieving a goal with robust localization, and the

potential field method applied for obstacle avoidance could result in a local minimum in

cluttered environments.

Other studies that considered only one visual objective are the following [169–173],

and studies that did not consider obstacle avoidance are [165, 169, 174, 175]. It is worth

noting that [175] indeed was able to track a set of landmarks, but with the constrained that

they should be tracked always, while for our objective the robot needs to choose which

objective should be tracked from the given position. [176] utilized a mounted camera on

a gimbal and since it was based on a teach and repeat method, it is not applicable for
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underwater unexplored environments. Given the camera configuration and the kinematics

of the Aqua2, the study above, neither the method of Zhou et al. [177], nor Murali et al.

[174] that allowed lateral motions and free on the spot yaw rotations could be applied for

our purpose. Some techniques [170,173] consider only one target, but also they resulted in

low-level controllers, where our goal is to keep the planning component high level enough

in order to encourage extensibility and complex and sophisticated performance. A very

recent work by Zhang and Scaramuzza [178] proposed a new topological model for map

representation that could be used for guaranteeing uncertainty reduction in the entire map,

but a computationally expensive offline computation on a known map is needed before

planning limiting the scope of online applications.

In the underwater domain Frolovet al. [179] a motion planning framework was pro-

posed for reducing map uncertainty in the context of coverage for AUVs. Finally, there is

a recent work by Manderson et al. [180], very closely related to the proposed objective,

that applied a navigation framework on the Aqua2 platform. This technique was based on

deep-learning fitting on data collected by a human operator controlling the robot. The robot

was taught to stay close to corals, and avoid collisions with corals and rocks. Although that

technique seems robust at first sight, it is unable to fully exploit the kinematic abilities of

the robotic platform the way AquaNav does without considering roll motions, it is con-

strained to navigate only to similar environments (coral reefs), and the motion commands

follow a very reactive behavior and a short decision window that was compensated in this

work by following predefined local goals.

On the other hand, AquaVis produces locally near-optimal motions for avoiding the

obstacles, with no reliance on a potentially error-prone human training process. It also pro-

duces efficient trajectories for safe navigation in cluttered environments, similar to Aqua-

Nav. More importantly, since it operates on point-clouds, localization could be maintained

with any kind of structures with rich texture, without the limitations dictated by a train-

ing dataset. Moreover, it is able to incorporate third-party object recognition modules for
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Figure 5.5 System architecture of AquaVis, which is based on AquaNav. AquaVis alters
the core planning component by incorporating visual objectives, shown with red, while
modules for warm-starting, shown with orange, and path following, shown with blue, are
kept the same.

monitoring objects of interest, without the need of the time and resource intensive training

on the motion planning module. Finally, it is applicable to robots of arbitrary multi-sensor

configurations and enables them to navigate and observe multiple visual objectives along

the path from a desired proximity.
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5.4 METHOD DESCRIPTION

AquaVis, as an extension of AquaNav, inherits the same principles and guarantees. As

described in Chapter 4, AquaNav has both on-line and off-line capabilities. It is able to

navigate the robot safely while performing efficient and minimal paths in challenging sce-

narios. AquaVis, as a robust perception-aware navigation framework should also share all

these attributes, along with producing paths that satisfy additional visibility objectives.

The proposed enhancements appends the AquaNav pipeline, on the point-cloud pro-

cessing step, and the motion planning module, maintaining the state-estimation and path

following steps. Such modularity further highlights the extendability of the original frame-

work. A diagram of the proposed pipeline in Figure 5.5, highlights that the new modifica-

tions.

With respect to the point-cloud processing step, new functionality is implemented to

detect objects with dense features and automatically extract visual objectives. Regarding

the motion planning component, new cost-functions are developed, respecting the kinemat-

ics of the robot, and the capabilities of the path follower, in order to steer the paths towards

the specified visual objectives.

The next paragraphs provide further discussion on these enhancements.

5.4.1 EXTRACTING VISUAL OBJECTIVES

AquaVis has both offline and online capabilities. For the offline planning, a known map

is given, typically consisted of geometric primitives, similarly to AquaNav. In such case,

AquaVis additionally requires the visual objectives to be observed as 3D points.

Fore online navigation, AquaNav employs the robot to navigate an unknown map, using

a capable state estimation package such as SVin [181], that outputs both the odometry and a

representation of the sensed environment as a 3D point cloud. During the online version of

AquaVis, both the obstacles and the visual objectives are detected in the 3D space in real-

time. Prior work of the AFRL lab has provided techniques for detecting corals [182–184],
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or other Aqua2 robots [9] using CNNs. In this chapter, the primary focus is improving

odometry estimates, instead of tracking of known objects. Thus, the raw point-cloud is

processed to extract visual objectives with high density of features, and then these visual

objectives could be used to assist the odometry as landmarks if the camera is able to track

them.

A way to extract such objects is to treat the problem as a density-based clustering

problem. Efficient density-based approaches, such as DBSCAN [185], could be utilized on

the point cloud to omit clusters with high density and then the centroids of these clusters is

chosen as the visual objectives.

DBSCAN [185] is highly parameter free, since only a minimum neighboring distance

and a minimum number of samples per cluster is needed to be tuned. Regarding the first

parameter the minimum dimension of the robot is used (30cm). For any distance of two

points smaller or equal to 30cm, the points are treated as points representing the same

obstacle, given that the robot will not be able to fit in-between. The second parameter

is adjusted to a low value, given our observations and experience [17] that highlight the

scarcity of good features underwater in comparison to other environments. A value from

5 to 10 seemed to produce acceptable results in datasets collected from areas the robot is

expected to operate.

DBSCAN [185] is a very powerful clustering technique and it is capable of detecting

highly non-convex clusters. This is a very desired attribute for most clustering problems,

but in the current application it contradicts with the requirement of extracting only convex

clusters, so the centroid will lie within the high feature density regions. Although spe-

cific counterexamples could be constructed as failure cases for the proposed approach, to

our experience, such cases are extremely uncommon underwater, since rocks, corals, and

other objects of the underwater domain, tend to be and perceived by the state estimation as

convex.
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Finally, in each planning cycle, the above preprocessing step produces the visual objec-

tives used during planning. Though, not keeping past information of previously detected

clusters, could result to a highly sub-optimal reactive behavior. Thus, the set V contains a

maximum of m computed visual objectives, in order to ensure real-time planning, and to

avoid excessive computation from an ever increasing number of visual objectives. Initially,

the visual objectives are added to the list until |V | = m. Then, any new measurement re-

places the closest one if they are in close proximity by updating the center of the cluster, or

in any other case, the oldest one to favor locality and computational efficiency.

5.4.2 ENHANCING MOTION PLANNING

The planning pipeline of AquaNav [17] consists of two modules: First Trajopt [5], which

is the main core motion planner producing and refining the paths to be executed, and an

assisting warm-restarting process, for supplying paths to Trajopt in the case of failure us-

ing BiT-RRT [140]. AquaVis, the proposed framework for adding visibility objectives on

AquaNav, modifies only the path optimization problem of Trajopt.

Given the formulation describe previously at Equations 4.8 and 4.10, there are only two

additional cost functions that need to be added. The first one greedily forces the robot to

view visual objectives, while the second one forces the path to self-correct and maintain

the kinematics assumed by the path follower. As expected, these constraints are intuitively

opposing, since the second one forces the path to remain valid countering the degrading

greedy behavior of the first one. Both functions are described bellow and an example that

outlines these novel cost functions is shown in Figure 5.6.

VISIBILITY CONSTRAINTS

The visibility constraint is the major proposed addition to the AquaNav pipeline, with the

sole goal of greedily drive the robot to observe a known set of visual objectives. Defining

and utilizing directly in real-time applications the true geometric polytope of the visibility
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(a) (b)

Figure 5.6 The top (a) and side view (b) of a state using the novel constraints during
optimization. The blue square indicates an objective, while the red circle the next
waypoint. Minimizing dob j will result on the robot observing the objective, while

minimizing dalign will result on the robot to be consistent with the kinematics assumed
during path execution and planning.

manifold Fs could be very challenging, thus an approximation F∼s is used, formed by a

representative collection of points. Ideally, these projected points will sufficiently cover

the area of the visibility manifold up to a desired resolution. An option is to project points

uniformly in different directions and distances from each sensor c ∈C.

More formally, let T s
w denoting the transformation of the pose s ∈ S of the robot in the

world coordinate frame, T c
r the transformation of the pose of camera c ∈C in the robot’s

coordinate frame, K a set of k desired directions, T k
c =

[
Rk 03×1

01×3 1

]
the transformation de-

scribing the k direction of the projected point, and a set Dvis of dvis desired distances the

robot has to observe a visual objective. Then, assuming a homogeneous multi-sensor con-

figuration, the approximated visibility manifold could be formed as:

F∼s =
⋃
c∈C
k∈K

dvis∈Dvis

{
T s

wT c
r T k

c

[dvis
0
0
1

]}
(5.4)
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(a) (b)

Figure 5.7 Different perspectives of the projected points of the F∼s visibility set approxi-
mating the Fs visibility manifold corresponding to the front camera.

Figure 5.7 depict an example of an approximation manifold for the front camera of Aqua2.

For heterogeneous systems with sensors of different field of view and characteristics, in a

similar way, user-defined points could be picked off-line to represent the visibility mani-

fold.

Given the above formulation, in order to enable the robot to observe certain visual

objectives, the core idea is to minimize the distance between the approximated visibility

manifold of the robot at state s with the position of the closest point of interest. Thus, the

novel cost function achieving this objective is:

Vis(s) = w′min
v∈V

min
f∈F∼s
|| f − v|| (5.5)

Upon successful convergence of the Trajopt optimization process, by definition, at least

one visual objective will be visible by at least one sensor in each state.

The parameter w′ is a weight that is utilized to adjust the Trajopt optimization in the

first iterations: Trajopt uses an adjustable loss factor for collision avoidance to treat it as

hard constraint, and after a safe distance from the obstacles has been achieved then it is

treated as soft constraint. The idea is to dominate with this weight the optimization in the

first steps in order to steer the trajectory in to areas that have more visual objectives, by
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using a high value for w′ and then to decrease that value so that the original Trajopt cost-

functions will be utilized. Thus, it becomes more likely to produce a path that satisfies our

goal objective.

This formulation offers many options for developing different policies in the future,

such as enforcing visibility of visual objectives from multiple sensors by using an F∼s rep-

resenting the intersection of the FOVs of the desired sensors, maximizing visibility of many

objectives by attempting to minimize the sum of the distances between each visual objec-

tive and its closest point of F∼s , and alternate sensing of the target object between different

sensors (such as cameras, LIDARs, or sonars) with respect to proximity by choosing the

relevant parts of F∼s for each state during optimization.

Though the above formulation is powerful and could lead to superior performance in

terms of path quality and visibility, at the same time it can add a severe computational

overhead during planning, degrading the desired real-time performance of the AquaVis

pipeline. However, both desired behavior and real-time replanning can be achieved at the

same time, by significantly reducing the approximation quality of F∼s , to only a single

point projected at the center and at a desired distance dvis of each sensor. This might seem

reductive but it could be argued that such a trade-off is necessary due to the very lim-

ited computational resources of Aqua2, shared by the notoriously computationally heavy

SLAM modules. Our experimental results showcase the robustness of the method despite

this reduction.

More formally, if dvis is the desired distance for observing visual objectives from each

sensor, then the redacted approximated visibility manifold can be constructed as:

F∼s =
⋃
c∈C

{
T s

wT c
r [dvis 0 0 1 ]T

}
(5.6)

The above simple formulation in conjunction with Equation 5.5 guarantees that multi-

ple visual objectives could be observed by multiple sensors along the path, and that at least

one objective will be observed at each time if possible. Figure 5.6 shows an instance of the

proposed cost function and the distance dob j, shown with blue.
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The cost fuction of Equation 5.5 is greedy in the typical flavor of path optimization,

since it attempts to steer the robot towards the closest available point of interest for each

state. Also, the function is, arguably, rather myopic without providing an easy way to plan

paths that are able to observe all given visual objectives, to guarantee that the maximum

possible points of interest are observed, or to ensure that at least one visual objective will

be observed at each time. However, the underlined intuition is that local optimality, could

be extended to global high-quality performance, the same way it is achieved in AquaNav.

On the other hand, such a function could guarantee that during the planned trajectory,

multiple objectives could be observed, contrary to the works discussed previously. More

importantly, the visual objectives are tracked from a desired proximity, something crucial

in the challenging underwater domain, with the very limited visibility range, due to turbid-

ity. Moreover, considering the primary objective on improving vision-based odometry by

keeping objects with many features on the frame, most commonly only a subset of visual

objectives needs to be tracked. Furthermore, although not studied in this thesis, by devel-

oping policies for deciding beforehand which points of interest should be tracked in each

step, many local-minimum cases could be avoided, since the entire trajectory is considered

during optimization. Specifically, planning with more than one visual objective in the hori-

zon, is a more robust and efficient way to plan trajectories to a desired goal. Especially,

if we consider given the short visibility range of the underwater domain combined with a

forward moving robot employed with a forward looking camera of the robot.

Finally and most importantly, the weights of the new function introduced could be

tuned easily. In other methods, presented above, where there is a mixture of translational

and rotational cost functions, tuning the weights is often be very challenging. Especially re-

garding visibility constraints, cost functions for rotational and translational motions might

often lead to conflict and scaling different units can be very difficult (meters vs radians).

The proposed cost function offers a way to unite the problem for both types of motion by

producing costs with physical and intuitive correspondence. All the costs are measured in
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a single metric (meters), assisting tuning. Due to this attribute, the optimization method is

allowed to naturally determine the motion, by avoiding the conflicts discussed above, that

lead to high non-linearity and non-convexity.

KINEMATIC CONSTRAINTS

The formulation described in the previous section solves the active perception problem

sufficiently for holonomic robots, capable of moving freely in SE(3) with no explicit kine-

matic limitations. Such robots will always orient themselves appropriately and move to-

wards the most convenient visual objectives. Aqua2, though, and the majority of the mobile

robots, are non-holonomic systems.

In the case of Aqua2, the controller allows only for 3D Dubins’ locomotion, and the

path follower inherited by AquaNav performs a simple waypoint navigation. The path

follower accepts the 3D coordinates that need to be reached by the robot, along with a

constant desired roll orientation during the motion. The robot, ideally is assumed to move

on a straight line connecting the previous and the next local goal as described in Chapter 4.

Thus, the robot after achieving the waypoint psi should maintain an orientation pointing

directly to the next waypoint psi+1 . In other words, the kinematic constraints assumed

during planning is that the robot will always face and move towards the next waypoint.

If such constraint is satisfied for every state, then the path produced by the optimization

process, will be readily executable by the robot.

This was not an issue that had to be addressed for AquaNav, since the optimization

process was focusing on minimizing the path length by satisfying clearance guarantees,

which also minimizes rotations. At the same time obstacle avoidance had no significant

effect violating the kinematic assumption. By adding the visibility constraint, the robot

will be encouraged to face directly the visual objectives, diverging significantly from the

desired orientation towards the next waypoint.
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The above important issue is resolved by adding another constraint, similar in nature,

applied to each state that allows the robot to observe the visual objectives while at the same

time it forces the robot to face towards the next waypoint. Such alignment was achieved

by projecting a single point in front of the robot at a specific distance and then minimizing

the distance dalign of this point with the next waypoint. Fig. 5.6 shows an instance of such

distance with red.

More formally, let ps denote the 3D position coordinates of state s at a common fixed

coordinate system, S = [s1,s2, . . . ,sn−1,sn] be the trajectory to be optimized, where si,

si+1 ∈ S are two consecutive states, that correspond to the two consecutive waypoints psi

and psi+1 . Finally, let len(S) return the total length of the S path, and the average distance

between two consecutive states be computed as:

av(S) =
len(S)
n−1

(5.7)

Then, if ε is a positive value, for each state si the kinematic constraint aligning properly

the robot to produce valid trajectories is given by:

A(si) = w′′
∣∣∣∣∣
∣∣∣∣∣T si

w

[
av(S)−ε

0
0
1

]
−
[

pT
si+1
1

]∣∣∣∣∣
∣∣∣∣∣ , (5.8)

Similar to Equation 5.6 the first element of the first vector is the distance that the point

will be projected, and w′′ a weight of the cost function for the objective function. The dis-

tance needs to be automatically adjusted during optimization according to the continuously

changing path length, while at the same time it both maintains waypoints of equal distance

and encourages minimal paths by being reduced by a small positive value ε .

It is worth noting that similarly to Equation 5.5, only euclidean distances are considered

in a single intuitive function, so no special treatment on adjusting the weights between

translational and rotational cost functions is needed, and weight tuning is intuitive and

simple. By adding Equation 5.5 and Equation 5.8 as cost functions in the optimization

formulation of AquaNav, a robust active perception behavior emerges as shown in the next

section.
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Finally, indeed AquaNav, thus also AquaVis, are pipelines that aim to safely navigate a

robot with very challenging and not well-studied dynamics. In order to achieve that, both

pipelines assume that the robot operates within some motion uncertainty, which is mitigated

with a proper safety clearance. Disturbances during motion are expected also for AquaVis,

and the probability of losing track of the desired visual objective exists, especially around

the waypoints when switching local goals and desired orientation. Simulation experiments

presented in the next section, show that such issues are mitigated with constant replanning

since less aggressive motions are expected. Additional object-tracking failure cases due

to aggressive motions could be resolved by improving smoothness on the output of the

controller, which is not the primary objective of this dissertation.

5.5 EVALUATION

Simulation experiments were conducted to validate the robustness of the proposed Aqua-

Vis pipeline within the Gazebo simulation environment [106]. To test the effectiveness and

robustness of AquaVis to handle arbitrary sensor configurations, two different configura-

tions were used utilizing the single forward looking stereo camera, and the forward looking

camera with the bottom looking one.

To simulate the output that is expected to be produced by vision-based SLAM tech-

niques, two simulated LIDARs with the same FOV as the cameras’ configuration on the

real robot, as shown in Fig. 5.4. The front stereo camera has a horizontal FOV of 120◦,

a vertical of 90◦, and they are tilted downwards by 40◦, while the back camera has the

exact same FOV but it is tilted downwards by 90◦. The LIDARs output depth images of

resolution 100× 75 which are potentially thousands more than the expected during real

deployment, to show the capabilities of the pipeline to deal with large inputs online. In all

the experiments, the LIDARs had limited range to simulate the expected turbidity in the

real underwater environments.
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To extract visual objectives automatically using DBSCAN [185], the maximum dis-

tance between features was set to 0.2 m with a minimum number of 5 features per cluster.

A maximum set of 15 visual objectives was maintained, with new visual objectives replac-

ing the closest of the old ones that were in a distance less than 0.5 m, or the oldest in the

set.

5.5.1 SINGLE FORWARD LOOKING CAMERA

For the first configuration utilizing a single forward-looking camera, the maximum range

of the sensor was set to 6 m. AquaVis was tested online against AquaNav in 2 different

environments, the Boxes, and the Shipwreck shown in Figure 5.8.

The Boxes Environment, shown in Figure 5.8, is intended to test AquaVis in an envi-

ronment where feature-rich areas are distributed sparsely in the environment, which is a

common scenario in open-water conditions, to the author’s experience. AquaNav, by opti-

mizing path length, moves on a straight line, disregarding the features, which are essential

for localization. AquaViz, in contrast, reaches the same goal while passing in proximity

and observing the feature rich areas (red cubes). The plot in Figure 5.8(e) confirms the

effectiveness of the proposed approach to the primary objective as defined in Equation 5.3:

AquaNav cannot observe any features for the majority of the time, whereas AquaVis con-

sistently tracked enough features. It is worth noting, that AquaVis introduced a 90◦ roll to

bring the visual objectives of the boxes in the field of view. Moreover, AquaVis maintained

tracking for the first 75% of the trajectory that visual objectives could be observed, and lost

track at the last 25% where no visual objectives were present that could be observed with

a forward looking camera, while the robot moves towards the goal.

Similarly, in the Shipwreck environment, also shown in Figure 5.8, AquaVis was able

to observe consistently more features than AquaNav, excluding ascent and descent, which

is expected given the kinematics of Aqua2. Also the robot not only oriented itself to track

most of the shipwreck but also created the desired proximity, indicating potential use for
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Figure 5.8 The results for the Boxes environment are shown on the left, and for the Ship-
wreck at the right row. The trajectories produced by AquaNav are shown in (a) and (b),
and for AquaVis at (c) and (d). The features observed for both methods are shown in (e)
and (f).

mapping purposes. On the other hand, AquaNav moved in a straight line, unaware of the

feature rich areas, and tracked only a small portion of the features tracked by AquaVis. This

important attribute of AquaVis that indicates strong potential towards mapping challenging

unstructured environments from a desired proximity will be shown also in the next section.
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5.5.2 HETEROGENEOUS SENSOR SYSTEM

Additional experiments were performed to evaluate the robustness of AquaVis applies on

robotic systems with multiple sensors, by utilizing the forward-looking and the bottom-

looking camera of the Aqua2 AUV in simulation.

In this section, two different versions of AquaVis are shown: (i) AquaVis-Mono that

utilizes only the front camera both for extracting visual objectives and for registering ob-

stacles, and (ii) AquaVis-Dual that additionally utilizes the back camera for informing the

objectives extraction method and for sensing. Moreover, the maximum range of the sen-

sors was set to different distances – 3 m for the front cameras and 6 m for the back one – to

validate the behavior of AquaVis for an AUV employed with a heterogeneous multi-sensor

system with different range capabilities. The desired distance from the visual objectives

was set to 1.5 m, half of the maximum range of the front cameras, to encourage obser-

vations from the front camera system, and the desired clearance to 0.6 m similarly to the

original AquaNav pipeline which produces a safe behavior for the expected operating speed

of the robot at 0.4 m/s.

The primary motivation for this work is to enhance underwater operations both for

improving state estimation and for enabling mapping, inspection, and monitoring missions.

For this purpose AquaVis-Mono and AquaVis-Dual were compared against the original

AquaNav framework as baseline in two different environments.

ASSISTING VISION-BASED STATE ESTIMATION

The first environment, the same as the Boxes environment from the previous section, aims

to test the capabilities of the three frameworks to produce motions that provide good fea-

tures and robustify underwater SLAM in environments where they are concentrated in few

sparse feature-rich areas; a very common real scenario during underwater deployments.

The resulted trajectories are shown in Fig. 5.9 for the AquaNav, the AquaVis-Mono, and

the AquaVis-Dual pipelines respectively, and the features tracked by the front camera, and
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by both cameras in Fig. 5.10. The robot started from an initial position from which only

a small segment of the first box was visible only from the front camera while nothing was

visible from the bottom camera, and a goal was set 25 m forward.

Notice that AquaNav focuses on minimizing the path length without regard for track-

ing features, while AquaVis-Mono was able to track few feature-rich areas with the front

camera and all of them with the back. On the other hand, AquaVis-Dual tracked all the

obstacles with both cameras, since the back camera feed was informing the path planning

and assisting visibility from the front cameras. Such results showcase also the capabili-

ties of AquaVis for heterogeneous sensor systems. For example, the back camera could

be considered equivalent to a sonar that has a significantly larger range than a camera un-

derwater. Such sensor configurations could drive the robot towards potentially feature-rich

areas detected by sonars from distance, and assist a visual SLAM module using the front

stereo cameras.

ENABLING MAPPING AND EXPLORATION

The second environment, called the Shipwreck environment, aims to compare the three

frameworks on producing motions for mapping, monitoring, and exploring challenging

underwater structures, such as shipwrecks; a significant motivation for this study and our

previous works. The resulted trajectories are shown in Fig. 5.11 for the AquaNav, the

AquaVis-Mono, and the AquaVis-Dual pipelines respectively, and the features tracked by

the front camera, and by both cameras in Fig. 5.12. The initial pose of the robot did not

allow it to see any features from the front camera, while a small segment of the shipwreck

was visible from the back camera. The goal was set at 45 m forward, the approximate

length of the shipwreck.

AquaNav and AquaVis-Mono had very similar performance, hardly observing any fea-

tures with the front cameras, while only a small segment of the deck was captured by the

back camera, due to its long sensing range. On the other hand, AquaVis-Dual was capa-
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ble to observe a significant segment of the shipwreck with the short-sighted front cameras,

while the majority of the shipwreck with both cameras. Moreover, using AquaVis-Dual the

Aqua2 was driven in very close proximity to the shipwreck, which showcases the inherited

strong safety and obstacle avoidance guarantees.

The results show great potential for application on robotic platforms with heteroge-

neous multi-sensor configurations, such as sonars with cameras. The pipeline allows re-

placing effortlessly the back camera, or even appending the current configuration, with a

sonar on the Aqua2, to automatically detect with low resolution potential points of interest.

In such configuration, AquaVis could drive the robot towards points of interest detected

from distance using sonars to take close visual observations; a very useful attribute for

many scientific, commercial, and security underwater operations.
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(a)

(b)

(c)

Figure 5.9 Trajectories produced by (a) AquaNav, (b) AquaVis-Mono, and (c) AquaVis-
Dual for the Boxes environment.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.10 First column: The corresponding point cloud obtained by the front camera
for the Boxes environment with (a) AquaNav, (c) AquaVis-Mono, and (e) AquaVis-Dual .
Second column: The corresponding point cloud obtained by both cameras with (b) Aqua-
Nav, (d) AquaVis-Mono, and (f) AquaVis-Dual. As expected, adding a second back camera
of larger sensing range, informs planning, robustifying the behavior further, while the lim-
ited range of the front cameras for AquaVis, leads to similar behavior with the uninformed
AquaNav pipeline.
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(a)

(b)

(c)

Figure 5.11 Trajectories produced by (a) AquaNav, (b) AquaVis-Mono, and (c) AquaVis-
Dual for the Shipwreck environment.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.12 First column: The corresponding point cloud obtained by the front camera
for the Shipwreck environment with (a) AquaNav, (c) AquaVis-Mono, and (e) AquaVis-
Dual . Second column: The corresponding point cloud obtained by both cameras with
(b) AquaNav, (d) AquaVis-Mono, and (f) AquaVis-Dual. As expected, adding a second
back camera of larger sensing range, informs planning, robustifying the behavior further,
while the limited range of the front cameras for AquaVis, leads to similar behavior with
the uninformed AquaNav pipeline.
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CHAPTER 6

DISCUSSION AND FUTURE DIRECTIONS

In this chapter, potential future applications and theoretical contributions using the pro-

posed research are discussed.

6.1 RRT+

The core idea of RRT+ has been already utilized and extended beyond the limits of Chap-

ter 3 by other researchers in the community [186], who and provided alternative solutions

for defining subspaces and determining timeouts. More importantly, they extended the ex-

perimental validation towards more challenging realistic scenarios. Similarly to that work,

there are four future directions for the RRT+ family of planners: Utilizing the idea on new

planners, developing new ways for defining relevant subspaces, determining more effective

timeout limits for each subsearch, further showcasing the robustness of the technique with

new applications.

One of the important characteristics of RRT+ is that it is a very general concept that

can be applied to many different sampling-based planners, even beyond the RRT-based

ones. For example, the same sampling technique could be applied to KPIECE [61] to

exploit the biasing of sampling to unexplored areas by projecting these samples to the

lower dimensional subspaces. A more counter-intuitive direction will be to identify the

fundamental disadvantages of progressively searching for a solution in lower-dimensional

subspaces and mitigate them with robust planners designed to overcome such issues. For

instance, lower-dimension subspaces — if they contain a solution — generally suffer from

narrow passages. Integrating the RRT+ subspace sampling with STRIDE [6], a planner
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that performs best in high-dimensional spaces with narrow passages, seem a very natural

and promising idea. RRT+ could also be integrated in a higher-level within a multimodal

motion planning framework for generating quickly paths, utilized or processed by other

planners, such as sampling-based near-optimal, or path-optimization planners.

A major concept and problem introduced, was defining lower-dimensional subspaces

where a solution possibly exists. To showcase the robustness of the technique even with

naive and simple approaches, where only linear constraints were considered, the subspaces

were formed only be a set of independent DoFs and a group mutually constrained ones, and

the subspaces were random. There are several improvements that future research could

accomplish. Firstly, instead of using only one set of constrained and one of set of fully

independent DOFs, subspaces could be formed by adding different linear constraints to

different DoFs. Such sets could either include DoFs that are unlikely to be important for

finding a solution, or by utilizing metrics such as the distance between the initial and the

goal configuration. Secondly, linear constraints could be replaced by non-linear ones that

represent projections of the free Configuration Space better. Deep learning techniques

could be employed to learn such subspaces from past queries, while they could also be

used to prioritize search into subspaces that show strong likelihood of finding a solution

fast for a specific query.

Regarding effectively determining the termination condition for a subsearch, a better

solution might be to use lower-dimensional projections to monitor the coverage of the

subspace, similarly to KPIECE [61], and switch to a different subspace if the progression

of the tree is stalled; an indication of disconnected free configuration subspace or very

narrow passages. Alternatively, other metrics could be developed for detecting these cases,

such as density-based conditions by monitoring the average distance of new samples to

existing nodes, or greedy ones by measuring the progression of the tree towards the goal.

Finally, as robots become inevitably more complex, with more actuators added, thus

more DoFs, RRT+ and other approaches dealing with high-dimensionality are expected to
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(a) (b)

Figure 6.1 Examples of underwater robotic platforms that AquaNav and AquaVis could
be applied: (a) The Eelume© underwater snake robot, and (b) the Aquanaut AUV by HMI.

become more relevant in real applications. The author aspires to apply such techniques

to the systems this thesis is focusing on: complex mobile manipulators, humanoids, and

multirobot systems, moving safely and robustly in dynamic environments on land, in the

water, in the sky, or beyond.

6.2 AQUANAV AND AQUAVIS

Regarding AquaNav and AquaVis, future research could focus on both major improve-

ments in the pipeline and new extensions, and also real applications and testing.

Currently, the planning module assumes a known constant speed and a fixed clearance

for every state. Modifications to the core optimization process, could allow planning with

dynamically defined clearance at each step, in compliance with the kinematics of the robot,

to improve safety and performance. Such modifications applied on a robot with known

dynamics, could be paired with a model predictive control [187] scheme — that requires

known boundaries for the optimization — for superior behavior and performance. Another

interesting problem, will be to plan with dynamic obstacles with strong clearance guaran-

tees. Such research direction would involve tracking, behavior prediction, and modifying
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the optimization process. Improving the replanning time by accelerating path planning and

point-cloud processing with GPUs is also a very promising area of research.

Although the primary focus of both AquaNav and AquaVis was application in the un-

derwater domain, both are very general frameworks with no added assumption that are true

only in the underwater domain. Thus, it would be interesting to utilize these pipelines for

mobile robots operating in indoor or outdoor environments, in the air or in the space. Es-

pecially, both frameworks, from a design choice, are able to operate on arbitrary complex

robotic systems, such as kinematic chains, or robots employed with manipulators, Fig-

ure 6.1. A very interesting research direction for AquaVis will be to utilize it on mobile

robots with multiple sensors mounted on multiple manipulators, to improve real-time track-

ing, mapping, and monitoring. AquaVis with the current formulation attempts to observe

at least one visual objective at each state. A new formulation and a higher level planner

could utilize AquaVis to maximize coverage of a certain area of interest or for performing

active exploration of unknown environments.

Unfortunately, due to unavailability of the Aqua2 platform due to the pandemic of

COVID-19 and supply chain issues in electronics, only few open-water trials were per-

formed for AquaNav, while AquaVis was validated purely in simulation. Future work

will focus on testing AquaNav and AquaVis in challenging dynamic environments, such

as underwater caves, shipwrecks, fishfarms, and for mapping, monitoring and inspecting

other natural structures and human infrastructure. Towards that research direction, Aqua-

Vis is expected to be utilized for exploration, mapping and tracking as part of a large

multi-institutional and multi-PI project (NSF-2024741) that aims to map shipwrecks with

a multi-robot scheme [188].

The main idea of the multi-robot wreck exploration approach is to have a team of co-

robots collaborating with a human operator. There are two types of robots: proximal ob-

servers, which will operate close to the structure in order to produce an accurate map, and

distal observers, which will be at distance maintaining the global picture of the structure
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(a) (b) (c)

Figure 6.2 Key components of the proposed multi-robot shipwreck exploration approach:
(a) the proximal observer navigating and observing in proximity the shipwreck, (b) the
distal observer tracking the proximal observer and maintaining a wider view of the general
structure of the shipwreck, and (c) an instance of the proposed approach for the distal
observer to track the proximal observer introduced in previous work [9].

and the pose of the proximal observer, Figure 6.2. Critical components of this application is

the motion of the proximal observer to map the shipwreck, a highly unstructured cluttered

environment, and the motion of the distal observer to keep the shipwreck and the proximal

observer into frame. Very promising experimental results from AquaVis have indicated

that AquaVis paired with a high level exploration planner can effectively explore a target

structure with safety from a desired proximity. The high-level planner will assign goal po-

sitions for the robot to achieve, and visual objectives to perceive encouraging observations

from unknown relevant areas. On the other hand, AquaVis could be also applied to the

distal observer to guarantee that the proximal observer and the distal observer remain in

the desired orientation and distance. Similar to the proximal observer, a high-level planner

taking into account the turbidity and the expected future position of the proximal observer,

could inform AquaVis to drive the distal observer in a safe and efficient way.
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CHAPTER 7

CONCLUSION

This dissertation provided real-time computational methods solving important problems

in emerging technologies such as high-dimensional motion planning, 3D underwater nav-

igation, and 3D active perception, along with extensive validation of these techniques in

simulation and real-world experiments. These contributions offer fundamental tools and

ideas that enable robots to solve very challenging motion planning and underwater naviga-

tion problems in real-time for the first time, while simultaneously offering a great potential

for further improvements and enhancements.

Each method is general enough to be applicable to a wide variety of complex robotic

systems that need to make fast decisions on how to move safely in order to avoid obstacles

and observe areas of interest. Thus, not only were new problems of significant complex-

ity solved in real-time by the robotic platforms presented in this thesis, but the proposed

methodologies can be applied to other platforms operating in different domains beyond

underwater, from indoor and outdoor operations, to aerial and space missions.

The author aspires to ensure that the key ideas and formulation introduced in this disser-

tation will inspire and support future research towards (a) advancing humanity’s collective

well-being by eliminating dangerous, repetitive, and emotionally unfulfilling manual la-

bor; (b) improving human life conditions by utilizing the efficiency and social surplus of

robotic research in construction, manufacturing, health and elderly care; and (c) expand-

ing our knowledge by developing robust robotic systems that can explore and operate in

domains far beyond the reach of our biology.
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