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Abstract

When the relative velocity between the different objects in a scene and the camera is
relative large — compared with the camera’s exposure time — in the resulting image
we have a distortion called motion blur. In the past, a lot of algorithms have been
proposed for estimating the relative velocity from one or, most of the time, more
images. The motion blur is generally considered an extra source of noise and is
eliminated, or is assumed nonexistent. Unlike most of these approaches, it is feasible
to estimate the Optical Flow map using only the information encoded in the motion
blur. This thesis presents an algorithm that estimates the velocity vector of an
image patch using the motion blur only, in two steps. The information used for
the estimation of the velocity vectors is extracted from the frequency domain, and
the most computationally expensive operation is the Fast Fourier Transform that
transforms the image from the spatial to the frequency domain. Consequently, the
complexity of the algorithm is bound by this operation into O(nlog(n)). The first
step consists of using the response of a family of steerable filters applied on the [og of
the Power Spectrum in order to calculate the orientation of the velocity vector. The
second step uses a technique called Cepstral Analysis. More precisely, the log power
spectrum is treated as another signal and we examine the Inverse Fourier Transform
of it in order to estimate the magnitude of the velocity vector. Experiments have
been conducted on artificially blurred images and with real world data, and an error

analysis on these results is also presented.



Résumé

Lorsque la vitesse relative entre plusieurs objets dans une scene et la caméra est
élevée — en comparaison avec le temps de pose — nous retrouvons dans l'image une
distorsion communément appelée “Flou de Mouvement”. Plusieurs algorithmes ont
été créés afin d’estimer la vitesse relative a partir d’'une ou de plusieurs images.
Généralement le “Flou de Mouvement” est considéré comme une source de bruit que
nous devons éliminer ou ignorer. Il est possible d’ estimer le carte du Flot optique
en utilisant seulement I'information contenue dans le “Flou de Mouvement”. Cette
these présente un algorithme qui détermine le vecteur vitesse d’une partie d’image
en utilisant le “Flou de Mouvement” en deux étapes. L’information fréquentielle
est obtenue par une transformée de Fourier rapide. Ceci limite la complexité de
I’algorithme & O(nlog(n)). La premiere étape consiste a utiliser le résultat d’une
famille de filtres adaptatifs sur le logarithme du spectre de puissance afin de calculer
I'orientation du vecteur de vitesse. La deuxieme étape utilise une technique nommée
analyse “cepstrale”. Dans ce cas le logarithme du spectre de puissance est considéré
comme un signal que nous analysons par le biais d’une transformée de Fourier inverse
pour déterminer 'amplitude du vecteur de vitesse. Des expériences ont été réalisées
sur des images synthétiques et sur des images réelles. Une analyse de 'erreur des

résultats obtenus est présentée.
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Chapter 1

Introduction

One of the fundamental problems in early Computer Vision is the measurement of
motion in an image, frequently called optical flow. In many cases when a scene is
observed by a camera there exists motion, created either by the movement of the
camera or by the independent movement of objects in the scene. In both cases, the
goal is to assign a 3D velocity vector to each visible point in the scene; such an
assignment is called the velocity map. In general it is impossible to infer from one
view the 3D velocity map; however, most motion estimation algorithms calculate the
projection of the velocity map onto the imaging surface. A large number of different
algorithms have been developed in order to solve this problem.

The problem of estimating the optical flow has received much attention because
of its many different applications. Tasks such as passive scene interpretation, image
segmentation, surface structure reconstruction, inference of egomotion, and active
navigation, all use optical flow as input information.

Until now, most motion estimation algorithms considered optical flow with dis-
placements of only a few pixels per frame. This approach limits the applications to
slower motions and fails to seriously address the issue of motion blur; moreover, it

works on images that are considered to be taken with infinitely small exposure time,



CHAPTER 1. INTRODUCTION 2

more or less in a “stop and shoot” approach, which limits the real time applications.
Also, most of these algorithms work on a series of images by calculating the displace-
ment of every pixel from image to image, ignoring any information about motion that
exists within each single image.

In this thesis we have developed and evaluated a new approach to the problem of
visual motion estimation. The algorithm we have developed is based on interpreting
the cue of motion blur to estimate the optical flow field in a single image. A key
observation is that motion blur introduces a certain structure, a ripple, in the Fourier
transform that can be detected and quantified using a modified form of cepstral anal-
ysis. Unlike classical approaches to visual motion analysis that rely upon operators
tuned to specific spatial and temporal frequencies at specific orientations, our new
approach making use of all the information that can be gathered from a patch of the
image and is thus quite robust.

The first step in our motion blur analysis is to compute the log power spectrum of
a local image patch. Motion blur leads to a tell-tale ripple, centred at the origin, with
orientation perpendicular to the orientation of the velocity vector. This orientation
can be reliably determined, even in the presence of noise, using a steerable second
Gaussian derivative filter. The magnitude of the velocity, which is related to the
period of the ripple, can then be determined by first collapsing the log spectrum
data into a 1-D vector, and then performing a second Fourier transform, to yield the
cepstrum, in which the magnitude of the velocity is clearly identified by a negative
peak. The computational complexity of this algorithm is bounded by the Fast Fourier
Transform operation, which is O(nlog n), where n is the number of pixels in the image
patch. Applying this analysis throughout the image provides an estimation of the
complete optical flow field.

The structure of this thesis is as follows. In Chapter 2 we describe the problem of
motion estimation in general; review the work that has already been done, along with

a brief description of the major existing algorithms; then we analyse the problem
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as it exists with the appearance of motion blur. The solution to the optical flow
estimation problem under the occurrence of blur is described in Chapter 3. In addition
to the basic algorithm we analyse how the technique of zero padding can provide
more detailed information, and how we can eliminate the ringing effect by masking
the original image with a Gaussian window. In Chapter 4 we demonstrate results
from both artificially simulated motion and from real images, and we evaluate the
robustness of the algorithm. Finally, in Chapter 5, conclusions and suggestions for
future developments are presented.

More concisely, the objective of this thesis is to develop a new algorithm that
produces the Optical Flow map of the scene using only the information that exist in

the motion blur of the image.



Chapter 2

Background: Optical Flow and
Motion Blur

When a visual observer moves through an environment, or when objects move in front
of a stationary observer, the visual image of the scene changes over time. Analysis of
the movement or flow of image structure on the image plane provides a cue to allow
the inference of observer or object motion.

This optical flow problem is described below, along with the traditional approaches
to solving it. The importance of motion blur is also introduced. Although it has been
treated as noise by most optical flow algorithms, it in fact carries information that

can be exploited.

2.1 Optical flow

When Heraclitus said, 2600 years ago, that: “Everything flows, everything moves, and
nothing stays”! , he made an observation on the tendency for change in nature. That

tendency reflects also in the visual domain — if a visual system observes a scene for a
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long enough period of time, there are going to be notable changes. In most biological
visual systems, the analysis of motion is critical; interesting experiments have been
made with the visual system of the pigeon, rabbit, frog, fly, and more. Many insights
for machine vision have came out of these experiments. The psychophysical aspects
of motion information has been demonstrated by Ullman [21] and Marr [17], and
the use of this information has been demonstrated in computer vision by Horn and
Schunck [13]. A lot of work has been done and different approaches have been taken

in order to extract this information.

2.1.1 Definition of the problem

First we are going to set the framework for the study of motion in a visual system.
When there exists relative motion between the camera and objects in the scene, there

appears corresponding changes in the received image.

Imaging Object Motion
Plane

Figure 2.1: Motion correspondence — An object at point O moves with velocity Vo to
point Oy. The corresponding image point P; moves on the image plane with velocity

Vp to point P;.
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The Motion Field is defined by assigning a 2D vector to every point in the
image, corresponding to the projection of the equivalent velocity vector in the scene
[14]. If a point O; in the scene moves with a velocity V5 (see figure 2.1) in time
0t is moving to the position O,. The equivalent image point P; is moving with a
proportional velocity Vp to the point F,. That means that we can have an image
I taken at time tg and a different image [ taken at tg + ¢, the motion field of the
image consists of the velocity vectors V;al. that exist for every point P; of the image.
Now the relation between these factors are given in Horn [14] in equation 2.1 where
\7p = %? and V, = CZ’—; and f’ is the distance between the focal point and the image

plane.

% r, = 7“0% X T, (2.1)

During a period of time, the brightness of a specific pixel P, ; could change, the
most obvious reason is the relative motion between the camera and the scene; al-
though changes in the shadows and in lighting could also be responsible. As Optical
Flow we define that variation of the brightness patterns in the image [14]. The prob-
lem of estimating the relative motion between the camera and the objects in the scene
is generally complex. The first step of reconstructing the 3D velocity vectors is to
derive the Motion Field from the Optical Flow. Note that there exist other cases, as
mentioned earlier, when the change in the image brightness is not due to the relative
motion, but due to other causes such as the situation when a light source is moving
changing the shadows in the image and the reflectance from different surfaces. In

such a case of course the Optical flow is quite different from the Motion field (see for

example figure 2.2).
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Figure 2.2: Optical Flow due to motion of the light source.

2.1.2 Previous work on traditional algorithms

Many algorithms have been developed since 1980 when Horn and Schunck published
their well known paper [13]. The different algorithms can be divided into different
groups according the principles of the method they use, the results they seek to get,
and the available input data. In this section I am going to give a brief overview for
the most commonly used algorithms.

Among the first papers on machine motion estimation is the paper of Horn and
Schunck in 1980 [13]. The algorithm in this paper can be defined as a differential
method; it assumes that the brightness in any particular point in the scene is constant.

That shows in equation 2.2, where I is the image intensity.

dl
= 2.2

By taking the first order differentiation of equation 2.2 we have equation 2.3 where

vgngl—fandvy:

dy
dt

ol al al
v

92 T 5y T oy = (2.3)
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From this equation is clear that we have two unknowns v,, v, and only one
constraint. In order to solve the problem, we need one more equation, which we
get by making one more assumption - the smoothness constraint - which is actually
used in most of the algorithms with some variations. If every pixel in the scene was
moving with its own velocity, the problem could prove almost unsolvable, but, as most
of the motion happens among rigid objects, there exists a set of pixels (belonging to
the same object) that have a smoothly varying velocity. Therefore, one additional
constraint can be found by minimising the differences among the velocities in a small
patch of the image. In Horn and Schunck’s paper this is done by minimising the sum

of the squares of the Laplacian of v,, v, as given in equation 2.4.

2 2 2 2
0%, 0, 0%, Oy

Vi, = Vi, = 2.4
v 0%z + 0y T 0%y (24)

The quantity that we have to minimise is given in 2.5.
Er = Z(Vzvx + Vzvy) (2.5)

This paper started a whole category of algorithms named differential algorithms,
which are based on the concept of taking the derivative (first or second order) of
the image intensity, and use one more constraint. Next [ am going to present a few
survey papers that group together different approaches to the optical flow problem.

In 1988, Aggarwal and Nandhakumar [1] present a review paper on the calculation
of the motion. In this paper they divide the methods used to solve the problem, into
two different categories: the feature based methods and the optical low methods.

The feature based methods compute the velocities in the scene only in some areas
of the image where features (lines, points, edges) have already been found. Although
this kind of method doesn’t give a continuous field of the velocities in the scene it is
faster and can define the velocity of an object by extrapolating from the velocities at

its boundary. In general, this approach assumes that that all the objects in the scene
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are rigid and their movement consists of a translation and a rotation. The algorithms
in this class try to define the 3D motion that exist in the scene based on a set of
features, therefore they use a set of lines and/or points that match during the series
of images and calculate the 3D velocities. Variations exist considering the number of
features, and the number of consecutive images used. Usually, by solving the velocity
problem, this approach also computes the 3D structure in the scene. There is also an
extension on this a class of algorithms that work with a series of binocular images.

Optical flow methods deal with velocities over the whole image. Many existing
methods are differential in nature, based on the work of Horn and Schunck. These
approaches usually have one of the following constraints: the smoothness constraint
(see earlier), the restricted motion constraint (the change in brightness is a result of a
constrained motion), or a homogeneity constraint (all the pixels in a specific region,
belonging in the same object, move with the same velocity). Some algorithms use the
second order derivatives of the image, and others use iterative methods that moves
from a coarser estimation of the optical flow to a finer one. There also exist algorithms
that use binocular image series in order to extract the 3D structure and the 3D
velocity field of the scene, but they assume that the correspondence problem among
every stereo pair in the sequence is solved. In the absence of binocular correspondence,
other constraints can be used in order to compute the 3D structure and velocity field
of a scene from the optical flow field.

The main differences between these two types of approaches is that, the feature
based methods require the existence of a match of features among consecutive images
before the algorithm is applied — up to now, most of the algorithms have only give
partial solutions to this problem — while, the optical flow methods don’t need any
feature correspondence to be established. Another difference is that optical flow
techniques are very sensitive to noise and this make their application to the real
world situation difficult.

The same division can be made in both biological and computer visual systems;
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experiments on biological systems have been shown by Ullman [22]. Again the meth-
ods are divided into intensity based, or otherwise called Optical Flow methods, and
feature based, or otherwise called Token Matching methods. For the optical flow
methods two different kinds of approaches have been proposed: Correlation schemes
and Gradient schemes. In the first case, the input of the two consecutive images is
compared after the first image have been translated by d = vdt; different variations
of this method have been proposed. The second case, called Gradient scheme, has
been found implemented in the retina. In that case, research from Hartline, Bar-
low and Kuffler have shown that the retina cells behave like the difference of two
Gaussians. In other words the input image is convolved by the Laplacian of a Gaus-
sian and the response to that operation point out zero-crossings that corresponds to
sharp changes. This Gaussian behaves like a smoothing filter, and controls the size
of the operation. Consequently, at the position where an edge exists, the values of
the convolution increase according to the direction of the movement of the edge. The
output of a second biological filter that provides the time derivative on the results of
that convolution is going to provide also the direction and magnitude of the motion
[22]. Feature based approaches have been also proposed. From the experiments up to
now it seems that these approaches are valid and most probably coexist in biological
visual systems.

Vega-Riveros and Jabbour in 1989 [23] take a similar approach into dividing the
algorithms. They consider two general categories, the first one that calculates the
optical flow based on a differential kind of algorithm, and the second which is more
general than the feature based approach and is based on pattern matching.

The differential methods are essentially based on the same idea as Horn and
Schunck’s paper [13]; the optical field is considered smooth and the same is assumed
for the motion, and the calculations are done by differentiating the images spatially
or according to time. There exists variations mainly in the constraints that are used

in order to solve the problem. In this category there exist also algorithms that are
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using the second derivative; this is done by extending the basic equation 2.6 into a
Taylor series up to the second order terms. This equation assures that a pixel I, ,

at time ¢ and position x, y after time dt in its new position have the same intensity.

Iz, y,t) = I(x + vedt,y + v,dt, t + dt) (2.6)

The feature identification methods can be subdivided into more categories, mainly
according to what kind of features we are using and how we match them from frame
to frame. Methods that are using cross correlation are quite common in the literature
- this approach is using cross-correlation between two consecutive images in order to
find the best match that gives the movement of a certain patch of the image. Other
algorithms detect the match that occurs for the biggest moving object ignoring the
motion of smaller objects. Another interesting but specialised kind of method is when
there exist a mathematical function that describes some aspects of the object and
then the algorithm tries to match that function into different images and calculate
the displacement. In the category of feature identification methods exists of course
the feature correspondence methods that appear in the Aggarwal and Nandhakumar
[1] paper.

In 1992, Barron, Fleet and Beauchemin [4] made a quantitative analysis of the
different common algorithms that exist for solving the optical flow problem. There are
four different categories according to this analysis: one is the differential methods,
which starts with the Horn and Schunck algorithm, and continues with the Lucas
and Kanade algorithm and then the Uras, Girosi, Verri and Torre (which is a second
order derivative method). The other category is the region based method where
a correlation type algorithm of Anandan is used which is iterative and calculates
the optical flow from a coarser to a finer result. The third category is the energy-
based approach, which is using the output of special velocity tuned filters, usually

the calculations being transformed in the frequency space by the Fourier transform;



CHAPTER 2. BACKGROUND: OPTICAL FLOW AND MOTION BLUR 12

these methods are also called frequency based — for example the algorithm of Heeger.
The last type of algorithm is based on the phase-based method, which calculates the
velocity by the behaviour of the phase of band-pass filter outputs, like the algorithm
presented by Fleet and Jepson.

In the next part [ am going to present different papers that explain more a certain
approach, or give better results than a previous algorithm due to a new idea.

In the differential framework, there is an approach that follows the same method
for solving a series of problems in vision [24].This approach has been already used in
stereopsis and texture and is now applied into the optical flow problem. The series
of images is convolved with a set of linear, separable, spatiotemporal filters similar
to those used in the previous vision problems, then the usual brightness constancy
constraint is applied and we get an over-determined system of equations from where
we can estimate the optical flow using a robust total least square method. The
advantages of this approach are: firstly the ability to use the same set of filters
(applied only once) and solve a series of problems — approach that seems compatible
with what happening in the biological visual systems; secondly the fact that the
application of the filters can be done in parallel and, therefore, have a fast solution.

In the differential approach the smoothness constraint presents a problem at the
boundary areas. This is due to the assumption that every pixel has a velocity similar
to its neighbours, assumption that holds only if all the pixels belong to the same
object. Also, the assumption that every point maintains the same brightness can
generate problems. Therefore, a study has been done by Black and Anandan [5]
especially in order to deal with this outliers. In pursuing this goal they use a robust
statistical method, where different kind of estimators are used in order to minimise
the error that outliers introduce.

Sometimes we need to calculate the optical flow in a specific direction; in this
case a faster approach can be taken in order to calculate 1D optical flow. Although

the results are qualitative, this can be enough for primitive tasks as a time to crash
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detector [2]. One method is to use a correlation scheme in one direction only. Con-
sequently, if the optical flow is estimated along the horizontal and vertical axis, then

an approximation of the real motion can be extracted.

2.2 Motion Blur

In all the previously described approaches, a set of conditions have been assumed to
be true. Although statistical methods have been used in order to minimise the error
that is caused when these conditions fail, the algorithms are based on the assumption
that in general these conditions hold. Among these conditions are the assumption
that the pixels keep their brightness from one frame to the other having changed
their position only, also they consider every pixel to refer to a unique point in the
scene. In addition, the previously mentioned methods work on a series of consecutive
images (at least two) in order to calculate the optical flow. In the next section I am
going to analyse what happens when the motion is faster than a pixel per frame, and

what has already been done in using the motion blur.

2.2.1 Motion blur definition

When a changing scene is observed by a camera, all the classical algorithms assume
that it is possible to take pictures every 6t instantly, that means that every picture
is taken with a dt ~ 0 exposure time. If that is not the case, then the exposure time
(dt = T) is large enough that different points in the scene are moving far enough
and consequently their corresponding projections on the image plane travel several
pixels. Therefore, during the capture of an image, at any single image point, a certain
number of scene points is projected during the exposure time, each one contributing
to the final brightness of the image point; this effect is clearly demonstrated in figure

2.3. More formally, during the exposure time 7' in front of the pixel P, ; we could
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assume that they pass k scene points with brightness (Cy...C}) respectively, then
the resulting brightness value for pixel P ; is given in equation 2.7, in the case of
continues movement the summation is replaced by integration. This holds in general
for every pixel that can see moving points in the scene. It is clear that the blurring
of the image exists only across the direction of the motion, this one dimensional blur

is called Motion Blur.

1 k
Pj= 030 (2.7)
=1
The result of motion blur is more obvious in the figure 2.3 where an image con-

sistent of random value pixels is shown in figure 2.3a and then the blurred image is

shown in figure 2.3b.

Figure 2.3: Random noise image, and the same image blurred due to motion.

The motion blur can be described mathematically as the result of a linear filter
b(x,y) = i(x,y) * h(x,y) where i is the theoretical image taken with an exposure
time T, = 0, b the real blurred image and h the point spread function (PSF). Given
an angle= «a and the length d = V, x T,, which is the number of scene points that
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affect a specific pixel, the point spread function of motion blur is given in equation

2.8.

0 <l|z| <dxcos(a) y=sin(a)xd

e (2.8)

o

0, otherwise
The focus of this thesis research is to formulate and evaluate methods for recover-

ing and interpreting motion blur. In practical terms, this mean computing accurate

estimates for the two parameters of the motion blur PSF., namely the length, d, and

the angle, &. From these quantities, the relative velocity at this point can be easily

recovered knowing the exposure time. Moreover, in a lot of applications we simply

need this qualitative measure and not its exact value when, for example, we want to

deblur the image, or infer the egomotion.

2.2.2 Interpretation of the motion blur and previous work

Up to now, blurring due to motion was considered an additional source of noise.
Usually the traditional algorithms for motion estimation tried to ignore it, or recover
from it. Also, in many applications the blur in an image is a source of noise, and
techniques have been developed in order to remove it [11], [16]. But, in the other
side, the motion blur is a structured noise and contains information that can be used.
Psychophysical experiments have been done in order to analyse the use of motion
blur by the human visual system and some approaches have been taken in order to
use it in machine vision systems. Moreover, by using the motion blur we can estimate
the optical flow using only one image. In general, the use of motion blur belongs to
a group of methods that try to extract information from blurred images in order to
estimate the 3D structure of the scene from out of focus blur or the optical flow from
motion blur.

The experiments that have been done for the human visual system in order to

determine the influence of motion blur in human perception conclude that a deblur-
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ring mechanism must exist in order to distinguish features in a specific image [3].
The human visual system can identify motions that vary from less than one to more
than 100,000 minutes of arc per second; apparently, it has been demonstrated that
not the same mechanism is used for all this broad spectrum of motions. For slower
motions, where the shapes barely move from cone to cone the model of Bonnet [6],
“Displacement Analysing System” is used; as the motion become faster Bonnet’s
“Movingness Analyzing System” is stimulated. Finally at high speed motions where
the motion blur is more obvious, a third mechanism is used in parallel with the other
two. In high speed flights for example, where jet pilots flew just above the ground,
the motion blur is forming patterns that could be analysed in order to produce useful
information; in such cases a pattern recognition mechanism is activated. Experiments
have been done [12] that estimate the importance of different parameters of motion
blur patterns in identifying the motion and aspects of the 3D structure of the view-
ing surface. The parameters that were used in the experiments were: blur pattern
divergence, where the observers have to use the divergence in the blur lines in order
to extract the tilt of the viewed surface, and blur pattern curvature which appears
when there is a change in direction of move. The other parameter that is important
in the motion blur patterns is the “blur pattern divergence change” which appears
when the observer change his velocity of climb or descent. The last parameter that
have been studied was “blur pattern curvature change”.

The issue of estimating the blur parameters has also been studied by the machine
vision community; usually, there exist two kinds of blur, the out of focus blur and the
motion blur. More specifically, the motion blur identification, and consequently the
extraction of the motion blur parameters, has been studied mainly in order to deblur
the images for a series of applications. Also, most of the image restoration algorithms
of motion blurred images assume that the parameters of the PSF are already known,
and therefore there is no need for estimating them. Usually, in addition to the

motion blur, there are also other kinds of noise present in the image, so a more
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robust estimation of the motion blur parameters is needed. One approach, [8] which
is working for both motion and out-of-focus blur, is to proceed in two stages. First,
the degraded image is processed in order to improve the SNR and then the algorithm
that extracts the blur parameters is applied. This approach assumes a model for the
degraded image as given in equation 2.9 where ¢(1, j) is the degraded image, f(1,j)
is the ideal image, h(i,7) the PSF, and n(¢, 5) additional noise.

9(i,7) = f(1,3) * h(i,7) + n(i, J) (2.9)

The h(i,7) for the case of motion blur created by uniform motion across the X
axis is given in equation 2.10. The algorithm in [8] is developed only for this specific
case and therefore it is clear that equation 2.10 is just a sub-case of equation 2.8 that

we analyse at the definition of motion blur.

i) — { Lo dj2<i<d/2 j=0 10,

0, otherwise
At this point we have to define two tools that are essential for the further analysis
of the algorithms. The Fourier Transform ? (FT) F(u,v) = F{f(x,y)} of a function
f(z,y) is defined in equation 2.11 together with the Inverse Fourier Transform (/FT)
FYF(u,v)} = f(z,y) (see [11], [16]). The Fourier transform of (i, j) from equation

2.10 is shown in equation 2.12.

Pluw) = F{fw)} = [ [ feye = dedy

flz,y) = F H{F(u,v)} = F(u, v)el(w"'”y)dudv (2.11)

H(u,v) = sin(mdu) = sinc(mdu) (2.12)

?For a more detailed analysis see section 3.2
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Another transform that can be used in analysing one image is the Cepstrum?.

The definition is given by equation 2.13, where F~! is the Inverse Fourier Transform
(usually using the fast version of [FFT), and F(u,v) = F{f(x,y)} is the Fourier
Transform of f(x,y) (as in equation 2.11). The Cepstrum is the Fourier transforma-
tion of the log spectrum of an image; it is therefore a tool for analysing the frequency

domain of an image.

Cy(p.q) = FH{log |[F(u,v)|} (2.13)

The sinc(x)=sin(x)/x function
T T T

. .
30 40 50 60 70 80 920 100
100 values from —200 pi to 200 pi

Figure 2.4: The Graphical representation of the sinc function

As from the Fourier Transform of the blur PSF A(u,v) in equation 2.12 and its
graphical representation in figure 2.4, it is clear that H(u,v) = sinc(ndu) is a periodic
function with period T = é, therefore every 5 there exist a zero crossing. The
convolution operation in the frequency domain is transformed into the multiplication
of the two matrices, as a result the periodic function that is the Power Spectrum of
the blur PSF appears as a ripple in the Power Spectrum of the blurred image, this
ripple can be identified by a negative peak in the Cepstrum domain. For a more

in-depth explanation refer to Chapter 3.

3For a more detailed analysis see section 3.5
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Most recent work dealing with blur in images focuses on the problem of extract-
ing the blur parameters from a noisy image [8]. The stage of noise reduction is
accomplished with a technique called Spectral Subtraction, which can be used com-
plementary to the divide and averaging technique. The main technique is to take
an estimation of the Fourier Transform of the noise and subtract it from the Fourier
Transform of the blurred image; sometimes different estimations can exist for differ-
ent parts of the image. As these algorithms deal only with uniform motion across
the X-axis only the line Cy(p,0) is used, where C} is the Cepstrum of the enhanced
image. In order to improve the robustness of the algorithm one more stage of filtering
is used to the 1D signal Cy(p,0). As only the negative candidates count, and they
are repeated periodically, a comb like filter is employed. This approach divides every
negative pulse with the root mean square (RMS) of all the negative terms except the
ones that are in multiples of the index of this pulse.

The frequency domain also is used in another method [7]. In that case the bis-
pectrum is used in order to find the parameters of the blur PSF. Like in the previous
case, uniform motion across the X-axis is assumed and thus the problem is restrained
in the one dimension. In an other approach the Discrete Cosine Transform DCT is
used [25]. In this case the same kind of movement is assumed and the use of DCT
instead of F'T is preferred because of the assumption the DCT makes that the signal
is assumed to be at the boundaries even symmetric, instead of periodic as in Fourier

transform.



Chapter 3

Algorithm for Analysis of Motion
Blur

In this chapter a new algorithm for extracting the parameters of motion blur in an
image is presented and analysed. The method that is developed here calculates the
optical flow from independent relative motion between the camera and different ob-
jects at the scene. For example, a situation as in figure 3.1, where three objects
A, B, D move with different velocities VA, VB, Vp and a camera ' moves with a ve-
locity \70, is handled by assigning different velocities in different parts of the image.

In section 3.1 a brief outline of the algorithm is given. In the next section (3.2)
the application of the Fast Fourier Transform and different techniques to improve
the results is going to be analysed. Consequently the role of the Steerable Filters
in feature extraction from the spatial frequency domain is discussed in section 3.3.
The next section 3.4 deals with the transform of the 2D signal to 1D with the proper
normalisation. In section 3.5 the use of Cepstrum and the extraction of the length of
the velocity vector are demonstrated. Finally in section 3.6 a complexity analysis of

the algorithm is done.

20
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Figure 3.1: Independent motion between the camera and the objects in the scene
3.1 Outline of the algorithm

In order to calculate the optical flow for a certain point we make use of an area
around it — this method needs only one frame taken with an exposure time §¢ where
the motion blur spans for more than a couple of pixels, as is the situation in a series of
applications. Therefore, in order to calculate the optical flow of the whole image we
run the following described algorithm for a series of overlapping image segments. The
algorithm can be divided in two stages: first there is the extraction of the orientation
of the velocity vector, and second the calculation of the magnitude of it.

In the first stage there exists an optional step of preprocessing in order to have
better results with the initial Fourier Transform. Two methods can be used in this
step either separately or at the same time - zero padding, and masking with a Gaus-
sian window. The second step is the extraction of the orientation of the velocity
vector; this is done from the power spectrum of the image (taken by the Fourier
Transform) by finding the maximum response in a set of Steerable Filters.

The second stage has also two steps: a preprocessing step where the 2D Power
Spectrum of the image is collapsed in 1D (at that point also a normalisation is per-

formed in order for the collapsed 1D signal to have the format of a Power Spectrum),
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VELOCITY VECTOR CALCULATION
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Figure 3.2: The outline of the algorithm for calculating the Velocity Vector of a image

segment

and the second step where the application of the Cepstrum provides us with the
magnitude of the velocity vector.

The algorithm in figure 3.2 calculates the velocity vector for the pixel that is at
the middle of Image Segment. It could be run in parallel in order to calculate the

optical flow in the whole image.
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3.2 Fourier Transform

The identification of the direction of the motion blur is calculated in the frequency
domain. The first step is the transformation of the image from the spatial to the
frequency domain through the Fourier Transform. In order to have lower computation
time the Fast Fourier Transform algorithm is applied, and for enhancing the features

the logarithm of the Power Spectrum is used.

3.2.1 FT definition and properties

One of the most used common transforms in Computer Vision and Image Processing
is the Fourier Transform (FT). It is a well defined and a popular tool, as it has a lot of
useful properties, and is relatively quick to compute (see [11], [16], [18]). In equations
3.1 to 3.4 we have the continuous 2D F'T, the Discrete 2D DFT and their Inverses
IFT, IDFT. The f(x,y) represents a function in the Spatial domain (an image), and

the Fourier Transform (F) transfer it to the Spatial Frequency domain.

Flu)= Flieyt= [ [ fy)e ey (3.1)

Fh,j) = F{f(k,D)} = %gg flh, e Eht)in g < h j<n—1 (3.2)
Flay) = FHF )} = / i [r T P, ) e dudy (3.3)
flk, 1) = FHF(h,j)} Zzénzé F(h, j)eEtd/n g <k l<n—1 (3.4)

As it is obvious from the equations, the F'T'is almost symmetrical with its inverse
IFT. In order for the transformations to be possible a few conditions must apply:

for the continues case, f(x,y) must be a piecewise continue function of real variables
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x,y, and having the left and right hand derivatives; in the discrete case, the main
assumption is that f(k,[) is periodic.! Although an image f(z,y) is a real function,
its transformation F'(u,v) is, in general, a complex one; consequently, we can define
the Real and the Imaginary part of the F'T as in equation 3.5. In a lot of situations
it is useful to have the F'T expressed in terms of an exponential as in equation 3.6
with the magnitude |F'| and the phase ¢ defined in equations 3.7, 3.8 with the help of
the Real and Imaginary part. The magnitude |F(w,v)| is commonly called Fourier
spectrum and its square P(w,v) = |F(w,v)|?* is called Power spectrum or Spectral

Density. The ¢(w,v) is called the phase function.

F{f(z,y)} = F(w,v) = R(w,v) + 1l (w,v) (3.5)
F(w,v) = |F(w,v)]e?®) (3.6)
| (w,0)| = /R2(w, ) + [2(w,0) (3.7)

d(w,v) = tan_l{%} (3.8)

In a number of applications the Power Spectrum is used in order to identify
different features. In a lot of images though, the Fourier Spectra decreases rapidly
and the features are not recognisable; therefore, another function is used in order
to amplify the signal — the logarithm of the Fourier Spectrum plus one (see equation
3.9). This function have the property of keeping the zero values of the Fourier Spectra

zero, and at the same time magnify small differences.

L(w,v) =log (1 4 |F(w,v)]) (3.9)

One of the most common properties of F'T is known as the convolution theorem

(see equation 3.10). This theorem shows that the F'T of a convolution of two functions

!This condition is responsible for the effects discussed in 3.2.3
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is equal to the product of the FT of the two functions; therefore a lot of functions that
are represented by a convolution in the spatial domain can be transformed to a simple
product of their F'T in the frequency domain. Also, another of the basic properties of
FT that comes directly from its definition is linearity (see equation 3.11).? Linearity

enables us to break down a complicated function into simple ones, with a well known

FT.

Ff(,y) «hlw,y)y = F(f(x,y)F(h(z,y)) = Flw,v)H(w,v) (3.10)

Flaf(e,y)+ Bh(z,y)} = oF (f(x,y)) + 8F (M(z,y)) = aF (w,v) + SH(w,v) (3.11)

The computational cost of the Fourier Transform or its inverse in the discrete
case is O(n?). Taking advantage of the separability property — which states that
in the 2D FT we can perform first the summation (or integration in the continues
case) over the first variable and then over the other independently — an algorithm
has been developed called Fast Fourier Transform FFT which calculates the F'T (or
it’s inverse) in time O(nlog,n) [11]. For the rest of thesis the FFT and its inverse
IFFT are used.?

3.2.2 FFT of a Blurred Image

An image blurred due to motion is usually represented by a linear system of a convo-
lution: g(x,y) = f(x,y) * h(x,y) with h(z,y) the convolution kernel that cause the
blur. Already at [8] the FFT of the blur PSF is defined for uniformal motion across

the @ — axis (see equation 2.12). In general, for an arbitrary direction of the motion

2For a proof of these two properties see [16].

3The presentation of the Fourier Transform and its properties here was rather simple, and mainly
focused on the aspects that were used in this thesis. There exist a lot more properties of the Fourier

Transform, for a more extended analysis see the references.
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the FF'T of the PSF'is a ripple as shown in figure 3.3, clear in the case of horizontal
or vertical motion (see figure 3.3a) or distorted slightly® — as is the case for a blur at
the 45° angle (see figure 3.3b) where it is more the shape of an ellipse with the long
axis perpendicular to the direction of motion. In any case the Power Spectra of the

PSF of the motion blur is a ripple along the direction of the motion.

60

(a) (b)

Figure 3.3: The Power Spectrum of the PSF of horizontal (a) and at 45° angle (b)

motion blur

In a motion blurred image, the FFT highlights some features in a way that makes
the extraction of the direction of the motion easier. This is mainly accomplished be-
cause of the convolution theorem (see equation 3.10) which transform the convolution
of the image with the PSF of the motion blur into a simple product of their F'T. For
example, if we have a random dot picture (see figure 3.4a) blurred by a horizontal

motion (see figure 3.4b), then the transformation into the frequency domain is going

4Mainly because of numerical errors and the windowing effect. We have to take into account also
the fact that FT is a complex transformation and therefore it exist an imaginary part that is not

displayed here.
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to enhance some features, shaping the result mainly according to the FFT of the

motion blur PSF.

Figure 3.4: Random Dot Image, and the same image blurred due to horizontal motion.

(a) (b)

Figure 3.5: Power Spectrum of the random image, and the PS of the blurred one.

It is obvious from figure 3.5, that the logarithm of the Power Spectrum of the
blurred image (see figure 3.5b) has an easily recognisable shape of a ripple located
at the centre with its axis perpendicular to the direction of the blur. In the other

side the Power Spectra of the random dot image is completely unstructured, as can
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be seen in figure 3.5a. One more source of information that exists in the ripple is
the width of it. From the equation 2.12 the period of the ripple is equivalent to the
length of the motion blur PSF which is equivalent to the velocity of the motion for a

given exposure time.

3.2.3 Windowing effect

One of the properties of discrete Fourier Transform is that the signal is considered to
extend periodically to infinity in each side. In the case where we have a finite signal
the F'T assumes an infinite periodic signal which consists of copies of the original
signal shifted. Another property is that any sudden change in the spatial domain
creates a response in the frequency domain. For example, assume that we have an
image (figure 3.6a) which is artificially blurred due to motion at 70° angle with the y-
axis (figure 3.6b), and we want to calculate the velocity at the point P(32,32) using a
64 x 64 window. In that case, we take the image patch around P(32,32) (figure 3.8b),
and apply the FFT, which as is considering the signal to be periodic and infinite, and
it is going to repeat the 64 x 64 patch one next to the other (in figure 3.6¢ we could
see the repetition). But, by doing this it is going to cause a sudden change at the
boundaries, which is going to appear in the FT later.

Another way to approach the problem is to consider what does it mean to take
only a patch of the image; this is equivalent to taking the whole image and masking
it with a window that has the value one at the 64 x 64 area of interest and zero
everywhere else (see equation 3.12). As it is clear from the convolution theorem, such
an operation is going to transform into the frequency domain and the result is going

to be affected by the FT of the masking function.

I, 1<z y<64
m(x,y) = (3.12)

0, otherwise
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Figure 3.6: An image, the result of the motion blur, and a 64 x 64 patch repeated
periodically.

TV 32 < gy < 32

m(z,y) = (3.13)

0, otherwise

In order to extract only one part of the image different masking functions can
be used [20]. The more abrupt the change into the zero level, the more severe the
artifacts that are going to appear in the frequency domain. Also by masking the
original signal we want to keep it as much as possible unchanged. There exist a
lot of research in signal processing for the best masking function. Among the most
commonly used are the functions showing in table 3.14, the function f(n) has the
illustrated type in the space [0, M — 1], and 0 everywhere else (the functions are one
dimensional but they are easily transferred into two dimensions, as have been done for
the Gaussian in equation 3.13). The graphical representation of the masking functions
and their Fourier Transform are shown in the graphs 3.7: the dense dots represents
the Rectangular windowing function, the continues line the Gaussian function, the
dot and dash is the graph of the Blackman function, the sparse dots display the

Hamming one, and the dashed line the Hanning function.
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Figure 3.7: Different masking functions (a), and their Fourier Transform (b)

As is clear from figure 3.7b, the Rectangular function has a very strong artifact
which, because of its shape is called ringing effect, where all the remaining windowing
functions have approximately minimum ringing. In the algorithm that we use for
calculating the FFT, the 2D Gaussian function is applied as can be seen in figure
3.8a. If we mask a 64 x 64 patch of the image (figure 3.8b) with the Gaussian window
the result is shown in figure 3.8c. Using this Gaussian masked window we have

the Power Spectrum as it appears in figure 3.9b. It is clear that when the Power
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Spectrum of the image is taken by using the Gaussian instead of the Rectangular

window masking (as in figure 3.9a) most of the artifacts disappear.

- 3

(a) (b) (c)

Figure 3.8: A Gaussian Window (a), a 64 x 64 patch of the blurred image (b), the
same patch masked with the Gaussian function (c).

Figure 3.9: The Fourier Transform of the image patch with the Square windowing
function (a), and with the Gaussian one.

3.2.4 Zero padding

Another technique used to improve the efficiency of the FFT is called Zero Padding

[20]. In the continues case, (see equation 3.1) the FT covers continuously all the
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2D space; in the discrete case although, (see equation 3.2) the F'T of a function is
having as many samples as the function that it transforms. For example if we have
an 128 x 128 image and we take its I'T, then the result is going to be also 128 x 128.
In order to get a more (optically) detailed frequency image, we could add zeros at
the end of the signal, in both dimensions, (see equation 3.15), and take the Fourier
Transform after. This increases the sampling rate of the F'T; at the same time as the
size of the signal increases the computation time is also increases, therefore although
we could add as many zeros as we want at the end of the signal we always have to

take into account the time constraint.

PaddedImg(z,y) = fmgle,y),  1<ay<128 (3.15)
0, 129 < 2,y < 256

We have to mention that the addition of zeros at the end of the signal does not
add any extra information and therefore the F'F'T of the zero padded image does not
carry more information. But as there are more samples, the features in the frequency
domain are more clear, and their interpolation is much easier. As in most of the
natural images the DC response is much larger than the rest [9], this rises some
additional problems in the application of the zero padding technique, because the
DC' value introduce a sinc like ripple quite strong that make the identification of the
motion blur direction harder. One way to reduce that artifact is to zero the mean
of the image. If the mean value of the image is zero we get much more presentable

results, therefore in the algorithm we subtract each pixel by the mean value of the

image and then we zero padd the image (see equation 3.16).

Img(z,y) — Mean(Img), 1< az,y <128
PaddedImg(z,y) = 9(e,y) (fmg) Y (3.16)

0, 129 < z,y < 256

In the Figure 3.10 we have the Fourier Transforms of the same part of a blurred

image with and without the zero padding. In figure 3.10a the FI'T of a 64 x 64 part
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Figure 3.10: The Fourier Transform of, (a) an image patch, (b) an Zero Padded
image patch, (¢) a Zero Padded, Gaussian Masked, image patch

of a blurred image is displayed; in 3.10a the same patch has been zero padded up to
128 x 128, and it is quite clear that a lot more details can be seen. Unfortunately, the
ringing effect is also magnified by the zero padding. In order to get better results,
first we mask the 64 x 64 part with a Gaussian window of the same size, and then
we zero padd it into 128 x 128; the FF'T of the Gaussian masked, zero padded image
can be seen in image 3.10c. In order to compare it, the FFT of the Gaussian masked

image patch is presented in figure 3.9b.

3.3 Steerable Filters

The next step in the algorithm is to extract the direction of the motion. As we have
seen in the previous section, the Power Spectrum of the blurred image is characterised
by a central ripple that goes across the direction of the motion. In order to extract
this orientation a linear filter is applied; more specifically the second derivative of a

two dimensional Gaussian is used. In figure 3.11a we could see the second derivative
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of the Gaussian along the x-axis (G§ = 8827?)5 if we filter the Power Spectrum of a
blurred image with G we are going to get maximum response when the ripple is
across the x-axis as it is in figure 3.5b. Therefore, in order to extract the orientation
of the ripple, we have to find the angle § in which the filter of the second derivative
of a Gaussian — oriented at that angle (G9) - is going to give the highest response.

The calculation of oriented filters has been a field of interest in Computer Vision
and Image Processing research [10]. In a lot of cases it is necessary to know the
orientation at which a filter is going to give maximum response, or to be able to
construct a filter at a specific angle; it has been proven that there exist families of
filters that are possible to be constructed based only on the responses of a minimum
set of basic filters. In order to find the highest response of an oriented filter we could
apply the same filter at different angles, changing the orientation by a df up until
all possible angles are covered, unfortunately, this is going to be time consuming,
because every time we apply a filter n x n it costs O(n?) computations. Another way
is to construct the response at every possible angle based on the response of a small
set of orientations. This can be done for certain types of filters by applying them in a
few selected angles and then take the responses and interpolate among them in order
to get the wanted angle. Filters that can be constructed as a linear combination of a
few basis filters are called steerable. The functions that combine the basis filters are
called interpolation functions.

Fortunately the second derivative of the Gaussian 9 belongs to such a family
[10], and we can calculate its response at any angle 6 based on the responses of the
three basis filters as shown in the left column of the table 3.1, in equation 3.17 we

could see the calculation; in table 3.1 at the right we could see the three interpolation

functions that are used.

>The dark area has the highest value and the bright the lowest
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RGY = ky (0) Gy + ky(0) RGy + ke(0) RGo (3.17)

Glya = 0.9213(22? — 1)e™ @) | £, (0) = cos?(6)

Gop = 1.843zye (=" +v°) ky(0) = —2cos(0)sin(0)

Glae = 0.9213(2y% — 1)e= @) | k.(0) = sin?()

Table 3.1: The three basis filters and their interpolation functions

(a) (b) (c)

Figure 3.11: The three masks used in the Steerable Filter calculation.

In figure 3.11 we have the pictures of the three basis filters as we use them in the
algorithm for processing a 64 x 64 patch of the Power Spectrum. They are 64 x 64
windows centred at zero with values at [—2, 2].

Assuming a 64 x 64 patch of the image, we take the logarithm of the Fourier Spec-
trum (F'Img)®; then we calculate the response for each of the basis filters Gq,, Gy, Glae

SIf we have use zero padding then the size of the Fourier Spectrum is larger.
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with the F'Img (see equations 3.18, 3.19, 3.20), and after that we use these responses
RG5,, RGyy, RGH. to calculate the responses for all the different orientation in the
space [0°,180°] with a step of 1° using the equation 3.17, finding the maximum that
corresponds to the correct orientation. The computation cost in this stage for an

n X n image patch is O(n?).

64
RGy = Y Gaula,y)FImg(x,y) (3.18)

zy=1

64

RG, = Y Gola,y)FImg(z,y) (3.19)

z,y=1

64

RGy. = > Gaola,y)FImg(z,y) (3.20)

zy=1

(a) (b) (c)

Figure 3.12: A zero padded image patch, its Fourier Spectrum, and then the Fourier
Spectrum collapsed

To sum up, assume we have a random dot picture, artificially blurred at a 45°
angle with a magnitude of 10 pixels; this is a quite simple situation and without the
presence of any noise. If we take an image patch 64 x 64 and we try to calculate
the optical flow vector we have seen up to now the following steps: first we zero
padd the image (up to 128 x 128, figure 3.12a) then we take the logarithm of the

Fourier Spectrum (figure 3.12b) on which we apply the steerable filters to extract the
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orientation of the blur, which turns to be 45°; in order to avoid distortions at the
border values we take only the central 64 x 64 part of the Fourier Spectrum. In the
next section we are going to see how and why we have to preprocess the signal in

order to extract the magnitude of the optical flow vector.

3.4 Transform the Fourier Spectrum into 1D

After we have calculated the orientation of the optical flow vector, the next step is
to extract its magnitude. Unfortunately, the different artifacts that appear in the
Fourier Spectrum of the blurred image make it really difficult to distinguish the size
of the ripple and consequently the length of the blur. The artifacts are due to two
reasons: one is the windowing effect, which exist even after the use of a Gaussian
masking window, and the second is that the Fourier Transform of an unblurred image
has already a certain structure that in a lot of cases changes the appearance of the
motion blur ripple. Moreover, the magnitude is a scalar value, therefore it can be
extracted by an 1D signal. The main idea is to create an 1D signal that is an

approximation of the Fourier Spectrum transformed from 2D into 1D.

3.4.1 Collapse the Fourier Spectrum

In order to collapse the Fourier Spectrum we have to project every pixel into the
line that passes through the origin with the same orientation as the motion blur. As
can be seen in figure 3.13a a pixel P(x,y) in the image is going to be orthogonally
projected into the line € — that passes through the origin O at an angle § with the
x-axis — at the point P.(x,y) at distance d from the origin. The main task here is to
calculate the distance d from the origin O. By applying the definition of the sin and
cos in the figure 3.13a we have that the distance d = x cos(8) + y sin(0).
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d = xcos(f)+ ysin(h) (3.21)
P(x,y) 8
c
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(a) (b)

Figure 3.13: Collapsing the 2D data into 1D along the orientation of the blur, and
the Fourier Spectrum of picture 3.12a

Since we work in the discrete space, the distance d has to be digitised. That means
that every pixel P(x,y) as it is mapped into a position P.(d) along the direction of
the blur, it is going to affect in fact two values into the 1D signal P.(|d]|), P.([d]|+1).
More specifically, assume that the pixel P(x,y) is mapped at the distance d = 5.6 so
it is going to contribute 40% of its value at P.(5) and 60% at P.(6). That way the
mapping is much more accurate than by simply assigning the whole value of each pixel
into one position in the 1D signal. Another issue that we have to take into account
is the distribution of the pixels along the line. The Fourier spectrum is calculated in
a square window, therefore the number of pixels that affect the central part is much
larger than the number of pixels that affect the two ends. In order to have a uniform

distribution, when we do the mapping of the pixels we assign in each position of the
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signal two values: the pixel value and a weight depending on the amount this pixel is
contributing. In the end we normalise the 1D signal by dividing it by its accumulated
weight. The collapse of the 128 x 128 Fourier spectrum of figure 3.12b is a 128, 1D

signal and can be seen in figure 3.13b.

3.4.2 Normalisation of the data

One of the properties of Fourier Transform is symmetry; that means that a signal of
n samples’ is symmetrical around 2+ 1. For example, for a signal P that has values
at [1...128], the value P(1) and P(65) are unique and then P(65 — i) = P(65 + ¢)
for 7 in [1...63]. Unfortunately when we collapse the 2D Fourier spectrum into 1D
this condition does not hold. First of all small numerical and round off errors appear;
second, the different artifacts that are due to the ringing effect and also due to the
features of the Fourier spectrum of the unblurred image aren’t symmetrical around
the direction of the motion blur; third, the weighting process contributes some more
round off errors into the newly created 1D signal. In order to achieve better results
we average the values of the 1D signal with respect to the symmetry property. More
specifically, the value P,(1) and P.(5 + 1) are kept the same, and then for the rest of

the values the equation 3.22 is used.

Pﬁ(ﬁ+1+¢)zpe(g+1—¢)

2
:PE(5+1+z)42rPE(5+1—z) l<i<

~1  (322)

N |3

As can be seen in figure 3.14a the values at the borders are not as important as
in the middle, therefore in order to achieve better results we keep only the central
part of the signal. The next step is to shift in time in order to have the exact shape

of the Fourier Transform. The result can been seen in figure 3.14b.

"n is usually a power of 2.
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Figure 3.14: The collapsed Fourier Spectrum normalised, and then shifted only the
central part.

3.5 Cepstrum

In order to proceed to the next step, which is the calculation of the magnitude, a
new tool needs to be defined. The power spectrum of an image is a signal by itself,
therefore different features that appear in it can be extracted using classical signal
processing techniques, such as edge extraction, Fourier Transform filtering, and so on.
In order to identify the ripple that appears in the image a technique called cepstral

analysis is used.

3.5.1 Definition of the Cepstrum

Different definitions have been given for the Cepstrum depending on the different

8 can be

application that was used. The most common definition of the Cepstrum
seen at equation 3.23, where F(w,v) is the Fourier Transform of a function f(z,y)
[20],[19]. In other words, it is the [nverse Fourier Transform of the logarithm of

the Fourier Transform of the signal. The Cepstrum calculated by equation 3.23 is a

8 Cepstrum is a juxtaposition of letters for the word Spectrum



CHAPTER 3. ALGORITHM FOR ANALYSIS OF MOTION BLUR 41

complex function; if we want to have only the real part then instead of the F/(w,v) we
take its magnitude | F'(w,v)| (which is the case in this algorithm) as in equation 3.24.
For the sake of simplicity, a more general definition is given in Eqn. 3.25 [20] where
the Z-transform is used. In this case the Cepstrum of an 1D signal is the Z-transform

of the natural logarithm of the Z-transform of the original 1D signal?

Cep{f(x,y)} = F~H{log (F(w,v))} (3.23)
Cep{f(z,y)} = F Hlog (1 + |F(w,v)])} (3.24)
cx(n) = QL InX(z)z""'dz (3.25)

7

The cepstrum has been found useful in a whole set of different applications. In
one dimensional signal processing it has been used in speech recognition for echo
detection; also early in image processing it has been used in nonlinear filtering for
image enhancement [19], where the logarithm of the Fourier Transform is amplifying
the information in the Frequency domain and the inverse Fourier Transform is used
to filter certain features. Another application in which it has been used is passive
Stereopsis [15]. More specifically, in Monocular Stereopsis we take a picture with a
camera with two pinholes, creating therefore an echo in the image; as the echo is
extended across the x-axis we could process each line as an 1D signal and detect the
echo — which is equivalent to the disparity — using the Cepstrum. Finally another
area where the Cepstral analysis has been used is in Optical Flow estimation when
the motion is known to be uniform across the X-axis and the only unknown is the
magnitude of the velocity vector [8]. As we have see in section 2.2.2 the Fourier
transform of the motion blur PSF is of the form of a sinc ripple therefore it can be

easily identified by the 1D Cepstrum.

9This definition can be also easily extended into 2D.
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3.5.2 Calculation of the Cepstrum

As we see in the previous sections we have transformed the logarithm of the Power
Spectrum of the blurred image into an 1D signal. This new signal has approximately
the shape of a sinc ripple — distortions exist due to noise, windowing effect, and
the process of collapsing the signal itself. The real part of the Cepstrum is used
in order to estimate the length of the ripple, which is in fact the magnitude of the
velocity vector. The signal we have is an artificial average signal of the logarithm of
the Power Spectrum of the image. This has the advantage that the features in the
Power Spectrum that were there due to the unblurred image have been cancelled out,
leaving as a prominent characteristic the effect of the motion blur. As the 2D signal
is collapsed across the direction of the motion it simulates a motion blur created by
uniform movement across the x-axis and has the appearance of the sinc= Si%, as can
be seen easily by comparing the figures 3.14a — the collapsed signal, and figure 3.15

— the graphical representation of the sinc function.

The sinc(x)=sin(x)/x function
T T T

. .
30 40 50 60 70 80 920 100
100 values from —200 pi to 200 pi

Figure 3.15: The Graphical representation of the sinc function
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3.5.3 Information extraction from the Cepstrum

In this algorithm we assume that the velocities are bounded between 5 to 35 pixels
per frame. Such an upper limit is logical as the ripple can not be identified if is
larger, with the use of a window as small as 64 x 64. After the calculation of the 1D

Cepstrum we search for a negative peak among the values in the interval [5...35].
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Figure 3.16: The Cepstrum of the image patch of image 3.12a

As can be seen from the plot in image 3.16, the first five values are heavily
influenced by the DC value of the cepstrum and therefore unable to give us a robust
answer; consequently this method works for exposure times that produce a blurred
image. There is no noise reduction or validation at this point, although different

techniques have been proposed in order to make more robust the magnitude extraction

[8].

3.6 Complexity analysis of the algorithm

The previously described algorithm calculates the velocity vector for a point I(x,y)
making use of the information at the n x n image patch around it; usually, the size

of the image segment n is a power of two, the most common sizes being n = 64
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or n = 128. Therefore, for an N = n x n image segment the algorithm works in
the stages: The Gaussian Masking which is O(N), and the Zero Padding'® which
is O(N), by just creating the new image patch. Then the most computationally
expensive part is the Fourier Transform, which takes O(N log N)'!. The next step is
the calculation of the maximum response for the steerable filters this is three times
the application of the basis filters O(N) and then O(1) for calculating the correct
angle. The collapsing of the Power Spectrum from 2D into 1D is linear, therefore the
cost is again O(N) and the normalisation is O(n). The last step of the calculation
of the magnitude of the velocity vector is the Inverse Fourier Transform of the 1D
signal which has O(nlogn) computational cost. Finding the negative peak in the
space [5...35] is again constant.

As can be seen from the previous analysis for an image patch with a size N = nxn
the computational cost is O(Nlog(N)). In order to calculate the optical flow of
a motion blurred image m x m in grid every 4 pixels with a window n x n we

m—n m—n

=+ x =" times; therefore, the general cost is

O(M{Nlog(N)}). One of the advantages is that the algorithm could be run in

have to apply the algorithm M =

parallel for every velocity vector as there is no need of sharing intermediate results.
Also it is easy to develop a hardware implementation of the algorithm, as the most

complicated step is the calculation of the Fourier Transform.

Oysually doubles the size from N = n x n to N’ = 2n x 2n

1From now on we assume N to be the size of the zero padded segment.



Chapter 4

Experimental Results

In this chapter, the new motion blur algorithm developed in Chapter 3 will be anal-
ysed by evaluating its performance on several experiments involving blurred images
of various kinds. There exist two categories of input data that we are using. The
first category consists of stationary images, natural or artificially created, that we
artificially blur by simulating the results of motion blur; in the second category, are
real images taken by a camera with the existence of relative motion between the
camera and the scene. The data from the first category give us the ability to check
the validity of our results and perform error measurements, while the images from
the second category are ensuring that the algorithm is working on real world data. In
the last part of this chapter an error analysis is performed, on the artificially blurred
images for which the exact results are already known. For the images from the real

world only a qualitative analysis is possible as we don’t know the correct values before

hand.

45
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4.1 Artificial data

Two images have been used in this section, each one of them having different prop-
erties. The first one (figure 4.1a) is a real image taken by a stationary camera, which
has a whole set of different features such as smooth surfaces, edges, and highly tex-
tured areas, with size 256 x 256 pixels. The second one (figure 4.1b) is a random noise
picture, having the same size with the previous one. This image is rich in texture.
As we discussed in the previous chapter the algorithm is more effective when there
exist a lot of texture, this is quite obvious in the results we get, where there exist

more incorrect estimations at the places where there are smooth surfaces.

(a) (b)

Figure 4.1: Two artificially blurred images (a) a natural image (b) a random noise
image.

Both images have been blurred with the same kernel. The motion is assumed to
be at a direction of +125° angle with the x-axis (or —55°) and with a length of 13
pixels. In order to create the artificial blur we convolve the image with a kernel as
in table 4.1. In real world the blur is created before the digitisation, therefore the
points that contribute to the final value of the pixel exist in a straight line. When
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we try to reproduce the same results in the discrete space and we use an arbitrary
angle, we have similar results to the aliasing. In other words, if we digitise the line
into discrete steps with sudden changes, then we have a stair-case effect. In order to
avoid that, the table is created by using the technique of antialiasing lines, as can
be seen in table 4.1 where the pixels are weighted according to their distance to the

“abstract” line.
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Table 4.1: The convolution matrix for the motion blur, using antialising lines.

In the next pages we are going to present the Optical Flow maps for the previous
two images (figure 4.1 a and b), using different configurations for the calculations;
in the following set of images the left one (a) represents the natural image, and the
right one (b) represents the random noise image. In the first set of images (figure 4.2)
we use a 64 x 64 window for every velocity vector we calculate — leaving therefore a
32 pixel border around the image where we can not estimate the Optical Flow. We
calculate the Optical Flow in a grid that has a density of ten pixels, and we zero pad

every window up to 128 x 128. As can be seen in image 4.2a, the orientation of the
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velocity is calculated correctly in most of the places; there exist of set of incorrect
estimations in the area of the lower rows especially between 80 to 200 at the x-axis,
corresponding to the presence of the areas that are characterised as smooth surfaces.
The magnitude of the velocity is more or less uniform. The Optical Flow of the
random noise image (figure 4.2b) presents a uniform orientation estimation; there are
not any areas where we have results that deviate from the correct direction. However,
the magnitude estimation is not satisfactory, a fact which is mainly due to the size of
the window, which is not big enough so we could have enough data at the frequency

domain in order to calculate the cepstrum.
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Figure 4.2: The Optical Flow of the two artificially blurred images using a 64 x 64
window with a step of 10 pixels, only with zero padding

For the next pair of figures (4.3) a bigger window is used, in this case a 128 x 128
window. The same conditions as in the previous experiment were kept — a 10 pixel
dense grid is used and the transformation to the frequency domain in done by using
simple zero padding that transforms the window from 128 x 128 into 256 x 256.
That way, although a big part of the image stays unfortunately without any velocity
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estimations, a more robust Optical Flow map is calculated. In the left map (figure
4.3a) that represents the Optical Flow of the natural image, the estimation of the
orientation is mostly accurate, and there are only a few incorrect estimations for the
magnitude; this is mainly due to the bigger size which gives us much more data to
extrapolate the results. In the velocity map of the random noise image (figure 4.3b)
we could see that the orientation is also correctly calculated although some incorrect

results exists in the magnitude estimation.
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Figure 4.3: The Optical Flow of the two artificially blurred images using a 128 x 128
window with a step of 10 pixels, only with zero padding

In order to get better results and to eliminate the ringing effect, a Gaussian
window is used for masking before we proceed into the velocity vector estimation.
The next figure (4.4) presents the Optical Flow maps created by using a 64 x 64
window which is masked with a 2D Gaussian window (of the same size) and then zero
padded up to 128 x 128. As can be seen in figure 4.4a, the Gaussian masking causes
an improvement into the orientation estimation by eliminating the ringing effect,

but it interferes with the magnitude extraction from the cepstrum. Considering the
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random noise image, the Optical Flow estimation is robust as far as it concerns the
orientation but in the magnitude estimation some incorrect results are still present.
The estimations are improved considerably by using an even bigger window. As it
is obvious from figure 4.5 the results are much more accurate. In the Optical Flow
map of figure 4.5a the orientation is correct and there is only a small neighbourhood
where there is a miscalculation of the magnitude. Almost the same is true for the

random noise image which its Optical Flow map is presented in 4.5b.
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Figure 4.4: The Optical Flow of the two artificially blurred images using a 64 x 64
window with a step of 10 pixels, with zero padding and Gaussian masking

To sum up the results from the simulated blurred images, we have to highlight
some points. First of all the blur that was chosen was completely random; a blur
at 55° with length 13 pixels has no regularity and therefore the construction of it
creates some numerical errors. As it is going to be clear from Optical Flow maps of
the natural images, the results are more robust. Secondly, different areas of the image
respond better in different approaches, for example in certain areas the ringing effect

is dominant compared to the blurred image signal, and in others simply the zero
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Figure 4.5: The Optical Flow of the two artificially blurred images using a 128 x 128
window with a step of 10 pixels, with zero padding and Gaussian masking

pad is enough. In the next section we are going to demonstrate how the algorithm
works on data taken with a camera from the real world. We are going to come back to
artificially blurred images in the third section where we are going to do a quantitative

error analysis of the results.

4.2 Natural data

The images in this case have been taken by a camera and immediately digitised into
the computer. In order to have controlled motion between the camera and the scene
the following setup was used: a camera was mounted on a base pointing downwards,
and a plane (created by cardboard) with random dots on top of it was used as the
main object in the scene. We moved the plane in different directions, sometimes
having small objects on it, with a speed high enough to produce motion blur with
the preset exposure time of the camera. The setup can be seen at the drawing in

figure 4.6; in this case the plane is falling simply by its weight. During the different
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motions a frame grabber has been used to freeze the image into the computer; the
speed was fast enough so that the picture is blurred and the Optical Flow map can
be calculated. In the following part we are going to see blurred images created by
different motions and their equivalent Optical Flow map. The format, for economy
of space, consists of three different blurred images, labelled (A), (B), (C) in one
figure, and their respectively Optical Flow maps in a second figure, following the
same labelling. In all the experiments the same configurations have been used: we
calculate the Optical Flow on a grid which was dense 10 x 10, using a 64 x 64 window.
The patch of the blurred image was masked first with a Gaussian window (to avoid

the ringing effect) and then zero padded up to 128 x 128.
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Figure 4.6: The camera setup with the plane falling downwards.

The first set of images is shown in figure 4.7. The first image 4.7TA has been
created by moving the plane in parallel with the y-axis with a steady and relative
small velocity; the algorithm has correctly estimated the orientation of the velocity
almost everywhere, as can be seen in the Optical Flow map in figure 4.8A. The

accuracy of the magnitude estimation is not clear, although if we compare it with the
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next image some qualitative results can be drawn. The second image, 4.7B, is created
again with a steady velocity parallel to the y-axis, this time at a higher speed, fact
which is easily noticeable by the length of the blur. Again the Optical Flow map, in
figure 4.8B, has an accurate estimation of the orientation and also gives an average
bigger magnitude for the velocity vectors. By comparing these two cases it is obvious
that the orientation estimation is correct and also the magnitude estimation shows
the difference between different speeds. The third image 4.7C is created completely
differently; the random-dot decorated plane is left to fall free under the camera and
during that fall we take a snapshot. As can be seen from the blur lines the focus
of expansion is at the middle of the left side, and indeed the algorithm gives the
same results. In the Optical Flow map (figure 4.8C) we could see the velocity vectors
pointing at the point of expansion and have a gradually decreasing magnitude as they
reach that point.

The next set of images, created with free fall away from the camera, appears in
figure 4.9. The first image 4.9A is taken very shortly after the fall begun, with the
focus of expansion at the centre of the image; this is easily identified by the pixels
at the centre where there is almost no blur at all and the size of the random dots
relatively big compared with the dots in the other images. Accurately enough, the
map of the Optical Flow in figure 4.10A shows the velocity vectors to converge in the
middle where again their magnitude decreases. The middle image (4.9B) was also
created by a falling plane, but this time the centre of expansion is at the left side in the
lower part, and the blur is not big as the random dots are almost distinguishable. In
fact, the velocity vectors in figure 4.10B are not very big and they correctly show the
point of expansion. The third image is created differently; it involves again uniform
motion across a line, although this time the angle with x-axis is almost at 45°. This
image shows us that the algorithm can calculate the velocity vectors at an arbitrary
angle. The Optical Flow map as presented in figure 4.10C describes correctly the

orientation with correct magnitude in majority.
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Figure 4.8: The Optical Flow map of the previous images using a 64 x 64 window

with a step of 20 pixels, with zero padding and Gaussian masking
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Figure 4.9: Three Images with motion blur
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Figure 4.10: The Optical Flow map of the previous images using a 64 x 64 window

with a step of 20 pixels, with zero padding and Gaussian masking
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In the next set of images, some objects are placed on top of the random dot plane.
Again uniform motion parallel to the y-axis was used, but this time four small objects
were placed onto the plane, in order to see how they are going to affect the estimation
of the velocity map. In figure 4.11A we could see the first image, where two circular
pieces of cork appear in the upper part, the corner of a rectangle at the middle of
the right side, and a small box in the middle of the lower part. In the Optical Flow
map in figure 4.12A we could see the disturbance in the estimation that was caused
by the lack of texture in these places, especially in the lower middle part. Exactly
where the small box is in the blurred image, the velocity map shows a deviation
at the orientation towards the right and the magnitude is incorrectly small; similar
but smaller disturbance exist at the right side at the middle where the corner of the
rectangle appears. The reason of this disturbance is also the lack of texture at these
points. The same results appear also in the second image (figure 4.11B) where the
snapshot was taken when the objects were translated towards the low left part of the
image compared with the 4.11A. Again in the Optical Flow map (figure 4.12B) the
velocity vectors are correctly calculated, except of the lower-left part of the image
where the small box appears. The third image of this set presents a different kind
of motion. In this case (figure 4.11C) the random dot plane was rotated bellow the
camera creating a “galaxy” like pattern. The centre of rotation is located at the
right side of the image slightly lower than the middle. The Optical Flow map (figure
4.12C) presents these results locating correctly the centre of rotation, assigning a very
small magnitude to it, and arranging the velocity vectors circularly around it.

The third set of images have two more images created by rotational motion, but
also an image created with a completely different setup. The first image (figure
4.13A) was created by moving the camera by hand horizontally across a self full of
books and binders. The image is rotated by 90° due to the way Matlab is handling
the images; taking that into account, the spiral binding of some of the books is quite

obvious. Also the lighting of the scene was low and therefore some of the features
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didn’t appear; in addition it is quite notable the lack of texture in a lot of the areas.
In spite of these problems the velocity vectors in majority have the correct orientation
and approximately the same magnitude, (figure 4.14A) results that agree with the
blurred image. The last two images are created as before by rotating the random-dot
plane under the camera. The middle image (figure 4.13B) is created by spinning
the plane in high speed and that’s how we get some almost continues blur lines; the
centre of rotation is at the upper right part. In figure 4.14B we could see the velocity
vectors having the proper orientation, and a rather big magnitude. The last instance,
4.13C, is taken with the plane considerably close to the camera and with a smaller
rotation speed; the centre of rotation is at the upper left corner, and at that point the
pixels are rather discrete. A smooth Optical Flow map is presented in figure 4.14C
with the vectors having the correct orientation, circular around the upper left corner
where the centre of rotation is, and with an almost constant magnitude.

There is a need to see the restrictions of this algorithm as well as its advantages.
As we have already seen, the more information we have, e.g. more texture, or bigger
window, the better the results; this introduces some constraints. First of all in a real
world application, the texture we have in a certain image is given; this can change
by examining the image at different scales, as for example, a carpet could be seen as
a smooth gray surface, but if we zoom in we could have a very intricate pattern. In
any case, if the texture is not enough we could not detect the motion; this is to be
expected as any biological system has the same limitations. For example, if a uniform
surface is moving and we could not detect any features then we could not infer the
motion.

The second condition refers to the window size and has two side effects that ask for
contradicting solutions. First, of all if the orientation of the velocity vector changes
— as it is the case in rotation or free fall in the previously described examples, or in
the simple case that inside the same window we have two or more objects moving to

different directions — then there isn’t one unique blur pattern to dominate the shape
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Figure 4.11: Three Images with motion blur
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Figure 4.12: The Optical Flow map of the previous images using a 64 x 64 window

with a step of 20 pixels, with zero padding and Gaussian masking
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Figure 4.13: Three Images with motion blur
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Figure 4.14: The Optical Flow map of the previous images using a 64 x 64 window

with a step of 20 pixels, with zero padding and Gaussian masking
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of the Power Spectrum. For such a case we have to use an appropriate window size,
that assures approximately the same orientation of the motion blur for the entire
window. In such a case the window size has an upper limit. This condition comes
in contrast with the second side-effect. If the motion blur length is big enough then
it is not possible to have an approximate representation of the motion blur ripple in
the frequency domain, as we could see at most one or two periods of the ripple, and
therefore it would not be possible to infer accurately the magnitude of the motion
blur. The previously described problems show that the algorithm can not be used
blindly. Also in a lot of cases, although an approximation of the Optical Flow map
is obtained, we could not have accuracy; this makes the algorithm unsuitable for
applications such as complete deblurring, which needs an accurate estimation of the
motion blur PSF in order to restore the image, but it could still work on partial
recovery of the image and also in a series of other applications such as inference of
egomotion, time to crash estimation, moving obstacle detections and so on, where a
sparser set of estimations is needed. In the next section we are going to use some
artificially blurred images in order to measure the error in the estimated Optical Flow

map.

4.3 Error analysis

Every velocity vector (in the Optical Flow map) consists of two numbers, the ori-
entation which is given as the angle with the x-axis in degrees, and the magnitude
measured in pixels. Therefore, the error analysis we are going to do, measures the
errors created in these two estimations. The magnitude estimation follows the orien-
tation estimation, using the calculated angle in order to compress the Power Spectrum
from 2D into 1D, consequently if there exist an error in the orientation of the vector,
this is going to propagate into the measurement of the magnitude; in order to avoid

that, we also calculate the errors of the magnitude assuming a correct angle estima-
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tion. The error estimations that are presented in the following pages were created
using the following methods: the Optical Flow maps were created on a grid with a
density of ten pixels, and every velocity vector was created using two different sizes
for the processing window, (so, we could see the improvement when we use more
information —larger window size— for the calculations). The first column in every
different method represents a window size of 64 x 64 pixels and the second 128 x 128
pixels. There were five different variations of the algorithm that were applied. The
first variation (columns one and two) makes use of the complete algorithm with all
the preprocessing stages, (Gaussian Masking and Zero Padding), and it is the most
computationally expensive. The second variation (columns three and four) is using
only Zero Padding, while the third one (columns five and six) is using only Gaussian
Masking for the ringing effect. The fourth method (columns seven and eight) has no
preprocessing at all, and all the calculations were applied at the raw data from the
blurred image. Finally the last two columns present error estimations for the magni-
tude assuming correct orientation calculation. For every experiment (each variation
with each size) there exist ten error measurements that are presented ' in different
rows. The first five error estimations measure deviations from the correct angle; the
first is the mean value of the total number of errors in the angle estimation, which
helps us to see how far from the correct orientation the general estimation points.
As the mean value sum up the errors, negative and positive errors average into zero,
therefore the mean of the absolute error is estimated in the second row, and gives
a measure of the absolute error. The third row presents the Standard Deviation,
and the fourth and fifth rows the maximum and minimum error respectively; as the
error measurements are positive and negative these two estimations present the two
larger errors in each direction (clockwise and counter-clockwise). All the angle error

measurements are estimated in degrees. The following five rows have the same error

!The last variation with given orientation naturally doesn’t have any angle error estimation.
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estimations but this time for the magnitude of the velocity vectors measured in pixels.

The first two tables 4.2, 4.3 have the error estimations for the blurred images
presented in figure 4.1a,b. In order to examine the influence of numerical errors
inserted by the blurring processes (the use of an antialiasing line) the two images —
the natural image and the random noise pattern — are blurred with a diagonal line

(the 16 x 16 identity matrix) and an error analysis is presented in tables 4.4, 4.5.

ERROR Gaussian Padded | Zero Padding | Gaussian Masking | No Preprocessing | Known angle
Estimations 64p 128p 64p | 128p | 64p 128p 64p 128p 64p | 128p
Mean angle 0.6° -0.1° 2.0° 0.2° 0.1° —0.5° 1.7° 0.2° — —
Mean ||angle]| 3.6° 1.6° 4.7° 2.4° 4.1° 2.1° 5.5° 2.6° — —
S. Dev. angle 2.1° 0.8° 1.2° 0.8° 2.1° 0.9° 1.4° 0.5° — —
Maz angle 15° 6° 19° 9° 15° 6° 23° 7° — —
Min angle —34° —6° —13° —7° —35° —7° —18° —8° — —
Mean length -4.2 -5.9 -6.6 -7.3 -4.0 -5.2 -5.7 -6.8 -4.8 -6.2
Mean ||length|| || 5.2 6.4 7.2 7.3 5.5 5.9 6.8 7.4 5.6 | 6.4
S. Dev. length 1.1 1.5 1.6 1.2 1.3 1.4 1.2 2.2 1.1 1.2
Maz length 15 15 15 1 17 12 15 13 12 9
Min length -8 -8 -8 -8 -8 -8 -8 -8 -8 -8

Table 4.2: Error Estimation for the blurred image of figure 4.1a, the vectors were
estimated every 10 pixels. For a more detailed description of the table refer to the

beginning of the section

The error estimations of the figure 4.1a are given in table 4.2. The qualitative
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observations that were made in section 4.1 can be verified here. As can be seen,
in general the orientation is estimated much more robustly than the magnitude. In
average, the error is as small as one tenth of a degree (not possible to detect) and at
most two degrees, when a small window 64 x 64 with only zero padding was used; an
improvement is also clearly detectable when we use a bigger window in every method.
The same results hold when we take the average of the absolute error; this time, as
we take into account every deviation from the correct orientation, the average error
is higher but it still stays in acceptable levels having as maximum error 5.5 degrees,
with no preprocessing and a relative small window. The standard deviation is small
in almost all the cases. As far as it concerns extreme values of error, we have a
positive deviation up to twenty three degrees (large number but rather rare as can
be seen from the Optical flow maps in section 4.1; which is also appears in the worst
situation of no preprocessing and with the use of a small window.) Rather interesting
in the table is the decrease of extreme errors with the use of a larger window, for
example the complete algorithm goes from —34° for a 64 x 64 window to —6° for
a 128 x 128 window, and similar results hold for the rest of the variations. The
magnitude errors are higher, but that is to be expected from the Optical Flow maps
presented in the section 4.1. When we could not find a negative peak that signals the
length of the ripple usually the algorithm picks the lowest value, which is the starting
value (5 pixels in this configuration); that way the minimum length error is —8 pixels
for all the cases. Although in average we don’t have a major improvement when the
orientation is given (this is due to the lowest possible estimation of —8 pixels that
still exist) the maximum error decreases from 15 pixels to 9 pixels for a 128 x 128
window, and from 15 pixels to 12 pixels for a 64 x 64 window.

Another way to see the distribution of errors is presented in figure 4.15. We have
created the error maps for different cases by displaying the error estimations that
were used to construct table 4.2. The images 4.15a,b,c were created with a 64 x 64

window, where the images 4.15d,e,f were created with a 128 x 128 window. The first



CHAPTER 4. EXPERIMENTAL RESULTS 64

(d) (e) (f)

Figure 4.15: The Error Map for the image 4.1a for the orientation (a,d), the magni-
tude (b,e), and the magnitude with given the orientation (c,e); with a 64 x 64 window
(a,b,c) and with a 128 x 128 window (d,e,f). Darker areas indicate larger relative error

column (4.15a,d) has the errors in the orientation calculated with using the complete
algorithm, the middle images (4.15b.e) display the magnitude error estimated by the
same algorithm; while the last column (4.15¢,f) presents the magnitude errors when
the orientation is given. The absolute value of the errors was used, with white for
zero error, and black for the highest error value; also we have to mention that the
black represents a different error value for each image and therefore, comparisons
between different images based on the gray values can not be done. In order to
analyse the error results we have to compare the areas in the error maps with the
blurred images presented in 4.1a. In the first image we could see that the general

error level is low with a high peak in two neighbouring areas, and by comparing
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these areas to the blurred image it is obvious that they are the places with minimum
texture and therefore not enough information; the same holds for the error map of the
larger window figure 4.15d. The magnitude error maps that are presented next have
a more random distribution of errors, mainly gray (by checking the table with the
average values,) due to the inability to estimate the magnitude in some positions and
assigning the minimum value —5 to them; some peak results appear here also, and
it 1s easily distinguishable where there are due to an orientation-estimation failure
(by comparing with the error map in next column) and where there are not. An
improvement is obvious from the small to the large window, where in the 128 x 128
window the bigger error is due to the error in the orientation estimation.

The error estimations for the random noise image (figure 4.1b) are given in table
4.3. Once again an analysis of the table confirms the observations from the Optical
Flow maps in section 4.1 for the 4.1b blurred image. Also, a comparison between
table 4.2 and table 4.3 highlights the importance of texture in the extraction of optical
flow from the motion blur. In calculating the orientation of the motion blur the same
improvement as before can be seen with the use of a bigger window, although, as
the image is full of texture (random values), there is not much improvement with
the use of different preprocessing techniques. In general the average error (absolute)
holds about 2.5° to 3° for the small window and from 2° to 2.5° for the large; such
error values are not optically detectable in the image. However, when it comes to
the extreme values, we have a rather big improvement as they decrease from 23° for
the image in figure 4.1a with no preprocessing and with the small window, down to
14° maximum when we use only zero padding and the 64 x 64 window; considerably
more is the improvement for the negative differences, where from —35° for the natural
image as worst case we improve to —10° for the random noise one. In general the
extreme errors are radically reduced in the textured image because there exist no
places with uniform surfaces and not enough information. In the calculation of the

magnitude again we have some improvement, but not as much as in the orientation.
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ERROR Gaussian Padded | Zero Padding | Gaussian Masking | No Preprocessing | Known angle
Estimations | 64p 128p 64p | 128p | 64p 128p 64p 128p 64p | 128p
Mean angle 2.4° 2.1° 1.8° 2.0° 2.0° 1.6° 1.6° 1.9° — —
Mean ||angle]| 3.0° 2.2° 2.8° 2.5° 3.0° 2.0° 2.5° 2.0° — —
S. Dev. angle 0.5° 0.4° 0.2° 0.2° 0.6° 0.5° 0.3° 0.2° — —
Maz angle 10° 5° 14° 10° 11° 5° 12° 7° — —
Min angle —&° —2° —9° —5° —10° —30 _70 _90 _ _
Mean length -2.7 -1.5 -1.3 -0.2 -2.2 -3.1 -1.5 0.5 -3.2 -5.2
Mean ||length|] || 4.1 5.7 47 | 6.6 5.0 6.0 5.6 6.3 46 | 6.2
S. Dev. length 0.8 1.1 1.0 1.7 1.2 1.4 1.0 1.4 1.1 2.1
Maz length 16 14 17 17 17 12 13 17 15 15
Min length -8 -8 -8 -8 -8 -8 -8 -8 -8 -8

Table 4.3: Error Estimation for the blurred image of figure 4.1b, the vectors were
estimated every 10 pixels. For a more detailed description of the table refer to the

beginning of the section
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This is most probably due to numerical errors like the ones that have been analysed
in chapter three. In general the absolute error is smaller compared to the natural
image in figure 4.1b. The results can be better if we use some methods to discard
estimations that are not valid, which is here the major cause of error.

In order to analyse the error estimations of the algorithm without the complication
of the numerical errors that occur during the simulation of the motion blur (as much
as possible), and under good conditions, we create two more blurred images. This
time the orientation of the blur is at a —45° angle with the x-axis and it has a
magnitude of 16 pixels; this way we don’t use a simulation of antialiasing lines but
the 16 x 16 identity matrix which is a matrix 16 x 16, with zero everywhere, except
at the diagonal where it has the value 11—6 = 0.0625. In figure 4.16a, b, we present
these two blurred images; they are produced by the same original images as the ones

used for the images in figure 4.1a,b but this time we use a different blur kernel.

(a) (b)

Figure 4.16: Two artificially motion-blurred images (a) a natural image (b) a random
noise image; with the motion blur diagonal and with a magnitude of 16 pixels.

For the first image 4.16a, the error estimations are presented in table 4.4. Doing
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ERROR Gaussian Padded | Zero Padding | Gaussian Masking | No Preprocessing | Known angle
Estimations 64p 128p 64p | 128p | 64p 128p 64p 128p 64p | 128p
Mean angle -0.4° -1.3° -0.9° | -1.9° | -0.4° -1.2° -1.4° -2.1° — —
Mean ||angle]| 2.5° 1.7° 3.7° 2.7° 2.9° 1.9° 4.8° 3.1° — —
S. Dev. angle 0.9° 0.6° 0.9° 0.5° 1.0° 0.6° 1.3° 0.5° — —
Maz angle 10° 3° 11° 5° 10° 3° 17° 4° — —
Min angle -15° -5° -13° -9° -16° -6° -19° -10° — —
Mean length -2.0 -0.5 -3.3 -2.6 2.6 -0.8 -0.9 -2.4 2.0 0
Mean ||length|| || 3.2 0.9 48 | 3.2 8.8 1.3 8.9 3.7 2.0 0
S. Dev. length 1.1 1.4 0.9 0.7 0.6 1.0 0.8 1.3 2.2 0
Maz length 13 13 14 6 14 11 14 11 11 0
Min length -11 -7 -11 -11 -11 -8 -11 -11 0 0

Table 4.4: Error Estimation for the blurred image of figure 4.16a, the vectors were
estimated every 10 pixels. For a more detailed description of the table refer to the

beginning of the section
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a crude comparison with the error estimations for the blurred image at figure 4.1a,
some interesting results for the algorithm can be extracted. The estimation of the
orientation does not present any major improvement mainly because the average error
is rather small; but almost everywhere there exist a small improvement. There exists
a noticeable improvement at the extreme error values especially for the use of the
small window (64 x 64), where we have an improvement from —34° down to —15°
for the use of the complete algorithm and from —35° down to —16° for Gaussian
Masking only. It is clear that the Gaussian Masking is not as important as the zero
padding for the calculation of the orientation for the small window. Overall, with
no preprocessing at all, the estimation of the angle is worse than in any other case,
but it is still at an acceptable error level. The magnitude estimation, which is much
more sensitive to additive errors, presents a much more remarkable improvement -
here the need for enough information and for the use of filtering in order to suppress
the ringing effect are obvious. The average absolute error diminishes from 3.2 to 0.9
with the use of a 128 x 128 window instead of a 64 x 64. For the complete algorithm,
if we use a small window and no zero padding, the results are completely wrong, with
an average absolute error of 8.8 pixels. Extreme values are lower bounded by —11
when no negative peak is found, and it is remarkable that with the use of a large
window and Gaussian Masking we don’t reach this boundary and we get a minimum
of —8. Finally when the orientation is known for a large window, we have an absolute
success, which shows that the compression and the use of the cepstrum calculate the
correct answer.

Comparing the error results for this image with the error estimation we got for
the image 4.1a, help us to highlight some points. First, as noted earlier, the im-
provement is obvious from 6.4 pixels for a large window and the application of the
complete algorithm we decreases to 0.9 pixels for the same setting, and also, even
without that for the same setting. Also, even when we used zero padding only, the

maximum absolute error we get is 4.8 for a 64 x 64 window. Second, the size of
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the window is important, because when there isn’t enough information, even if we
know exactly the direction on which we need to compress the Power Spectrum, it
is rather difficult to get completely correct answers. Third, if the artifacts from the
simulation are stronger than the blur ripple, even with given the orientation, the
magnitude estimation is not error free. Finally, in order to improve the results, an
iterative algorithm that estimates the value of the orientation by taking into account
the value of the neighbours can be used, and if there exists a minimum error for the
orientation an improvement to the magnitude estimation would be also achieved.
The last table, 4.5, contains the error estimations for the random noise image
blurred across the diagonal, with a magnitude of 16 pixels as presented in figure
4.16b. The conditions in this case are rather good, as the image is full of texture and
the artificial blur has minimum side effects. As can be seen from a simple comparison
with the previous tables, we have the best results as far as it concerns the estimation
of the orientation of the motion blur. The average absolute error in orientation is
2.3° at worst, which is as low as the best in every other case. Where the best result in
average error is 0.9°, which is unnoticeable. If we check the average error, which gives
us an estimation on how well the resulting motion vectors approximate the general
motion, we see an error of 0.5° which is simply unnoticeable. Moreover, when we
check the extreme error values, they are also much lower than the previous ones; with
an average —6° (counterclockwise) and as small as —2° for the complete algorithm
and the use of a large window; for the positive values (clockwise) the smallest is 3°
with at most a 10° for small window and no Gaussian masking to control the ringing
effect. Overall, we could say that the full algorithm with a proper window size gives
minimal errors when enough information is given. The improvement continues also in
the magnitude estimation. With a 128 x 128 window size the average absolute error
stays close to zero 0.1 - 0.2 pixels, while for a small window and zero padding (so
enough information can be used) it is 2.3 pixels. The extreme values are accordingly

small, —4, 4 pixels for the complete algorithm and a large window and similar values
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ERROR Gaussian Padded | Zero Padding | Gaussian Masking | No Preprocessing | Known angle
Estimations | 64p 128p 64p | 128p | 64p 128p 64p 128p 64p | 128p
Mean angle 0.5° 0.5° 0.4° 0.5° 0.6° 0.5° 0.2° 0.4° — —
Mean ||angle]| 1.9° 0.9° 2.3° 1.3° 2.2° 1.1° 2.1° 1.0° — —
S. Dev. angle 0.5° 0.2° 0.2° 0.1° 0.5° 0.3° 0.4° 0.2° — —
Maz angle 6° 3° 10° 6° 8° 4° 8° 5° — —
Min angle -6° -2° -9° -6° -7° -2° _8° _5° — _
Mean length -1.9 0.0 -1.6 -0.7 4.1 -0.1 5.2 0.0 0 0
Mean ||length]] || 2.3 0.1 23 | 08 | 89 0.2 9.1 0.2 0 0
S. Dev. length 0.6 0.5 0.5 1.6 0.7 0.7 0.7 0.4 0 0
Maz length 9 4 14 9 14 2 14 6 0 0
Min length -10 -4 -11 -10 -10 -5 -11 -3 0 0

Table 4.5: Error Estimation for the blurred image of figure 4.16b, the vectors were
estimated every 10 pixels. For a more detailed description of the table refer to the

beginning of the section
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for the rest of the cases. It is worth noting that, given the correct orientation, even
the 64 x 64 window gives completely correct results.

To sum up, the results from the error analysis demonstrate the major properties
of the algorithm developed. When it is used with the appropriate data, the algorithm
estimates the Optical Flow map quite accurately. To get meaningful results certain
conditions have to be true: in the window that is used there must exist enough
information in the blur in order to produce the characteristic ripple in the frequency
domain, and the size of the window must be large enough so a few periods of the

ripple appear and not just one, which would make the ripple undetectable.



Chapter 5

Conclusions

Whenever there is relative motion between a camera and objects in a visual scene, the
camera’s image of the scene is blurred. When the relative velocity is large enough,
this motion blur can be quite significant.

Most visual motion estimation algorithms developed up to now treat motion blur
as just one more source of noise. Most typically, these approaches either ignore
motion blur, or assume a restricted situation in which camera and object velocities
are relatively small.

In this thesis, a new approach to dealing with motion blur is formulated and
evaluated experimentally. An algorithm is presented for computing the optical flow
from a single motion-blurred image. The algorithm makes use of the information
present in the structure imposed on the image by the motion blur.

The algorithm can be considered as operating in two steps. For each patch of the
image, the direction of motion is first determined and then the speed in that direction
is recovered. The algorithm operates in the frequency domain where it exploits the
fact that motion blur introduces a characteristic ripple in the power spectrum. The
orientation of these ripples in the 2D power spectrum is perpendicular to the direction

of the motion blur. A key element of the algorithm developed in this thesis is the
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robust and efficient identification of the orientation of these ripples by making use
of steerable filters. In experimental results, the orientation of motion blur is often
recovered to within just a few degrees.

Once an accurate estimate of the oriention of the motion blur is known, the speed
of motion, or the spatial extent of the blur, can be computed using a modified form
of cepstral analysis. The first step in this procedure is to collapse the 2D log power
spectrum into a 1D signal along the line indicating the direction of motion. The
frequency of the ripple in the resulting 1D signal can be identified by taking a further
Fourier Transform and locating a negative peak.

This algorithm has been implemented and evaluated experimentally using artifi-
cial and natural images. It has the advantage of exploiting information in a motion-
blurred image that traditional motion analysis methods have tended to ignore. It has
the added advantage of providing an optical flow map from a single image, instead
of a sequence of images. The algorithm also lends itself easily to efficient parallel
implementation.

There are some limitations for the applicability of this algorithm that are worth
noting. Most importantly, the algorithm depends on the presence of texture in the
image, since the blur in a region with homogenous brightness is undetectable. The
magnitude of motion blur that can be detected is limited by the size of the image
patch being analyzed. Also, if the motion blur is too small, on the order of just a few
pixels, it becomes indistinguishable from other small-scale features, such as texture,
noise, or out-of-focus blur.

In the following section, suggestions are made for application of this work, along

with directions for future research in this area.
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5.1 Future Goals

There are a number of directions that future developments could follow. Among the
most obvious ones is the extension of the algorithm to deal with true colour pictures.
Another is a parallel implementation of the algorithm which would improve its speed
up to a point that it would be possible to run in almost real time for a whole image.
That would make possible the use of the algorithm for extracting the Optical Flow
from a moving camera on the fly, for navigational purposes.

More research on the windowing effect and the artifacts that it produces could lead
into the application of knowledge intensive filters in order to reduce its side-effects.
Also, the assumption that the image is noise free was made throughout this thesis, but
future developments of the algorithm will have to take into account the noise factor
and ensure the robustness of the algorithm in a noisy environment. One possible
solution could be to prefilter the image in order to eliminate the noise. Another is to
take into account the characteristic of the noise in the frequency domain and adapt
the steerable filters and the cepstral analysis accordingly.

An open field of research is the adaptation of the algorithm according to the
applications in which it could be used. Application specific issues should be addressed
such as speed versus accuracy, acceptable error levels, and others. Incorporating
the algorithm into a mobile robot architecture for self navigational purposes is one
application; in that case it is important to update the optical flow field fast in order
to get a general idea of the egomotion and also to identify moving objects that could
present a threat for the robot, while the accuracy is not as important. Another
application, with the opposite requirements, is the restoration of an image corrupted
by motion blur. The image is taken with an inappropriate large exposure time, for
example a security camera takes a shot of a speeding car, and the goal is to clean the
picture. In that case there is no time constraint, but we need to find precisely the

motion blur parameters in order to reconstruct the motion blur convolution matrix
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and perform a deconvolution to restore the image.
In conclusion, the algorithm developed could be useful in a wide range of appli-

cations, providing the Optical Flow map where traditional algorithms fail.
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List of Abbreviations

DCT: Discrete Cosine Transform
DFT: Discrete Fourier Transform
FT: Fourier Transform

FFT: Fast Fourier Transform

IFT: Inverse Fourier Transform
IFFT: Inverse Fast Fourier Transform
PSF: Point Spred Function

RMS: Root Mean Square

SNR: Signal to Noise Ratio
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