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Abstract— In large scale coverage operations, such as marine
exploration or aerial monitoring, single robot approaches are
not ideal, as they may take too long to cover a large area. In such
scenarios, multi-robot approaches are preferable. Furthermore,
several real world vehicles are non-holonomic, but can be
modeled using Dubins vehicle kinematics. This paper focuses
on environmental monitoring of aquatic environments using
Autonomous Surface Vehicles (ASVs). In particular, we propose
a novel approach for solving the problem of complete coverage
of a known environment by a multi-robot team consisting of
Dubins vehicles. It is worth noting that both multi-robot cov-
erage and Dubins vehicle coverage are NP-complete problems.
As such, we present two heuristics methods based on a variant
of the traveling salesman problem—k-TSP—formulation and
clustering algorithms that efficiently solve the problem. The
proposed methods are tested both in simulations to assess their
scalability and with a team of ASVs operating on a 200 km2

lake to ensure their applicability in real world.

I. INTRODUCTION

This paper addresses the problem of covering a large area

for environmental monitoring with multiple Dubins vehicles.

Coverage is a task common to a variety of fields. The

application areas can be classified based on the scale of

operations, by the necessity to ensure the coverage of all

available free space (termed complete coverage), and by

whether there is prior knowledge of the environment. From

small scale household tasks such as vacuum cleaning and

lawn mowing to large scale operations such as automation

in agriculture, search and rescue, environmental monitoring,

and humanitarian de-mining, coverage is a key component.

See [1], [2] for in-depth surveys. Finding a solution to the

coverage problem means planning a trajectory for a mobile

robot in a way that an end-effector, often times the body

of the robot, passes over every point in the available free

space. Employing multiple robots can reduce the coverage

time cost, and, in hazardous conditions, such as humanitarian

de-mining, increase the robustness by completing the task

even in the event of accidental “robot deaths.” The use of

multiple robots however, increases the logistical management

and the algorithmic complexity.

Covering an unknown environment, termed online cover-

age [3], focuses on ensuring that no part is left uncovered and

on minimizing repeat coverage. In contrast, when covering

a known environment, the focus is on performing the task

as efficiently as possible [4]. As mentioned above, another

classification is between ensuring complete coverage versus,
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Fig. 1. Three autonomous surface vehicles during coverage experiments
at Lake Murray, SC, USA.

in limited time, ensuring that the most interesting areas are

covered [5]. Furthermore, the scale of the environment in

conjunction with the speed and endurance of the robot(s)

classify the coverage task as small, medium, or large scale.

For example, a flying vehicle with 30min battery life and an

average speed of 40 km/h can cover a trajectory of 20 km,

while an autonomous surface vehicle (ASV), moving at 10 kn

(5m/s) for five hours will travel approximately 90 km.

In this paper we focus on the monitoring of aquatic

environments. The vehicles of choice are ASVs that were

custom-made at the University of South Carolina (see Fig-

ure 1). Aquatic environments, in general, require large scale

operations. For example, one of the testing grounds used—

Lake Murray—has a surface of over 200 km2. Many ASVs,

similar to fixed wing aircraft, are governed by Dubins vehicle

kinematics [6]; i.e., Dubins vehicles cannot turn in place.

More formally, a Dubins vehicle is defined as a vehicle which

may only follow line segments and arcs with radius greater

than some specified minimum with non-negative velocity,

i.e., they may not back up. Recent work [7], [8] presented

an efficient approach to cover an area by a single Du-

bins vehicle. We extend the proposed algorithm to multiple

robots based on recent work on multi-robot coverage [9]

for holonomic robots. This work ensures a more efficient

division of labor between robots, particularly for large scale

environments. Efficiency is measured as a combination of the

utilization of the robots and the reduction of the maximum

coverage cost. The idea is that robots are limited battery

life; as such, the workload should be evenly distributed.

We present two methods. In the first one, the efficient path

produced by the algorithm proposed by Lewis et al. [8] is

divided to approximately equal parts, in terms of path length,

and each part is assigned to a different robot. In the second

method, the target area is divided into equal parts, based

on the team size, and then the single robot algorithm [8] is

applied to each area.

Experimental results from several simulated experiments

2018 IEEE International Conference on Robotics and Automation (ICRA)
May 21-25, 2018, Brisbane, Australia

978-1-5386-3081-5/18/$31.00 ©2018 IEEE 2373



show that indeed the utilization of the robots is maximized

and the maximum coverage cost is minimized. Moreover,

the approach is scalable to a large number of robots. Field

trials with a single robot, a team of two, and a team of three

ASVs, demonstrated the feasibility of the proposed approach

with real robots executing plans generated by the planner and

highlighted several practical challenges.

The next section discusses related work for the complete

coverage problem using either single or multi-robot systems.

Section III presents the problem statement and, in the follow-

ing section, an outline of the proposed approach is discussed.

The experimental setup is presented in Section V together

with results from simulation and from the deployment of

a team of ASVs in Lake Murray, SC, USA. Finally, a

discussion of lessons learned together with future directions

of this work concludes the paper in Section VI.

II. RELATED WORK

There are numerous ways to formulate coverage, including

static or dynamic coverage, complete or partial, offline or on-

line [1], [2]. In addition, there are many different approaches

to tackle such a problem, such as defining it as graph parti-

tioning problem, performing region-based decomposition, or

defining it as sub-modular optimization problem [2], [10].

When prior information about the environment is available

as a map, the coverage is called offline [1]. One of the

approaches widely used in offline coverage algorithms is

based on area decomposition. Choset [11] proposed a cellular

decomposition technique, called boustrophedon decomposi-

tion (BCD). In his work, the coverage are is decomposed

into obstacle free cell. A lawnmower pattern is typically

executed to cover each cell. Other approaches were also used

for decomposing areas based on Morse decomposition [12]

or grid-based decomposition [13].

Some of the grid-based methods to single robot coverage

were adapted for multi-robot systems as well [14]–[17]. The

robustness and efficiency of the systems proposed by that

body of work depend on the resolution of the input repre-

sentation. Because the size of each cell is typically based

on the size of the sensor footprint, the coverage becomes

more challenging in environments with many obstacles, as

the footprint size increases.

Polynomial time algorithms were proposed for solving

single robot coverage using a boustrophedon decomposition

based approach [4], [18]. In contrast to the original algo-

rithm, in these approaches, the problem is represented as

the Chinese postman problem (CPP). The latter is a graph

routing problem, of finding a minimum-cost closed tour that

visits each edge at least once. Edmonds and Johnson [19]

found a polynomial-time solution for CPP.

When considering the coverage problem for robots with

turning constraints, a simple boustrophedon coverage plan

may introduce wasted time—that is, time spent out of the

region of interest because of the constraints and thus not

actually covering. The Dubins vehicle is a common robot

model in coverage problems, and Savla, Bullo, and Fraz-

zoli [20] consider a control-theoretic solution. In our work,

however, we provide an algorithmic approach to minimizing

the path length by minimizing the time spent not actively

covering because of the motion constraints.

Reducing traversal time by considering motion constraints

is not a new idea in coverage. Both Huang [21] and Yao [22]

minimize the path length by using motion constraints in their

environmental decompositions. Both of them, however, seek

to reduce the amount of rotation required by the robot, while

we optimize the solution by carefully selecting how the robot

transitions from covering to not-covering.

This idea is related to the traveling salesman problem

(TSP) with Dubins curve constraints, called Dubins traveling

salesman problem. In [23], [24], the Dubins TSP is defined as

metric TSP with the additional constraint that paths between

nodes must adhere to a minimum turn radius necessary for

the covering vehicle’s transition between nodes.

Some of the presented methods based on cellular decom-

position were also designed for multi-robot systems [3], as-

suming restricted communication. Avellar et al. [25] present

a multi-robot coverage approach that operates in two phases:

decomposing the area into line-sweeping rows, based on

which a complete graph is constructed to be used in the

second phase, where the vehicle routing problem [26] is

solved. Field trials with Unmanned Aerial Vehicles (UAV)

showed that their proposed approach provides minimum-

time coverage. However, that algorithm is only applicable

for obstacle free environments.

In our previous work [9], we presented a communication-

less multi-robot coverage algorithm based on efficient single

robot coverage. Even if the proposed methods demonstrate

better performance on robots utilization and almost optimal

work division, the robots utilization is dependent on the

number of obstacles in the area. As in that work clustering is

based on boustrophedon cells, a small number of obstacles

will result in small number of cells, and consequently less

clusters per regions. Note that, however, the solution gener-

ated did not take into account any kinematic constraints of

the robots.

A large body of work in multi-robot systems assumes

that there is some form of communication between the

robots [27]. Some of them came up with alternative implicit

communication means, such as trail of other robots [28]–

[30]. Nevertheless, this type of communication is impractical

in aquatic or aerial environments.

The graph routing problems such as TSP and CPP have

also their definition for multiple routes: finding k routes that

visit non overlapping vertices of the graph, such that the

union of those clusters are the exact set of vertices in the TSP

case. This problem is called k-TSP problem. When edges are

considered instead of vertices, the problem is called k-CPP.

Both these problems and their variations were shown to be

NP-complete [31].

In this paper, differently from the current state of the

art, we address multi-robot coverage for Dubins vehicles,

for which no solution is readily available. In the following

section, the problem is formally defined.
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III. PROBLEM STATEMENT

The Dubins multi-robot coverage problem can be formu-

lated as follows. We assume to have k homogeneous robots,

with no communication capabilities, equipped with a sensor

with fixed-size footprint s, and with Dubins constraints—

namely, the robots have a minimum turning radius r, that

constrains the robots to follow line segments and arcs with

radius greater than r, and they cannot drive in reverse. Such

robots are deployed in a 2D-bounded area of interest region

E ⊂ R
2. The objective is to find a path πi for each robot i,

with 1 ≤ i ≤ k, so that every point in the region of interest

E is covered by at least a robot’s sensor.

An efficient solution is one that minimizes the length of

the trajectories for the robots, while at the same time ensuring

that the workload on the robots are evenly distributed. This

is motivated by the fact that homogeneous robots have the

same limited battery life, and thus, to cover a big region, it

is better to utilize all of them for the coverage task.

In practice, this means that an efficient algorithm finds

k non-overlapping regions Ei ⊂ E such that E =
⋃k

1(Ei),
where each robot i can perform a calculated covering trajec-

tories πi. Note that πi includes the whole path robot has to

follow: a robot starts from an initial starting point vs, goes to

a point of entry to a partition of the interest region Ei, covers

fully Ei, and goes back to vs. We call the coverage cost—i.e.,

the traveled distance—of a single robot covering Ei as c(Ei).
As such, we can define the optimization problem of Dubins

multi-robot coverage as a MinMax problem: minimizing the

maximum cost maxk1(c(Ei)) over all robots.

IV. PROPOSED METHODS

In this section we introduce the terminology used in the

subsequent sections. Next, we present the two k-coverage

algorithms. The first algorithm builds an optimal tour and

splits it between multiple robots and is called Dubins Cov-

erage with Route Clustering (DCRC). The second algorithm

first divides the area between robots and then starts route

planning, which we refer to as Dubins Coverage with Area

Clustering (DCAC).

A. Terminology

A cell is defined as a continuous region containing only

the area of interest that one of the robots must cover entirely.

The cells are the result of a BCD decomposition [11]. The

Dubins coverage algorithm by Lewis et al. [8]—referred to

as Dubins coverage solver (DCS)—is a process by which a

coverage problem is mapped to a graph for which a solution

to the TSP results in a single coverage path.

The DCS algorithm divides cells into a collection of

passes, defined as the smallest unit of coverage; each of

which is axis-aligned and has a width equal to the robot’s

sensor footprint. Each pass becomes the node of a directed,

weighted Dubins graph Gd = (Ed, Vd). The edges of Gd are

defined as the Dubins path from a source node to a target

node. The weight of an edge w(u, v) is then the length of the

segments and arcs of the Dubins path between two passes

u and v. The output of the DCS algorithm is an optimal

Hamiltonian path R = {v1, v2, ..., vn}, where vi ∈ Vd and

n is the number of passes, that is |Vd|.

B. Dubins Coverage with Route Clustering (DCRC)

Our first approach for multi-robot Dubins coverage is

based on DCS and Coverage with Route Clustering (CRC)

method [8].

The CRC algorithm creates cells applying the BCD algo-

rithm on a binary image of the area with obstacles [9]. Then,

boustrophedon cells are turned into edges of a weighted

graph—called Reeb Graph—on which k-Chinese Postmen

Problem (k-CPP) is solved. The result is a k-partitions of an

optimal route.

To address Dubins constraint in this paper we are inter-

ested in solving the k-TSP problem instead of k-CPP. The

pseudocode for DCRC is presented in Algorithm 1. Line

1 gets an optimal Hamiltonian path R = {v1, v2, ..., vn},

where the vertices are passes, by using the DCS algorithm

to solve the single-robot Dubins Coverage problem with the

DCS algorithm. Its cost c(R) is given by the initial traveled

distance to get to the region of interest c(vs, v1), the sum

of the costs w(vj , vj+1) to cover passes vj ,vj+1, and the

cost c(vn, vs)to go back to the starting point vs (Line 3).

Note that the travel cost c(v, u) is defined as Euclidean

distance between midpoint coordinates of corresponding u
and v passes. The resulting optimal path R is split into k
subtours {R1, R2, ..., Rk} (Lines 4-7). For a given starting

point vs, the cost of any tour Ri = {vi1 , vi2 , ..., vim} is

defined as the cost of traveling from the starting point to

reach a designated coverage cell, the actual cost of covering

that cell and the cost of traveling back to the starting point

(Line 8, where m is the index of the last pass/vertex in the

path). Cost cmax is calculated to balance travel and coverage

costs between robots (Line 3). Such a clustering procedure

was proposed in the k-TSP solver by Frederickson et al. [31].

Algorithm 1 DCRC

Input: number of robots k, binary map of area M ,

turning radius r, sensor footprint s
Output: k tours, 1 for each robot

1: R ← DCS(M, s, r)
2: initialize for each i in k empty tours Ri

3: c(R) = c(vs, vj) +
∑n−1

j=1 w(vj , vj+1) + c(vn, vs)
4: cmax = max

1≤i≤n
{c(v1, vi) + w(vi, vi+1) + c(vi+1, v1)}

5: for each i ∈ 1, ..., k do

6: while c(Ri) <= (c(R)− 2cmax) ∗ i/k + cmax do

7: include next vertex v along R into Ri

8: c(Ri) = c(vs, vi1) +
∑m−1

j=1 w(vij , vij+1
) +

c(vim , vs)
9: end while

10: end for

The complexity of this algorithm is exponential as DCS

uses an exact TSP solver. The FHK algorithm is proved to

have an approximation factor of 5
2 − 1

k
[31].
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C. Dubins Coverage with Area Clustering (DCAC)

The DCAC algorithm, similar to the CAC algorithm [9],

performs clustering of the region of interest E and then finds

the optimal route for each robot. An overview of the DCAC

algorithm is presented in Algorithm 2.

In particular, the BCD algorithm is applied to decompose

the environment into cells, consisting entirely of areas which

should be covered (Line 1). Then, each cell is divided into

passes (Line 2). A corresponding graph is created from these

passes (Line 3). The graph is an undirected weighted graph

G = (V,E), where each vertex is located at the center of

a pass; vertices (vi, vj) in this graph are connected with

an edge e if and only if their corresponding passes share

a common edge. The cost c(e) of each edge e = (vi, vj)
is defined as the Euclidean distance between midpoints of

passes. The vertices of graph G are clustered performing

a breadth-first search (BFS) clustering (Line 4). The size

of a cluster C = {v1, v2, ..., vm} is defined as c(C) =∑
{e|e=(vi,vi+1),1<i≤m} c(e). DCS is then applied on each

resulting cluster of passes (Lines 5-7).

The clustering step in the CAC algorithm [9] ensures that

the cost of reaching the region of interest and the actual

coverage cost per region are balanced, by assigning more

passes to cover to robots that are closer to the region of

interest; while the robots that have to travel more to reach

the coverage area will have less passes to cover.

Algorithm 2 DCAC

Input: number of robots k, binary map of area M ,

turning radius r, sensor footprint s
Output: k tours for each robot

1: cells ← BCD(M)
2: passes ← GenPasses(cell, s)
3: G ← buildGraph(passes, r)
4: C set ← BFSClustering(G, k) � clusters of passes

5: for each Ci ∈ C set do

6: tour ← DCS(Ci, r, s)
7: end for

As the complexity of TSP is exponential, by partitioning

problem into k small TSP subproblems, the overall TSP

performance is improved. Nevertheless, the complexity will

still remain exponential.

V. EXPERIMENTS

The proposed method has been first evaluated with simu-

lation tests for large environments within a custom simulator

that accounts for Dubins constraints, to test the optimality of

such an approach and its scalability.

Second, we modified a fleet of jet-drive Mokai ES-Kape

sport kayaks, shown in Figure 2, to be autonomous surface

vehicles, and used them for validating the proposed approach

with real robots. The goal includes checking if the assump-

tions made hold in the real world. The ASVs are equipped

with a SONAR transducer collecting depth measurements

with a frequency of 1Hz, a PixHawk controller for waypoint

navigation and safety behaviors, and a Raspberry Pi with

the Robot Operating System (ROS) framework [32], [33] to

record GPS and depth data.

Fig. 2. Experimental ASV Setup.

A. Simulated Results

The simulation was performed for three large input en-

vironments maps taken from Lake Murray [8] and rural

Quebec area [34]. The maps differ in terms of size and

shape complexity. We have evaluated both DCRC and DCAC

algorithms with a different number of robots, that is k ∈
{1, 2, 5, 10} robots. The baseline for comparing the costs

of each tour is the cost of optimal route produced by TSP

algorithm. As the problem is defined as MinMax problem, we

consider the value of the maximum cost per robot along with

the ideal cost as metric. The ideal cost is defined by dividing

the single optimal route cost to the number of robots. Another

metric considered in this paper is the robots’ utilization,

that is the ratio between the number of robots used and the

total number of robots available. However, in the following,

results with the robots’ utilization are not reported: in all

the experiments, the robots’ utilization is 100%, differently

from the results obtained in [9]. The way we designed our

algorithms, namely with the additional decomposition of

the boustrophedon cells in passes results in a more even

distribution of cells to the robots.

Figure 3 shows the paths followed by 5 robots on the

three environments considered, using both algorithms. Qual-

itatively, it can be observed that DCAC produces paths

where robots mostly transition to adjacent passes, while with

DCRC, robots go to one pass to another that are typically

not adjacent. This fact makes the robots following the paths

generated by DCAC going out from the region of interest

because of the minimum turning radius—compare for exam-

ple Figure 3 (a) and (b). Those tighter turns contribute to an

increase in the overall cost.

Indeed, as illustrated in Figure 4—which shows the ratio

between maximum coverage cost and ideal cost—DCRC

has better performance. For example, in the Rural Quebec

environment with 5 robots, DCRC has maximum coverage

cost ratio of 0.2, while for DCAC is 0.3.
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(a) (b) (c)

(d) (e) (f)

Fig. 3. A simulation instance of DCRC (first row) and DCAC (second row) algorithms with 5 robots performing coverage over the area of interest
indicated in gray, where the first column shows a small segment in the Lake Murray (200m × 200m); second column, Rural Quebec (13 km × 10 km);
third column, the complete Lake Murray (25 km × 25 km).

B. Field trials

Given the better performance of DCRC, we validated the

approach using DCRC with the ASVs, in a 200m × 200m

area in Lake Murray, SC. The sensor footprint used had 4.5m

and the turning radius of the ASV is 5m. A path, in the

form of a waypoint sequence, was generated with the ASVs

starting just outside the area of interest. A description of the

experiments performed and the results obtained follows.

The main objective of the field trials was to ensure that

the assumptions hold also with real robots, so that the ASVs

are able to follow the trajectories generated by the proposed

algorithms.

1) Single Robot Coverage baseline: Similar to the sim-

ulation experiments, the single robot coverage for Dubins

Vehicles algorithm [8] is used here as a baseline for com-

parison with the multi-robot approach.

Figure 5(a) and Figure 5(d) present the ideal path and the

path followed by the ASV, respectively, as recorded GPS

points overlaid on Google Maps. The depth measurements

were combined using a Gaussian Process (GP) mapping

technique [35] to reconstruct the floor map of that part of

the lake—see Figure 5(g).

2) Multi-Robot Coverage Experiments: A variety of ex-

periments were performed using teams of two or three robots

in different areas of Lake Murray.

Figures 5(b) and 5(c) shows the ideal path for two and

three ASVs as generated by DCRC; while Figures 5(e) and

5(f) shows the actual path followed by two and three robots,

respectively. As can be seen qualitatively in Figures 5(b) and

5(c), the path followed by the ASVs are pretty much in line

with the ideal path. The small deviations are due to GPS

error, current, wind, and waves from other vessels. As such,

the proposed methods can be applied for coverage with ASVs

with Dubins constraints.

Note the ill-structured path of one of the robots (robot

following the blue trajectory in Figure 5(f)), is a result of

a hardware failure and a hysteresis of its on-board PID

controller. This illustrates the real world challenges with field

trials: even if the boats are supposed to be identical, they

are not, and they should undergo each of them an initial

tuning phase of the different operational parameters. Such an

issue opens interesting research directions on robust multi-

robot coverage, including recovery mechanisms to adapt the

algorithms to the new minimum turn radius and accounting

for heterogeneity.

The resulting multi-robot coverage is also comparable to

the single-robot coverage trajectory, where only small areas

were left uncovered. Indeed, the bathymetric maps resulting

from the single and multi-robot coverage are similar.

The maximum traveled distances per experiment with

different number of robots are presented in Table I along with

the ideal traveled distance. As in the case of the simulation,

the ideal path length is the size of the sub area if the tasks

were exactly divided to equal parts.

VI. CONCLUSIONS

This paper presented a novel approach for multi-robot

coverage utilizing multiple ASVs governed by Dubins vehi-

cle kinematics. Both presented algorithms are extending our
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TABLE I

THE MAXIMUM DISTANCE TRAVELED PER ROBOT AND THE COST OF

PERFECT DIVISION FOR MULTI-ROBOT COVERAGE EXPERIMENTS WITH

THE DEPLOYED ASVS.

Number of Robots 1 2 3

Max Distance 6863m 2905m 3356m

Ideal Distance 6863m 3431.5m 2287.7m

previous work on efficient multi-robot coverage with Dubins

coverage algorithm.

The further clustering of the area ensures 100% utilization

of the robots. We show the validity and scalability of both

approaches in simulation. The experiments show that both

algorithms result in almost optimal solutions. Nevertheless,

the DCRC algorithm demonstrated slight advantage over the

DCAC algorithm in terms of coverage cost. As a result, our

algorithm of choice was DCRC for performing field trials.

The field trials were performed on Lake Murray, SC, USA.

During the multi-robot coverage in a few instances, two

vehicles came too close to each other. We are currently

investigating an automated arbitration mechanism following

the rules of the sea [36] to avoid collisions. Furthermore,

a camera system is being developed to provide situational

awareness of the surroundings during operations. In general,

the multi-robot coverage problem has several directions of

interest, in particular taking into account the robustness of

the proposed methods in real world.
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(a) (b) (c)

Fig. 4. The comparison of actual maximum coverage cost and the ideal cost for three different environments for (a) k = 2 (b) k = 5 and (c) k = 10

robots.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 5. Multi-robot experiments at Lake Murray, SC, USA. (b) Ideal path produced for two robots. (c) Ideal path produced for three robots. (e) GPS
track of the actual coverage path for two robots. (f) GPS track of the actual coverage path for three robots. (h) Depth map produced using a GP-based
mapping using data from two robots. (i) Depth map produced using a GP-based mapping using data from three robots.
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