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Abstract—This paper analyzes the open challenges of exploring
and mapping in the underwater realm with the goal of identifying
research opportunities that will enable an Autonomous Under-
water Vehicle (AUV) to robustly explore different environments.
A taxonomy of environments based on their 3D structure is
presented together with an analysis on how that influences the
camera placement. The difference between exploration and cover-
age is presented and how they dictate different motion strategies.
Loop closure, while critical for the accuracy of the resulting map,
proves to be particularly challenging due to the limited field of
view and the sensitivity to viewing direction. Experimental results
of enforcing loop closures in underwater caves demonstrate a
novel navigation strategy. Dense 3D mapping, both online and
offline, as well as other sensor configurations are discussed
following the presented taxonomy. Experimental results from field
trials illustrate the above analysis.

I. INTRODUCTION

Exploring the underwater realm is a challenging but fas-
cinating task. Mapping the Titanic shipwreck [1]], exploring
the deepest Cenotes [2] and largest underwater caves [J3]],
monitoring the world’s coral reefs [4] all present unique
challenges but push the limits of human knowledge. Marine
archaeology, environmental monitoring, infrastructure main-
tenance, search and rescue are some of the domains where
underwater mapping plays a crucial role. Automating mapping
with Autonomous Underwater Vehicles (AUVs) will remove
humans from hazardous situations, improve the repeatability,
and enable longer operations times.

Operations underwater present many challenges. Localiza-
tion is difficult due to the lack of GPS and multi-path effects
for acoustic positioning. Vision based sensing is affected
by light and color attenuation [5]], [|6], blurriness, floating
particulates, varying illumination, and lack of features [7].
Furthermore, caustic patterns in shallow waters, and total lack
of ambient light inside caves and wrecks produce moving
features independent of the camera’s motion. AUVs moving
cannot instantaneously halt their motion due to inertia, while
water movement affects the vehicles in unpredictable ways.
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Fig. 1. Aqua2 AUV collecting data over the coral reef, Barbados.

Trajectory planning needs to take into account the uncertainty
in motion in order to maintain adequate safety margins.

In addition, every target environment underwater requires
different motion strategies depending on the desired outcome.
The complexity of the three dimensional structure provides a
guideline to analyze different mapping strategies. Coral reefs
and archaeological sites present a mostly flat profile, where the
AUV traverses over. Wrecks, and infrastructure present a 3D
structure, where the AUV has to change depths and navigate
around. Finally, overhead environments, such as caves and the
interiors of wrecks, require mapping all around the AUV.

The main contribution of this paper is in identifying open
challenges and potential approaches that can be pursued to
achieve fully autonomous exploration of underwater envi-
ronments. After an overview of related work on AUV state
estimation and navigation, we present a classification of un-
derwater environments that affect the choices on methods for
state estimation and navigation. Based on the classification,
we then discuss different exploration strategies, environment
representations, and sensor configurations. We conclude the
paper highlighting future research directions.

II. RELATED WORK

A review of general approaches for AUV localization and
navigation and the commonly used sensors is presented in [8]],
[9]. Sonar (e.g., multibeam sonar, scanning profiling sonar,
and imaging sonar [[10]) and/or cameras are used to bound
the odometry drift from dead-reckoning systems, i.e., IMU
or Doppler Velocity Log (DVL). Acoustic sensors such as
Ultra-Short Baseline (USBL) and DVL are most commonly
used for navigation. However, acoustic sensors are costly and
they only return range to obstacles, missing important semantic
information present only in visual data.

State estimation underwater is extremely challenging — see
[12f], [13]] where several popular Visual Odometry (VO) and
Visual/Inertial Odometry (VIO) packages are compared. Rah-
man et al. [[14] fused visual, inertial, acoustic, and water depth
data to accurately estimate the pose of the sensing system in
a variety of environments. A multi-state constrained Kalman
filter (MSCKEF) [15]] implementation for an AUV system with a
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Fig. 2. Three different kinds of environments: (a) Mostly flat; a sunken Bronze era village, Greece. (b) Three dimensional structure; Pamir shipwreck,
Barbados. (c) Overhead environment; Devil cave system, FL, USA. (d) Reconstruction utilizing global bundle adjustment [TT]] of the stereo data collected
over a patch of the submerged village (a); (e) Partial reconstruction of the Pamir shipwreck (b). In both (d,e) the camera poses are depicted in red.

downward looking camera was presented in [16]. Accurate re-
constructions of an underwater dataset via a bundle adjustment
approach was presented in [17]. Recently, Eisele et al. [18]
demonstrated the use of a plenoptic camera based navigation
system on AUV; using Dual Extended Kalman Filter (DEKF)
to fuse camera and IMU measurements. Multiple submaps are
combined with a global stochastic map after each loop closure
for large scale underwater SLAM in [19]. Kim et al. [20]
presented a real-time monocular visual SLAM algorithm for
underwater ship hull inspection using image saliency for the
keyframe selection, gain-based link hypothesis, and novelty
detection. Vargas et al. proposed robust visual SLAM
in underwater leveraging acoustic, inertial, depth sensors and
acoustic odometry estimates as motion priors.

Similarly, underwater navigation is very difficult, due to
state estimation challenges discussed previously, impact of
water currents or inaccurate hydrodynamics assumed by the
controls, and the high-dimensionality of the motion planning
problem. At the same time, the limited range sensor capabil-
ities in the underwater terrain and the presence of dynamic
obstacles that are observed only in close proximity require
the AUVs to quickly decide to guarantee safe operation. Past
research has focused mostly on search-based and sampling-
based approaches [22]], [23], due to their popularity, analysis,
intuitive understanding, and guarantees on finding a solution.
Unfortunately, they are either bounded to 2D, do not deal
effectively with motion uncertainty, or assume very simple
environments due to being very computationally expensive.
Deep-learning navigation techniques [24] are logistically very
demanding to develop, and are limited only to similar envi-
ronments. Additional underwater path planning techniques are
presented in [25]. Previous work addressed such short-
comings by providing a computationally-light optimization-
based framework that deals effectively with motion uncer-
tainty, enabling 3D navigation through challenging underwater
environments, without imposing any constraints on the motion
range of the robot. Extensions have been presented

towards developing navigation behaviors that maximize vis-
ibility of target areas, in support of state estimation.
III. ENVIRONMENT CLASSIFICATION AND CAMERA
CONFIGURATION

Underwater environments can be classified in three broad
categories, each requiring different motion strategies and
changes in camera configuration to maximize the perception of
the surroundings. The most commonly explored environment
is characterized by mostly flat terrain. Such environments
include coral reefs, archaeological sites, sea-grass beds, etc.
Figure[T]and Figure 5| display the Aqua2 AUV swimming
over a coral reef, while Figure Eka) shows a view of a Bronze
era submerged village at “Bay of Koilada”, at Lampayannas,
Greece. The standard motion strategy is a lawnmower pattern
over the area, at a height that results in acceptable resolution
while maximizing the area covered by the camera footprint;
see Figure [2d) for the sparse reconstruction of Figure 2{(a),
with the camera poses marked in red.

Underwater 3D structures such as shipwrecks, oil-rigs, or
underwater pinnacles and rocky formations, present a number
of challenges. The target structure sits on the seafloor and
extends upwards. Thus, the vehicle has to move around and
over the structure, utilizing different motion strategies — see
for a deep learning approach for moving around a
shipwreck. Figure 2{b) presents part of the deck and the
insides of the Pamir shipwreck, Barbados, while Figure Ekb)
shows an Aqua2 AUV navigating around the superstructure of
the same wreck. Visible in both figures is a collapsed crane
extending downwards. While such structures often present
partial overhead structures, there is always a path that takes
the AUV above the overhead — see Figure fe) for a partial
sparse reconstruction of Pamir, where the camera, depicted in
red, moved under and over the top deck.

The most complex underwater environments are charac-
terized by complete overheads such as the inside of ship-
wrecks and underwater caves. The environment presents the
challenges of the previous two types, a floor that needs to



Fig. 3. The structure inside an underwater cave, Mexico, and sparse
reconstruction.

Fig. 4. Sparse reconstruction from inside a cave in Mexico.

be mapped, together with 3D structures, and in addition
there is a ceiling and surrounding walls — see Figure [3]
where there are interesting features all around. In contrast,
Figure [2fc) presents an underwater cave in Florida which is
much less decorated. In addition, due to the overhead there is
no ambient light and the scene is illuminated only by the light-
sources carried by the AUV. The moving light-sources result
in constantly moving shadows that can be used for producing
a denser scene reconstruction [30]. Navigating around such an
environment is extremely challenging and complete coverage
is near impossible to achieve. Figure [ presents a partial sparse
reconstruction of an underwater cave, Mexico; the camera
trajectory, in red, moves among the structures.

Different camera configurations provide advantages given
the target environment and the motion planning strategies em-
ployed. In the most popular case of a fly-over, the downward
facing camera maximizes the visibility of the terrain — see
Figure [6{a). When the camera sees the scene from an angle,
as in Figure [f[b,c), the objects” opposite side is not visible;
however, when only a downward facing camera is used, the
AUV has no perception in the direction of motion. In such
a case a forward facing camera tilted partially downwards
ensures the AUV has situational awareness of where it is
going, while at the same time avoiding looking out into open
water — see Figure [§(b) for the current configuration of the
Aqua2 AUV utilized by the authors. Please note that due to
light absorption by water and limited visibility by particulates,
the range of the cameras is limited, thus, the parts of the image
that cover distant objects are of limited use. Finally, when
the target environment is defined by an overhead, the forward
looking cameras should be vertically centered to observe the
ceiling together with the floor — see Figure[6|c) for the standard
camera configuration of the Aqua AUV. Please note, utilizing
multiple cameras provides a generalized field of view at the
cost of large data volumes, which affect the bandwidth of the
embedded system’s data bus and introduces synchronization
challenges and processing bottlenecks.

IV. EXPLORATION, COVERAGE, AND MAPPING

Mapping is the process of fusing measurements over time
producing a consistent representation of the environment.
Traditionally, mapping uses the data collected over an arbitrary
trajectory without concern about completeness of representa-
tion. The areas of active perception and SLAM [31]-[33]) are
considering the areas which are left uncovered. However, there
is no guarantee for completeness. The guiding principle behind
reaching unknown areas is frontier based exploration [34],
where the robot finds the areas bordering the unknown and
collects new data. More generally, the AUV has to consider
which parts of the environment are not sensed yet and then se-
lect where is the best place to take the next measurement [35]].

Non-systematic exploration can be achieved by learned
[24], [29]] or curiosity-driven [36], behaviors. In such
cases, the robot looks for new areas to map without ensuring
completeness of coverage or pursuing loop closures.

A related concept is coverage, defined as finding a path
that would take the sensor’s footprint over all free space. The
main premise of most coverage algorithms is completeness,
that is, there is no available area that is not scanned. While
coverage always considers a bounded space (area or volume),
exploration does not necessarily have that constraint. Another
main difference between coverage and exploration is based on
the sensor’s range. Historical exploration approaches assume
that the sensor’s field of view is bounded by the obstacles
of the environment, while coverage assumes a limited sensor
footprint. Most of the coverage approaches underwater focus
on flat environments [38]], utilizing a lawnmower pattern, also
known as boustrophedon, grid, or seed-spreader — please refer
to [39], [40] for a review of traditional coverage algorithms.
If there are depth changes, online replanning can modify
the altitude of the AUV over the terrain [41]. Englot and
Hover proposed a 3D coverage algorithm for the inspec-
tion of underwater structures. Kim and Eustice utilized
the visual features for hull inspections.

Coverage inside an overhead environment is particularly
challenging due to the typical structural complexity of such en-
vironments. Most human-visited environments, such as caves
and wrecks, are marked with a guide-line traversing the main
passages — in Figure [3] the yellow guideline can be seen in
the left/middle part of the image. Traversing and mapping
the environment following such guide-lines, still remains fu-
ture work, as most current approaches are teleoperated [43].
Another subject that has yet to be investigated in depth is
the relation between fundamental exploration strategies, the
platforms considered, and the target domain. Often research
focuses only on two of the above, which limits the options
for the third factor: a choice of an exploration strategy and
available platforms determines the environment of application;
available platforms and the target domain determine the explo-
ration strategy to be developed; and a choice of an exploration
strategy and a target environment determines the robot to be
considered. Rarely, though, all these factors are considered
holistically at the planning stage due to logistics and finite
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Fig. 5. AUV deployed in different environments: (a) performing a lawn-mowing pattern over a coral reef; (b) exploring over the Pamir wreck; (c) collecting

data inside the Ballroom cavern; Ginnie Springs, FL.
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Fig. 6. The FOV resulting from different camera placement: (a) downward facing camera, utilized in "fly”’-overs of flat terrains, (b) forward camera tilted
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downwards, utilized for mapping 3D structures, and (c) forward facing camera for mapping overhead environments.

material, human, and time resources.

For example, when exploring a cave area prone to silting,
is it better to deploy an agile robot such as Aqua2 that
constantly moves and requires a minimal propulsion system
but is unable to hover stably, or a more stable platform such
as BlueROV2 that can maintain position but requires constant
thruster operation, potentially disturbing the surroundings?
Would an exploration strategy for producing a map of desired
quality be possible with an agile robot or is it necessary to
move slow and maintain accurate robot positioning? Similarly,
in a shipwreck environment with currents, is it better to use
a constantly moving agile robot that handles currents more
effectively but at the potential expense of map quality, or
use a hover-able robot to achieve more complete exploration
at the increased collision risk and lowered battery life due
to raised energy consumption? It is expected that a meta-
analysis of future research will address such trade-offs and
form a holistic consensus towards best practices, necessary
platform capabilities, and exploration and mapping strategies
for operation in different underwater settings.

V. Looprp CLOSURE

Central to maintaining accurate positioning and producing
accurate representations of the environment is loop-closure.
All online incremental state estimation algorithms suffer from
drift, where errors slowly accumulate and estimated trajectory
deviates over time. Loop-closures occur when the vehicle
visits the same location and perceives similar data. Vision
based approaches utilize the bag-of-words [44] approach. For
practical applications, descriptor matching suffer from view
point and illumination changes. When the camera perceives
the environment at an angle, see Figure [f[c), objects are seen
from a specific direction each time. During a traversal inside
the Devil’s system, FL — see Figure 2fc) — even though the
camera followed approximately the same trajectory, as seen
in Figure [/[(a), the return part of the trajectory drifted over
time. This observation inspired a new idea on motion planning:
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Fig. 7. Trajectory estimation inside the Devil cave system, FL. Both
trajectories followed the same tunnel. (a) Accumulated drift overtime had
the return path diverging. (b) Shorter trajectory, with loop closure resulted in
non-diverging path.

when the cave passage is wide enough, a loop is performed
resulting in the environment being sensed from the same
orientation during the return trajectory. Figure [7/(b) presents
a trajectory from the same cave, where the loop-closure
was achieved, as can be seen the return trajectory matches
the inbound one. Please note, utilizing absolute orientation
sensors, such as a magnetometer, will eliminate the orientation
drift resulting in more accurate trajectories.

VI. DENSE 3D RECONSTRUCTION

In this section, we discuss dense 3D reconstruction of the
visible surfaces given images and the corresponding camera
poses. We distinguish between online and offline dense re-
construction algorithms and representations. We also discuss
the suitability of the representations for each type of environ-
ment. Online dense 3D reconstruction is crucial for obstacle
avoidance, navigation and planning. It requires efficient and
incremental computation. Offline reconstruction, on the other
hand, enables visualization, inspection and 3D shape analysis.
It can generate accurate, detailed, photorealistic models with
a high degree of completeness.

At the core of most 3D reconstruction approaches is a
module that estimates a depth map for a reference image.
In some cases, especially when high throughput is required,



the depth maps themselves serve as the output representation,
while in other cases 3D points or meshes are generated from
the depth maps. The minimal number of images for computing
a depth map is two; they can be acquired either by two
synchronized cameras with a known relative transformation
between them, or by a single camera as it moves through the
scene. Depth for the pixels of the reference image is estimated
by establishing pixel correspondences between the images and
triangulating the rays. We refer readers to surveys of the large
variety of conventional and learning-based methods
due to lack of space.

For 3D mapping using long image sequences as input, it is
beneficial to use more than the minimum number of images
to improve robustness. Depth map estimation techniques can
be extended to the multi-baseline setting by considering more
images in the computation of matching costs or scores for
potential depths of the pixels of the reference image. The most
popular paradigms for this computation are plane-sweeping
and PatchMatch stereo, followed by depth map
fusion , . Conventional methods that represent the
scene as a collection of depth maps have been effective in
a broad range of settings [48], [51]l, [52], while alternatives
based on deep learning surpass them given training data from
the target domain [53]]-[59]], but are slower.

The inherent disadvantage of depth maps is that they are
2.5-D and thus restricted to the viewpoint of the reference
image. They can be useful for collision avoidance, but they
are not suitable for other tasks. Therefore, world-based 3D
representations are needed. The simplest among them is a
point cloud obtained by generating a point for each pixel with
estimated depth. Point clouds, however, are not effective for
visualization, collision avoidance or motion planning, because
they do not capture connectivity information.

Occupancy grids, or volumetric representations in general,
are well suited for motion planning because they delineate free,
occupied and unknown space, but suffer from low resolution
due to space complexity. Despite their large memory require-
ments, occupancy grids are suitable for online operations
because they allow incremental updates [60], [61]. Methods
such as voxel planes and VoxBlox also maintain
approximate surface patches per voxel. Learning-based vol-
umetric representations , do not allow incremental
updates but benefit from learned priors.

Alternatively, triangles, partially or fully connected to form
meshes, can be used as primitives in the representation.
Meshes are irregular, which makes accessing them more
complex than voxels, but provide visualization, inspection and
motion planning capabilities. The footprint of mesh-based 3D
models is much smaller than voxel-based ones of similar
resolution. Meshes without guarantees of watertightness can
be generated from depth maps or by generating surface
patch hypotheses in 3D directly [[67]. Globally consistent and
watertight meshes can be retrieved by solving a volumetric
problem, typically approximating the signed distance function
from the nearest surface at each voxel. Then manifold surfaces
can be extracted via Marching Cubes , or using the Poisson

Surface Reconstruction algorithm [69]. Implicit representa-
tions that aim to compute a function whose zero-level set
is the surface have been employed by conventional systems
[70], yielding high-quality models in real time, but are
limited to small volumes. Slower, learning-based methods have
also been presented [[72]-[74]. (We consider NeRF out of
scope since it does not generate explicit 3D structure.)

In our context, the strengths and weaknesses of each rep-
resentation per environment type are as follows. Flat environ-
ments are essentially 2.5-D and thus amenable to be repre-
sented by Digital Elevation Models (DEMSs) or heightmaps,
which exploit the fact that there is a dominant horizontal
surface without holes that separates the occupied space below
it from the free space where the robot moves. This assumption
lends itself to fast algorithms that can generate watertight
meshes from depth map collections [76]], [77]]. This concept
has been extended to scenes with overhangs, such as canopies
or balconies, via the introduction of n-Layer Heightmaps
that can model an a priori unknown number of overlapping
layers at several frames per second.

On the other hand, heightmaps are inadequate for modeling
the other types of environments which are not 2.5-D. While
occupancy grids and octrees can be updated in real-time, their
visualization capabilities are limited. Point clouds can also be
generated at high rates but fail as a form of visualization.
We would argue for surface approximations such as voxel
planes or VoxBlox for online operation and for
slower algorithms that can generate high-quality watertight
meshes for offline applications. Observing an object from
a large number of viewpoints oriented towards the object
itself, covering most of its surface, is ideal for generating the
necessary inputs for Marching Cubes or Poisson Surface
Reconstruction [69].

The choice is more challenging when the camera moves in
the interior of a cave or a shipwreck. Viewpoints in this case
point outward and provide limited coverage on the surfaces,
which is suboptimal when the surface extraction algorithm
[68]l, [69] must generate a watertight surface. This leads to
hallucinated, invisible completions of the visible surfaces.
These completions can be removed with various heuristics,
but artifacts often remain. Alternatively, methods that generate
partial meshes [66], can be deployed, if holes are prefer-
able to unsupported connections. An example of a partial 3D
reconstruction from a wreck with the robot moving among the
various surfaces can be seen in Fig. [§]
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Fig. 8. An input image and a segment of a reconstructed point cloud from

the Stavronkita wreck, Barbados.



VII. VISION WITH ACOUSTIC SENSOR CONFIGURATION

Camera sensors capture rich information (i.e., color, tex-
ture) about the scene which can be integral in navigation
and reconstruction. However, the underwater image formation
model, more complex than the in-air counterpart, introduces
blue/green color monotony, haze, and further challenges that
will affect the quality of state estimation and reconstruction.

Range sensors can be used to complement imaging sensors.
Here, we discuss different sensor configurations, including
their challenges, trade-offs, and where they are best utilized in
the three underwater environments. Differently from out-of-the
water, LiDAR solutions underwater are extremely expensive,
in the order of US$100,000+, and require a bulky configuration
with a laser scanner and a camera [79]. Thus, the main
underwater sensors used for navigation and reconstruction
are acoustic-based. They consist of single-beam echosounders,
mechanical scanning sonars, multi-beam sonars, and sidescan
sonars. Unlike cameras, sonars measure azimuth and range,
but not elevation. Commercially-available sensors return an
image where the intensity of each pixel represents the return
strength of the signal. Acoustic sensors, though cheaper than
underwater LiDAR, are generally expensive as well, in the
order of US$10,000+, and are quite power demanding. There
is thus a trade-off between constraints on cost and power and
specifications on accuracy for accomplishing exploration tasks.

For flat terrains or straight navigation, side-scan sonars
are powerful in covering large areas and providing informa-
tion to build bathymetric maps. For navigating the insides
of overhead environments, multi-beam sonars or mechanical
scanning sonars facing forward can provide the robot a view
of the obstacles. Note, having a mechanical scanning sonar
collect measurements parallel to the image plane can also
be beneficial to capture the structure, as shown in [14]. For
navigating around an object, a combination of sonars pointing
forwards and downwards can help an AUV maintain a safe
distance as well as map the object when hovering above it.

Working with sonar data is also not trivial; measurements
can be noisy due to multi-path effects, type of objects, etc.
However, there have been a few works that have effectively
used such sensors. Most of the literature focused only on
acoustic sensors for real-time feature tracking, exploiting the
imaging data returned by those sensors (e.g., [43], [80], [81]]).
Recently, a few works appeared fusing both acoustic and
visual images to exploit the absolute scale measurements
from the acoustic sensors and correct inaccuracies from the
cameras [14]], [82]. The challenge in fusing both acoustic
and visual data is in the difference in sparseness and noise
present in the data, requiring more research to effectively use
them together for underwater exploration tasks. In addition,
as the azimuth measurement is missing in sonar data, to
properly match multi-beam or sidescan sonar’s measurements
and features (i.e., shadows, peaks) to camera image features,
one requires knowledge of how the AUV is transitioning
(velocity and trajectory changes). Fusing correctly both sensor
streams will be beneficial for augmenting the AUV robustness.

VIII. CONCLUSIONS

This paper presented the problem of underwater explo-
ration and mapping of different types of environments by
an AUV and highlighted the main subproblems — i.e., ex-
ploration/coverage strategies, environment representation, and
acoustic-visual sensor fusion — potential solutions, and open
challenges to enable a fully-autonomous system.

We posit that the general principle for future work is having
algorithmic and system design and development that consid-
ers state estimation, representation, and planning holistically
rather than separately (as typically done in current work), for
AUVs to be capable of exploring underwater environments.

REFERENCES

[1] R. M. Eustice, H. Singh, J. J. Leonard, and M. R. Walter, “Visually
mapping the RMS Titanic: Conservative covariance estimates for SLAM
information filters,” IJRR, vol. 25, no. 12, pp. 1223-1242, 2006.

[2] M. Gary, N. Fairfield, W. C. Stone, D. Wettergreen, G. Kantor, and
J. M. Sharp, Jr, “3d mapping and characterization of sistema zacatén
from depthx (DEep Phreatic THermal eXplorer),” in Sinkholes and the
Engineering and Environmental Impacts of Karst. ~American Society
of Civil Engineers, 2008, pp. 202-212.

[3] D. N. Kernagis, C. McKinlay, and T. R. Kincaid, “Dive logistics of the
turner to wakulla cave traverse.” 2008.

[4] S. Williams and 1. Mahon, “Simultaneous localisation and mapping on
the great barrier reef,” in /CRA, 2004, pp. 1771-1776 Vol.2.

[5]1 S. Skaff, J. Clark, and I. Rekleitis, “Estimating surface reflectance
spectra for underwater color vision,” in BMVC, 2008, pp. 1015-1024.

[6] M. Roznere and A. Quattrini Li, “Real-time model-based image color
correction for underwater robots,” in ZROS, 2019, pp. 7191-7196.

[71 F. Shkurti, I. Rekleitis, and G. Dudek, “Feature tracking evaluation for
pose estimation in underwater environments,” in CRV, 2011.

[8] L. Paull, S. Saeedi, M. Seto, and H. Li, “AUV navigation and localiza-
tion: A review,” [EEE J. Ocean. Eng., pp. 131-149, 2013.

[9] F. Maurelli, S. Krupiriski, X. Xiang, and Y. Petillot, “AUV localisation:
a review of passive and active techniques,” Int. Journal of Intelligent
Robotics and Applications, pp. 1-24, 2021.

[10] D. Ribas, P. Ridao, J. D. Tardés, and J. Neira, “Underwater SLAM in
man-made structured environments,” JFR, vol. 25, no. 11-12, 2008.

[11] J. L. Schonberger and J.-M. Frahm, “Structure-from-motion revisited,”
in CVPR, 2016.

[12] B. Joshi et al, “Experimental Comparison of Open Source Visual-
Inertial-Based State Estimation Algorithms in the Underwater Domain,”
in IROS, 2019, pp. 7221-7227.

[13] A. Quattrini Li et al., “Experimental comparison of open source vision
based state estimation algorithms,” in ISER, 2016.

[14] S. Rahman, A. Quattrini Li, and I. Rekleitis, “SVIn2: A Multi-sensor
Fusion-based Underwater SLAM System,” IJRR, 2022.

[15] A. 1. Mourikis and S. I. Roumeliotis, “A multi-state constraint Kalman
filter for vision-aided inertial navigation,” in /CRA, 2007.

[16] F. Shkurti, I. Rekleitis, M. Scaccia, and G. Dudek, “State estimation
of an underwater robot using visual and inertial information,” in IROS,
2011, pp. 5054-5060.

[17] C. Beall, F. Dellaert, I. Mahon, and S. B. Williams, “Bundle adjustment
in large-scale 3d reconstructions based on underwater robotic surveys,”
in OCEANS, Spain, 2011, pp. 1-6.

[18] J. Eisele, Z. Song, K. Nelson, and K. Mohseni, “Visual-inertial guidance
with a plenoptic camera for autonomous underwater vehicles,” IEEE
RAL, vol. 4, no. 3, 2019.

[19] J. Aulinas, X. Lladd, J. Salvi, and Y. R. Petillot, “Selective submap
joining for underwater large scale 6-dof slam,” in IROS, 2010.

[20] A. Kim and R. M. Eustice, “Real-time visual SLAM for autonomous
underwater hull inspection using visual saliency,” IEEE TRO, 2013.

[21] E. Vargas, R. Scona, J. S. Willners, T. Luczynski, Y. Cao, S. Wang,
and Y. R. Petillot, “Robust underwater visual SLAM fusing acoustic
sensing,” in ICRA, 2021.

[22] C. Petres, Y. Pailhas, P. Patron, Y. Petillot, J. Evans, and D. Lane, “Path
planning for autonomous underwater vehicles,” IEEE TRO, 2007.



(23]

[24]

[25]

[26]

[27]

[28]
[29]

(30]

[31]
[32]

[33]

[34]
[35]

[36]

[37]

[38]

[39]
[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]
[49]

[50]

J. D. Hernandez, E. Vidal, M. Moll, N. Palomeras, M. Carreras, and
L. E. Kavraki, “Online motion planning for unexplored underwater
environments using autonomous underwater vehicles,” JFR, vol. 36,
no. 2, pp. 370-396, 2019.

T. Manderson, J. C. G. Higuera, S. Wapnick, J.-F. Tremblay, F. Shkurti,
D. Meger, and G. Dudek, “Vision-based goal-conditioned policies for
underwater navigation in the presence of obstacles,” RSS, 2020.

M. Panda, B. Das, B. Subudhi, and B. B. Pati, “A comprehensive review
of path planning algorithms for autonomous underwater vehicles,” Int.
Journal of Automation and Computing, pp. 321-352, 2020.

M. Xanthidis, N. Karapetyan, H. Damron, S. Rahman, J. Johnson,
A. O’Connell, J. O’Kane, and I. Rekleitis, “Navigation in the presence of
obstacles for an agile autonomous underwater vehicle,” in ICRA, 2020,
pp- 892-899.

M. Xanthidis, M. Kalaitzakis, N. Karapetyan, J. Johnson, N. Vitzilaios,
J. O’Kane, and 1. Rekleitis, “Aquavis: A perception-aware autonomous
navigation framework for underwater vehicles,” in IROS, 2021.

G. Dudek et al., “A visually guided swimming robot,” in IROS, 2005.
N. Karapetyan, J. Johnson, and I. Rekleitis, “Human diver-inspired
visual navigation: Towards coverage path planning of shipwrecks,”
Marine Technology Society Journal, vol. 55, no. 4, pp. 24-32, 2021.
S. Rahman, A. Quattrini Li, and I. Rekleitis, “Contour based recon-
struction of underwater structures using sonar, visual, inertial, and depth
sensor,” in IROS, 2019, pp. 8048-8053.

R. Bajcsy, Y. Aloimonos, and J. K. Tsotsos, “Revisiting active percep-
tion,” Auton. Robot., vol. 42, no. 2, pp. 177-196, 2018.

C. Leung, S. Huang, and G. Dissanayake, “Active SLAM in structured
environments,” in /CRA, 2008, pp. 1898-1903.

S. Suresh, P. Sodhi, J. G. Mangelson, D. Wettergreen, and M. Kaess,
“Active slam using 3d submap saliency for underwater volumetric
exploration,” in ICRA, 2020, pp. 3132-3138.

B. Yamauchi, “Frontier-based exploration using multiple robots,” in Int.
Conf. on Autonomous agents, 1998, pp. 47-53.

M. Sheinin and Y. Y. Schechner, “The next best underwater view,” in
CVPR, 2016, pp. 3764-3773.

Y. Girdhar, P. Giguere, and G. Dudek, “Autonomous adaptive exploration
using realtime online spatiotemporal topic modeling,” IJRR, vol. 33,
no. 4, pp. 645-657, 2014.

Y. Girdhar and G. Dudek, “Modeling curiosity in a mobile robot
for long-term autonomous exploration and monitoring,” Auton. Robot.,
vol. 40, no. 7, pp. 1267-1278, 2016.

L. Paull, S. Saeedi, M. Seto, and H. Li, “Sensor-driven online coverage
planning for autonomous underwater vehicles,” IEEE/ASME Trans.
Mechatronics, vol. 18, no. 6, pp. 1827-1838, 2012.

E. Galceran and M. Carreras, “A survey on coverage path planning for
robotics,” RAS, vol. 61(12), pp. 1258 — 1276, 2013.

H. Choset, “Coverage for robotics — a survey of recent results,” Ann.
Math. Artif. Intel., vol. 31(1-4), pp. 113-126, 2001.

E. Galceran, R. Campos, N. Palomeras, M. Carreras, and P. Ridao,
“Coverage path planning with realtime replanning for inspection of 3d
underwater structures,” in /CRA, 2014, pp. 6586—6591.

B. Englot and F. S. Hover, “Three-dimensional coverage planning for
an underwater inspection robot,” IJRR, pp. 1048-1073, 2013.

A. Mallios, P. Ridao, D. Ribas, M. Carreras, and R. Camilli, “Toward
autonomous exploration in confined underwater environments,” JFR,
vol. 33, no. 7, pp. 994-1012, 2016.

D. Gélvez-Loépez and J. D. Tardés, “Bags of binary words for fast place
recognition in image sequences,” IEEE TRO, vol. 28, no. 5, 2012.

D. Scharstein and R. Szeliski, “A taxonomy and evaluation of dense
two-frame stereo correspondence algorithms,” IJCV, vol. 47, no. 1-3,
pp. 7-42, 2002.

M. Poggi, F. Tosi, K. Batsos, P. Mordohai, and S. Mattoccia, “On the
Synergies between Machine Learning and Binocular Stereo for Depth
Estimation from Images: a Survey,” PAMI, 2021.

D. Gallup, J.-M. Frahm, P. Mordohai, Q. Yang, and M. Pollefeys,
“Real-time plane-sweeping stereo with multiple sweeping directions,”
in CVPR, 2007.

E. Zheng, E. Dunn, V. Jojic, and J.-M. Frahm, “Patchmatch based joint
view selection and depthmap estimation,” in CVPR, 2014.

S. Galliani, K. Lasinger, and K. Schindler, “Massively parallel multiview
stereopsis by surface normal diffusion,” in /CCV, 2015.

P. Merrell, A. Akbarzadeh, L. Wang, P. Mordohai, J.-M. Frahm, R. Yang,
D. Nistér, and M. Pollefeys, “Real-time visibility-based fusion of depth
maps,” in ICCV, 2007.

[51]

[52]

(53]

[54]

[55]

[56]

(571
[58]
[59]
[60]

[61]

[62]

[63]

[64]

[65]

[66]
[67]

[68]

[69]
[70]
[71]
[72]
[73]

[74]

[75]

[76]
(771
(78]
[79]
[80]
[81]

[82]

A. Kuhn, H. Hirschmiiller, D. Scharstein, and H. Mayer, “A TV prior
for high-quality scalable multi-view stereo reconstruction,” IJCV, vol.
124, no. 1, pp. 2-17, 2017.

J. L. Schonberger, E. Zheng, J.-M. Frahm, and M. Pollefeys, “Pixelwise
view selection for unstructured multi-view stereo,” in ECCV, 2016.

S. Cheng, Z. Xu, S. Zhu, Z. Li, L. E. Li, R. Ramamoorthi, and H. Su,
“Deep stereo using adaptive thin volume representation with uncertainty
awareness,” in CVPR, 2020.

X. Gu, Z. Fan, S. Zhu, Z. Dai, F. Tan, and P. Tan, “Cascade cost volume
for high-resolution multi-view stereo and stereo matching,” in CVPR,
2020.

J. Y. Lee, J. DeGol, C. Zou, and D. Hoiem, “PatchMatch-RL: Deep
MVS with Pixelwise Depth, Normal, and Visibility,” in /CCV, 2021.
X. Ma, Y. Gong, Q. Wang, J. Huang, L. Chen, and F. Yu, “Epp-mvsnet:
Epipolar-assembling based depth prediction for multi-view stereo,” in
ICCV, 2021, pp. 5732-5740.

F. Wang, S. Galliani, C. Vogel, P. Speciale, and M. Pollefeys, “Patch-
matchNet: Learned Multi-View Patchmatch Stereo,” in CVPR, 2021.

J. Yang, W. Mao, J. M. Alvarez, and M. Liu, “Cost volume pyramid
based depth inference for multi-view stereo,” in CVPR, 2020.

Y. Yao, Z. Luo, S. Li, T. Fang, and L. Quan, “MVSNet: depth inference
for unstructured multi-view stereo,” in ECCV, 2018.

S. Thrun, “Learning occupancy grid maps with forward sensor models,”
Auton. Robot., vol. 15, no. 2, pp. 111-127, 2003.

A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard,
“OctoMap: An efficient probabilistic 3D mapping framework based on
octrees,” Auton. Robot., 2013.

J. Ryde, V. Dhiman, and R. Platt, “Voxel planes: Rapid visualization
and meshification of point cloud ensembles,” in IROS, 2013.

H. Oleynikova, Z. Taylor, M. Fehr, R. Siegwart, and J. Nieto, “Voxblox:
Incremental 3d euclidean signed distance fields for on-board mav
planning,” in IROS, 2017, pp. 1366-1373.

G. Riegler, A. Osman Ulusoy, and A. Geiger, “Octnet: Learning deep
3d representations at high resolutions,” in CVPR, 2017, pp. 3577-3586.
M. Tatarchenko, A. Dosovitskiy, and T. Brox, “Octree generating
networks: Efficient convolutional architectures for high-resolution 3d
outputs,” in /CCV, 2017, pp. 2088-2096.

M. Pollefeys et al., “Detailed real-time urban 3D reconstruction from
video,” IJCV, vol. 78, no. 2-3, pp. 143-167, 2008.

Y. Furukawa and J. Ponce, “Accurate, dense, and robust multiview
stereopsis,” PAMI, vol. 32, no. 8, pp. 1362-1376, 2010.

W. E. Lorensen and H. E. Cline, “Marching cubes: A high resolution
3d surface construction algorithm,” Proc. of ACM SIGGRAPH, vol. 21,
no. 4, pp. 163-169, 1987.

M. Kazhdan and H. Hoppe, “Screened poisson surface reconstruction,”
ACM Trans. on Graphics (TOG), vol. 32, no. 3, p. 29, 2013.

R. Newcombe and A. Davison, “DTAM: Dense tracking and mapping
in real-time,” in ICCV, 2011.

G. Vogiatzis and C. Herndndez, “Video-based, real-time multi-view
stereo,” IVC, vol. 29, no. 7, pp. 434-441, 2011.

J. Chibane and G. Pons-Moll, “Neural unsigned distance fields for
implicit function learning,” NeurIPS, vol. 33, 2020.

S. Peng, M. Niemeyer, L. Mescheder, M. Pollefeys, and A. Geiger,
“Convolutional occupancy networks,” in ECCV, 2020, pp. 523-540.

V. Sitzmann, E. Chan, R. Tucker, N. Snavely, and G. Wetzstein,
“MetaSDF: Meta-Learning Signed Distance Functions,” in NeurIPS,
2020, pp. 10136-10147.

B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi,
and R. Ng, “NeRF: Representing scenes as neural radiance fields for
view synthesis,” in ECCV. Springer, 2020, pp. 405-421.

R. Pajarola, “Overview of quadtree-based terrain triangulation and
visualization,” No. 02-01, Inf. & Comp. Sc., UCI, Tech. Rep., 2002.

F. Remondino, “Heritage recording and 3d modeling with photogram-
metry and 3D scanning,” Remote sensing, vol. 3, no. 6, 2011.

D. Gallup, M. Pollefeys, and J.-M. Frahm, “3d reconstruction using an
n-layer heightmap,” in Joint Pattern Recognition Symposium, 2010.

D. McLeod, J. Jacobson, M. Hardy, and C. Embry, “Autonomous
inspection using an underwater 3D LiDAR,” in OCEANS, 2013.

J. Folkesson, J. Leonard, J. Leederkerken, and R. Williams, “Feature
tracking for underwater navigation using sonar,” in /ROS, 2007.

E. Westman, A. Hinduja, and M. Kaess, “Feature-based SLAM for
imaging sonar with under-constrained landmarks,” in /CRA, 2018.

M. Roznere and A. Quattrini Li, “Underwater monocular depth estima-
tion using single-beam echo sounder,” in /ROS, 2020.



	Introduction
	Related Work
	Environment Classification and Camera Configuration
	Exploration, Coverage, and Mapping
	Loop Closure
	Dense 3D Reconstruction
	Vision with Acoustic Sensor Configuration
	Conclusions 
	References

