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Abstract— The path followed by a mobile robot while map-
ping an environment (i.e. an exploration trajectory) plays a
large role in determining the efficiency of the mapping process
and the accuracy of any resulting metric map of the envi-
ronment. This paper examines some important aspects of path
planning in this context: the trade-offs between the speed of the
exploration process versus the accuracy of resulting maps; and
alternating between exploration of new territory and planning
through known maps. The resulting motion planning strategy
and associated heuristic are targeted to a robot building a map
of an environment assisted by a Sensor Network composed
of uncalibrated monocular cameras. An adaptive heuristic
exploration strategy based on A

∗ search over a combined
distance and uncertainty cost function allows for adaptation
to the environment and improvement in mapping accuracy. We
assess the technique using an illustrative experiment in a real
environment and a set of simulations in a parametric family of
idealized environments.

I. INTRODUCTION

Exploration is a pre-requisite behaviour for many essen-

tial functions of a mobile robot. During localization and

mapping, geometric information is gathered as the robot

enters new areas. During visual search, the locations of

potential objects are identified from images of new territory.

During Sensor Network localization, the robot passes into

the sensing or communication range of additional sensors.

The common thread is that the system begins with no

(or little) information about its environment, and additional

information can only be collected when the agent moves into

new territory.

For active information gathering tasks such as map build-

ing, decision making is an essential component which deter-

mines the quality of information collected. The robot’s path

determines the order and frequency of observation for each

feature, which greatly impacts the accuracy of the final map

produced, as well as the efficiency of the process. While both

speed and accuracy are desired during mapping, these two

goals are often in conflict. On one hand, accurate mapping

is dependent on the robot’s position estimate being corrected

through repeated measurements of the same landmarks. On

the other hand, efficient mapping demands minimizing dis-

tance traveled; thus, making a return to an already explored

landmark undesirable.
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At each exploration step, the environment can be parti-

tioned into known and unknown regions. This suggests a

natural decomposition of the planning problem into two sub-

tasks. First, paths must be planned through the robot’s current

map, which, while errorful and incomplete, provides at least

a rough estimate of the nature of the world. Second, in

order to explore new territory, paths must be planned into or

through the remainder of the environment which is initially

unknown. The current map provides a relatively large amount

of information for decision making, so there is some hope for

selecting favorable paths in this setting. In contrast, planning

through unknown regions is much more challenging, and

appears to require heuristic strategies, unless strong prior

information, or specific task properties are exploited. Fig-

ure 1 illustrates the information available to a robot when

planning its motions in a hospital environment instrumented

with a camera Sensor Network. At every instant, cameras

which have previously observed the robot are candidates for

re-visitation, and paths to these cameras can be planned quite

accurately. Also, regions of so-far unvisited space give the

opportunity for exploration, although the result of moving

into these regions is somewhat less predictable.

This paper adapts and extends exploration techniques

developed for mapping with a mobile robot to the con-

text of camera Sensor Network self-localization - that is,

a network of cameras whose precise positions must be

determined by a mobile robot. Illustrative applications are

building-security systems and traffic-monitoring networks.

Such cameras provide a rich source of visual information

for the regions in which they are emplaced and facilitate

applications such as automated surveillance [1] and detection

of abandoned luggage in airports [2]. These applications

commonly assume a map of camera locations, as well as

knowledge of the camera imaging properties; or, in other

words, that calibration information is known a priori. This

is rarely true in practice, but mapping and calibration can

be completed by a mobile robot operating in the same

environment as the camera network, as shown in [3].

This paper presents an exploratory trajectory planning

solution for a robot exploring and localizing the cameras

within a camera Sensor Network, such as the scenario

depicted in Figure 1. Specifically, we propose the use of

a planner based on A∗ search to optimize local sections

of the robot’s path with respect to both distance traveled

and map uncertainty. This method is derived from, but

also extends previous work such as [4] since it provides a

parameter which naturally adapts the levels of exploration

and re-localization. In addition, we evaluate the effects of

our planner when alternated with excursions into unexplored
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Fig. 1. A robot’s progress through an environment during exploration. Paths can be planned through the known map and to the border of unknown
territory (dotted lines). Camera observations (large dots) provide the sensor readings which allow for accurate mapping, particularly when the robot plans
to revisit a camera numerous times.

territory, so that our method can be considered a complete

exploration algorithm.

The next section will review necessary background ma-

terial regarding SLAM as well as previous methods for

planning to reduce map uncertainty. Section III describes the

Localization and Mapping solution for a mobile robot in a

camera Sensor Network considered in this paper. An adap-

tive heuristic search based planner for exploration paths is

introduced in Section IV. Experimental results in Section V

demonstrate the efficacy of the network localization solution

in a large indoor environment and illustrate the performance

of the exploration planning methods in simulation.

II. BACKGROUND

The network localization problem is similar to Simultane-

ous Localization and Mapping (SLAM) since both scenarios

involve estimating the pose of the robot and the positions

of environment features (landmarks or sensor nodes) from

acquired sensor data. Hence, similar estimation approaches

are appropriate. In this paper, the extended Kalman filter

(EKF) as described in [5] for SLAM is adapted for camera

network localization. The EKF computes the mean µ and

covariance P for each map quantity. Many other solutions

are possible, but the EKF is used here for computational

simplicity and ease of analysis.

Numerous authors have studied the problem of planning

paths through the already known map in order to gather

additional information and to increase mapping accuracy, e.g.

[4], [6], [7], [8]. Many approaches have attempted to reduce

the entropy in the map estimates [9], [10], [11], which is the

measure of the uncertainty in a distribution and is defined

as:

H(p(ξ)) ≡ −

∫
p(ξ) log(p(ξ))dξ (1)

For the Gaussian distributions used by an EKF repre-

sentation of the environment, entropy can be expressed in

closed form. Sim and Roy [4] discuss two different measures

from information theory for which either the trace or the

determinant of the covariance matrix provides the final

measure for entropy.

3393



Early work proposed a single-step, greedy choice of the

action which maximally minimizes the entropy because

optimal planning of multi-step paths requires computational

cost exponential in the path length. Recently, Sim and Roy

[4] have proposed pruning loops during breadth first search in

order to ensure manageable complexity even when planning

longer paths under conditions of idealized sensing and a

rough initial estimate of landmark locations. In addition, [6]

has considered a simulation-based approach which has the

potential to generate multi-step paths at the cost of significant

computation.

As mentioned earlier, accuracy and efficiency are conflict-

ing goals during exploration. In order to produce paths that

compromise between the goals, distance and uncertainty have

to be combined into a single cost function. Unfortunately, the

two are incommensurable; that is, they lack common units

for comparison, so care must be taken in combining their

values. Makarenko et al. [10] have previously proposed a

weighted linear combination of distance and uncertainty for

path p:

C(p) = ωd length(p) + ωu trace(P (p)) (2)

In this cost function, P is the covariance matrix resulting

from the EKF and its trace is an approximation of the un-

certainty in the map. The choice of weighting factors ωd and

ωu represents the compromise between distance traveled and

mapping uncertainty or accuracy versus efficiency. We would

like to produce a flexible method based on varying only

one intrinsic parameter, so normalizing each quantity by its

maximum possible value would be desirable. Unfortunately,

computation of the maximum possible uncertainty over all

paths is intractable, so this value is approximated by simu-

lating the robot along a straight path with no relocalization,

which is very likely an overestimate. Once each quantity has

been normalized, a single free parameter α in the range [0, 1]
is able to specify the contribution of each factor. Based on

this formulation, the weights used in our cost function are:

ωd =
α

maxdist
, ωu =

1 − α

maxuncert

By setting α to the two extremes, zero and one, it is

possible to consider only one of the factors at a time: distance

only, by setting α = 1, and uncertainty only, by setting

α = 0. Section IV will discuss the effect of varying α on

the quality of the resulting paths.

Several authors have considered the collaboration between

a Sensor Network and a mobile robot in different sensing

scenarios and in some cases with much more capable robotic

agents [12], [13]. In addition, our analysis of a single mobile

agent within a static network can be viewed as a special case

of multi-robot collaboration, which has also been studied by

many authors [14], [15], [16].

Fig. 2. The experimental setup used throughout this paper. The robot
carries a calibration target which can be easily detected in images taken by
the cameras in the network (such as the one mounted on a door here).

III. LOCALIZATION AND MAPPING IN A

CAMERA SENSOR NETWORK

An autonomous solution for calibration and mapping of a

camera sensor network by a mobile robot has been previously

presented in [3], [17]. The crucial details of this method will

be reviewed in this section to provide sufficient background

to enable subsequent discussion of the exploration planning

algorithms.

Given a network of cameras placed inside a building, and a

mobile robot, the goal is to autonomously explore the build-

ing; locate each camera, by receiving an alert every time the

robot enters the field of view (FOV) of the camera; calibrate

the internal parameters of the camera; and finally, recover

the 3D pose of the camera with respect to the robot. The

first step is recognizing the robot when it enters the FOV of

a camera. This is accomplished with a specially constructed

target mounted on the robot which can be robustly detected

in visual imagery; see Figure 2. Our target is comprised of

ARTag [18] fiducial markers which have been employed for

automated camera calibration and pose estimation previously

by [19]. The calibration procedure estimates the pose of the

camera with respect to the robot, also known as extrinsic

parameters. This information allows the pose of the camera

to be added to the map. Finally, an EKF tracks the location

of the robot as it moves between cameras and corrects the

robot’s location as well as the map of camera locations each

time a measurement is collected.

As mentioned above, the decision making aspect of

exploration is crucial to any map building approach, but

particularly to mapping a camera Sensor Network. In this

scenario, the robot travels over potentially large distances

between camera observations, so odometry error accumulates

drastically unless it is corrected actively. That is, camera

positions serve as landmarks for planning which must be

visited and revisited in order to keep the accumulated uncer-

tainty low. Position measurements obtained when a camera

observes the robot repeatedly allow the estimator to reduce
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the positional uncertainty of the robot and of the map. To

illustrate this point, and to give a basis for comparison,

several hand-crafted methods for planning during exploration

were considered in this work which explicitly considered the

compromise between accurate and efficient mapping:

• Depth-first exploration: the robot always moves into

unexplored territory, never relocalizing. This strategy

provides coverage of the environment with minimal dis-

tance traveled, but the uncertainty of the robot position

grows quickly. It is worth noting that as the environment

is unknown, DFS is the most efficient method possible.

• Return-to-Origin: the robot alternates between explor-

ing a new camera position and returning to the first

camera it mapped, which has the lowest uncertainty.

This strategy allows for accurate relocalization, but it

means that the robot must travel increasingly larger

distances as it maps cameras further away, thus, in-

troducing measurements from increasingly inaccurate

positions.

• Return-to-Nearest: in a compromise between the two

previous methods, the robot alternates between explor-

ing a new camera position and relocalizing at the nearest

previously explored camera. The ability to relocalize

accurately depends on the uncertainty of the nearest

camera only, which might not be mapped as accurately

as cameras which are farther from the robot, however,

regressing by only one camera at a time means the extra

distance traveled remains small.

IV. ADAPTIVE HEURISTIC PLANNING FOR MAP

BUILDING

Exploration of a Sensor Network can be thought of in

terms of the graph formed by nodes corresponding to sensor

positions connected by edges corresponding to traversable

pathways between sensors. This construction will be useful

to explain our proposed solution. In graph-based terms, the

exploration process consists of two steps: 1) selecting the

next node to visit, and 2) planning the best path through

the known graph to reach the selected node. The three-

hand crafted approaches described earlier undertake these

two steps without consideration of the current state of the

map and estimator. A planning algorithm which examines

the current uncertainty of each camera’s estimated position

is able to adaptively select paths which allow better relocal-

ization. An optimal solution could be produced by searching

the space of all possible paths and choosing the one with

the lowest cost as defined by Eq. 2. Unfortunately, we can

show that the number of paths through such a graph-like

environment has a worst-case bound of dk, where d is the

maximum node degree in the graph and k is the path length

[19]. Thus, exhaustively examining all paths is intractable.

Inspired by the pruned search method of Sim and Roy [4]

we consider approximating the minimum cost path in a

computationally efficient fashion. To avoid exhaustive search,

our planner employs a variant of A∗ search. As all informed

search techniques, A∗ search requires two pieces of infor-

mation about each node in the graph: f(n), the cost of the

best path found so far from the start to node n; and h(n), the

heuristic function, which is an estimate of the cost from node

n to the goal based on some, hopefully cheap, approximation.

The search procedure expands nodes in order of increasing

expected cost C which is a combination of the two terms:

C(n) = f(n) + h(n) (3)

We use Eq. 2 for our f function as we seek to optimize

paths based on both distance and uncertainty. The h function

must be “admissible”. That is, it must be an underestimate for

the remaining cost that will be required to reach the goal.

Computing a reasonably tight lower bound for the uncer-

tainty reduction along a path appears to be an exponential

problem in itself. So, noting that A∗ with a less informative

heuristic function is still more efficient than breadth-first

search, we simply leave out the contribution of uncertainty.

Instead our h function is the straight-line distance between

nodes, as is common in traditional planning. This allows

our algorithm to reduce the number of searched nodes, with

little overhead computation. Note that uncertainty still guides

our search to some extent, as it is a component of the cost

function f .

It is important to note that A∗ in our case is only

approximating optimal paths with respect to the chosen

cost function because the situation we consider violates the

standard assumptions in two aspects. First, in our context

paths which contain loops can often reduce uncertainty, while

traditional AI planning techniques often assume no nega-

tive weight cycles. Second, our cost function uses a scalar

representation of the EKF covariance matrix. Uncertainty in

subsequent planning steps cannot be predicted based on such

a simple value. In other words, the trace(P ) measure used

by our planner is not a sufficient statistic, which is required

for optimal planning. This lack of optimality is unavoidable

since exploration planning is exponentially complex, but is

noted here in order to provide a more complete understanding

and to provide directions for future work. It is also im-

portant to consider the potential for generalization of the

method. Since our analysis does not explicitly depend on

any properties of the camera sensors used, it could easily

be applied to other graph-based exploration problems, such

as, Generalized Voronoi Graphs (GVG) [20] and occupancy

grids [21].

Figure 3 shows paths generated for four values of the α

parameter which weighs the contributions of distance and

uncertainty. This example illustrates that A∗ search is able

to adapt to the environment and compromise between the

conflicting goals of efficiency and accuracy. The next section

provides results from further experiments which will evaluate

the impact of such adaptation on the exploration process.

V. EXPERIMENTAL RESULTS

A. Hallway Mapping

A set of hardware experiments was performed to verify the

underlying calibration and mapping framework. A network

of seven cameras was deployed in an indoor environment
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Fig. 3. Paths generated by A∗ search using a distance and uncertainty cost function for four values of α. Dark lines indicate the path followed by the
robot in each case. At (a) only the distance is considered. The relative contribution of uncertainty increases sequentially for (b)-(d).

with a diameter over 50 m and a mobile robot equipped

with the fiducial target described in Section III traversed

the environment. The robot passed in front of the cam-

eras and followed a path whose length was over 360 m.

Figure 4(a) shows that the estimate of the robot’s position

based on odometry accumulates error quickly. Figure 4(b)

demonstrates that the calibration and mapping system is

able to correct this error and produce an accurate map of

the environment. For these preliminary experiments, a naive

exploration policy was employed. These experiments served

to validate the utility of the approach and demonstrate that

apparently accurate mapping could be achieved in practice

even with very simple path planning. Moreover, these ex-

periments provided verification of the EKF implementation

as well as experimentally derived noise statistics for the

odometry and the camera estimates. More informed trajec-

tory planning methods will be considered in the remainder

of the experimental results.

B. Simulation Environment

We used numerical simulation to evaluate the performance

of the approach over a wide range of parametric variations

in the environment. This environment was meant to emulate

the properties of camera networks such as the one used in the

hallway experiments as closely as possible. To accomplish

this, nodes were chosen from a uniform distribution over

free space with properties similar to the physical hallway

setup. The camera heights and distances from the robot

location were allowed to vary randomly, with mean values

equal to those found in the hallway tests. The same EKF

implementation was used for state estimation as was used

to produce Figure 4(b). Various graph sizes were produced

by altering the number of nodes so that trends in the

exploration results could be examined. Two idealized classes

of graphs were used which exemplified near-extremes in

terms of connectivity (though the reader is reminded that

our solution is independent of particular graph structure).

The first class considered was fully connected graphs (i.e.

cliques) where every pair of nodes is connected by an edge,

which represents a scenario where the robot is able to freely

traverse the environment without obstacles; see Figure 5(a).

The second class examined was triangulated graphs where

edges are chosen by triangulation of the nodes to produce

a planar graph, which again represents obstacle free space,

but in this case assumes the robot should move through a

sequence of nodes along its path; see Figure 5(b). We also

examined graphs generated by stochastically sampling a real

environment to produce a roadmap. In this case, we used the

floorplan of an actual hospital and triangulated stochastically

selected sample locations which were mutually visible. We

refer to these as hospital graphs; see Figure 5(c). In the

remainder of this section, results have been computed over

a mixture of the graph types.

C. Single Path Results for the Adaptive Heuristic

The goal of our adaptive heuristic planner is to choose

a short-term path through the known graph that allows the

robot to arrive at a new node with minimal distance and

uncertainty. The simulation environment described earlier

was used in order to analyze the performance of our algo-

rithm. For each randomly generated network, the Return-to-

Nearest strategy was executed for a portion of the network
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Fig. 4. (a) Odometry Readings for Hallway Path. (b) EKF Estimate of the
Hallway Path. Estimated camera positions with uncertainty ellipses are in
red where color is available.

in order to initialize camera estimates in the EKF. A series

of planners were then executed to find paths between con-

stant start and goal nodes so that paths returned could be

compared. The planners evaluated used A∗ search with four

different values for α: (0.1, 0.5, 0.9, 1.0). Note that α = 1.0
produces shortest distance planning.

Figure 6(a) illustrates the distance traveled for the four

choices of α, averaged over twenty instances for each

network size. As expected, larger α values produce shorter

path lengths since distance is weighted more heavily in the

cost function. The relatively graceful increase in distance

traveled as α decreases indicates the ease with which the

planners are able to find slightly longer paths that perform

better with respect to final uncertainty. That is, there is

no catastrophic degradation in distance performance as the

weighting is changed.

Figure 6(b) shows the final robot uncertainty upon arrival

at the chosen goal node for three of the four α values used.

Results for α = 0.5 are excluded because the results for

this method lie extremely close to α = 0.1 and α = 0.9,

which makes visualization difficult. Setting α < 1 manages
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Fig. 5. Example graphs from each of the three types considered. Dotted
lines indicate edges between nodes. Camera positions are shown as blue
crosses where color is available.
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to reduce the uncertainty drastically over the α = 1 case,

where only distance is considered. In fact, the improvement

in uncertainty between α = 1 and α = 0.9 is much

larger than that between α = 0.9 and α = 0.1. These

results are of particular importance since they indicate that

by considering uncertainty in the planning process, quality

increased dramatically as can be seen in Figure 6(b).

D. Global Exploration Results

The previous section indicates that the adaptive heuristic is

able to produce relocalization paths with intuitively favorable

and adaptive properties. This method is extended to global

exploration which requires iterating two steps: following

a previously untraversed arc from a frontier node of the

known graph and selecting a relocalization path through

nodes which have previously been mapped to arrive at the

next frontier node. The first step, which poses a problem

similar to that solved by the Frontier-Based Exploration

strategy [22] in occupancy-grid SLAM, is challenging since

no measurements have yet been made about the destination

camera location. We are not able to compute expected

distance or uncertainty for this exploratory section of the

path. Under this condition, several hand-crafted strategies

have been attempted for choosing the next exploration action

to take. These include a breadth-first search method where

nodes closest to the origin are explored first, and also a

spiral search method. In future work, we plan more detailed

analysis of the effects of each of these strategies as well as

more sophisticated methods such as the use of the A∗ search

algorithm to evaluate each frontier node. For the purposes

of evaluating the relocalization strategies in this section, the

same breadth-first exploration ordering was used for each

method. The second step in exploration involves selecting

the path through the known graph ending at the destination

frontier node, which allows for accurate robot relocalization

with minimal distance traveled. Each of the hand-crafted

trajectories solves this problem by making a generic choice

of node to use for relocalization at each stage. The adaptive

relocalization strategy can be used instead in order to provide

the additional flexibility and relocalization ability that was

demonstrated in the previous section. Repeated simulated

explorations were conducted to compare the hand-crafted

trajectory methods mentioned earlier to the adaptive strategy.

Figure 7(a) illustrates the total distances traveled. These

results are not surprising; the Depth-first strategy covers the

environment with the least robot motion, Return-to-Nearest

requires slightly more motion, the adaptive heuristic of A∗

with α = 0.9, slightly more again, and Return-to-Origin

requires the largest distance traveled. Figure 7(b) presents the

final map uncertainty results. The adaptive global strategy

is able to produce maps with lower uncertainty than any

of the static methods due to the fact that it uses all of the

information available in order to choose paths which exploit

properties of the current estimate. In terms of computation

time, the A∗ was slower than the other heuristics without

being excessively slow.

VI. CONCLUSIONS

Robot path planning has been considered for reduction of

map uncertainty in the context of a mobile robot calibrating

and mapping a camera Sensor Network. An adaptive heuris-

tic which produces relocalization trajectories based on the

current state of the estimator has been shown to improve

performance over a variety of intuitive hand-crafted ap-

proaches. The adaptive heuristic planning is able to provide

a compromise between efficiency and accuracy in planning

relocalization paths. This translates to favorable performance

in global mapping when compared to less adaptive strategies;

however, there is still room for improvement to the technique

by searching more efficiently and explicitly considering

overall map uncertainty.

Perhaps the most promising area of future work is the

use of the adaptive heuristic trajectory planning in differ-

ent localization and mapping domains. Numerous previous

techniques for planning to reduce map uncertainty employ

greedy planners based on entropy reduction techniques. By

nature, greedy planning is far from optimal, given that it

does not attempt to exploit all of the information available.

The A∗ search method presented here provides for greater

adaptation, while managing to limit computation through the

use of a heuristic function to guide the search for solutions.

Guiding a stochastic or sampling-based approach such as the

method employed by [6] in a similar fashion would allow

combination of the benefits of both methods.

The authors believe similar methods can be applied in

other mapping domains such as the landmark based EKF,

occupancy grid representations such as FastSLAM, and in

fact any representation where uncertainty is explicitly mod-

eled in the estimator. The use of such adaptive heuristics

will allow robotic mapping to occur with lower error and

contribute to the autonomy of robotic agents in general.
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