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Abstract— Environmental monitoring and surveying opera-
tions on rivers currently are performed primarily with man-
ually-operated boats. In this domain, autonomous coverage of
areas is of vital importance, for improving both the quality and
the efficiency of coverage. This paper leverages human expertise
in river exploration and data collection strategies to automate
and optimize these processes using autonomous surface vehicles
(ASVs). In particular, three deterministic algorithms for both
partial and complete coverage of a river segment are proposed,
providing varying path length, coverage density, and turning
patterns. These strategies resulted in increases in accuracy and
efficiency compared to human performance. The proposed
methods were extensively tested in simulation using maps of
real rivers of different shapes and sizes. In addition, to verify
their performance in real world operations, the algorithms were
deployed successfully on several parts of the Congaree River
in South Carolina, USA, resulting in total of more than 35km
of coverage trajectories in the field.

I. INTRODUCTION

Bathymetric surveys - surveys of the depth of a body

of water, are an important tool for understanding hydro-

geologic processes, water resource management, and in-

frastructure maintenance. Since the sensor footprint of a

bathymetric sensor is significantly smaller than the width

of many rivers, a complete bathymetric survey of a river

requires multiple boats or multiple passes. The usual method

for performing coverage of a known two-dimensional area,

the boustrophedon coverage [1], [2], performs poorly in

tight and uneven spaces such as rivers. Fortunately, river

surveyors have developed and practiced a variety of coverage

techniques that are suitable for rivers. The development

of these surveying/coverage strategies was guided by the

property to be measured and the available resources. For

example, studying sediment transfer in a fast flowing river

requires sampling locally across the river. Otherwise, by the

time the surveyor returns to the same spot, the sediment

will have moved significantly.1 On the other hand, sampling

trajectories across the river results in an excessive number

† Computer Science & Engineering Department, University
of South Carolina, [nare,moulton]@email.sc.edu,
[jokane,yiannisr]@cse.sc.edu

‡ Computer Science Department, University of Puget Sound,
abraude@pugetsound.edu

†† Earth, Ocean, and Environment Department, University of South
Carolina, swhite@geol.sc.edu

This work was partially supported by a SPARC Graduate Research Grant
from the Office of the Vice President for Research at the University of
South Carolina. The authors would also like to thank the National Science
Foundation for its support (NSF 1513203, 1659514).

1As Heraclitus said “Everything changes and nothing remains still
. . . and . . . you cannot step twice into the same river.” [3].

Fig. 1. An autonomous surface vehicle during a coverage experiment on
the Congaree River near Columbia, SC, USA.

of turns, which is detrimental to the performance of certain

sensors. In this paper, we address the question of how to

conduct such coverage/sampling surveys using autonomous

robots in order to increase the efficiency and accuracy, reduce

cost, and eliminate the risks to human operators. Three

methods, each suited to a different scenario, are presented:

1) Complete coverage, reducing rotations. The ASV per-

forms longitudinal passes, traveling roughly parallel to

the river shores. This approach is particularly apt when

the survey is being conducted using sensors, such as a

side-scan sonar, that are sensitive to turning motions.

The method, termed L-Cover, adapts the number of

passes depending on the width of the river.

2) Limited resources surveying. This approach is appro-

priate when there is a limited budget of time or energy

and the length of the river segment to be surveyed

needs to be maximized. In this method, termed Z-

Cover, the ASV travels along the river in a zigzag

pattern, turning away from the shore each time it

reaches it. This allows bathymetric data reflecting the

full width of the river to be sampled in a single pass.

3) Localized complete coverage. In rivers with high flow,

measurements are required across the river in a short

time interval in order to monitor the bottom structure.

The ASV is guided in a a lawn-mowing pattern in

the transverse direction, a pattern similar to one in

the Boustrophedon Cellular Decomposition [1]. This

strategy, termed T-Cover, results in frequent rotations

of the ASV.

The proposed complete coverage strategies (L-Cover and

T-Cover) move along and across the river respectively,

ensuring that for a fixed sensor footprint no area remains

uncovered. The efficient sampling strategy ensures that the



amount of information is maximized, sampling across the

river multiple times, while minimizing the distance travelled.

We present experiments in which all three planners were

deployed on custom ASV [4] designed and fabricated in

the authors’ lab2. Both quantitative assessments of the above

algorithms in terms of the properties of the generated paths

along with the percentage of the region of interest covered,

and qualitative results acquired from field experiments are

presented. More than 35km of coverage trajectories were

tested to verify the feasibility of the proposed strategies.

In the following section we present a survey of related

work. Next, Section III formally defines the problem of

riverine coverage with discussions of the proposed methods.

Section IV presents both extensive simulated results and field

experiments with both quantitative and qualitative analysis.

Finally Section V, gives an overview of the proposed meth-

ods and remarks on future work.

II. RELATED WORK

Substantial work has been done on the design and opera-

tion of autonomous surface vehicles (ASVs) in rivers. One

team of researchers has shown that it is both possible and

desirable to design and operate autonomous surface vehicles

for the purpose of performing bathymetric surveys [5].

Significant progress has also been made on the problem of

navigating a river with an ASV [6]. Additionally, another

team has determined a technique for exploring and mapping

a river using an unmanned aerial vehicle [7]. Though, to

the best of our knowledge, there is no existing research

on automated vehicles zig-zagging their way through rivers,

the basic principle has been applied using an underwater

autonomous vehicle [8]. The vehicle used repeated 135

degree turns to map an upwelling front underwater, covering

200 square kilometers over the course of five days without

human intervention. Estimating the meanders of a river has

also been studied by Qin and Shell [9], and the proposed

estimator can be used for online path selection.

The problem approached in this paper is essentially a

variant of the well-studied coverage problem [10]. Of par-

ticular relevance are two works dealing with the coverage

of rivers using drifters: vehicles that do not have sufficient

power to travel against the current [11], [12] and another

work dealing with coverage path planning for a group of

energy-constrained robots [13]. One notable work breaks

from the tendency to emphasize complete coverage, instead

attempting to conserve time and fuel by focusing coverage on

regions of interest [14]. This allowed them to create a map of

a coral reef area with half the distance travelled and power

used than a lawnmower-style complete coverage algorithm

would have required. Another paper, in which lawnmover-

style coverage is applied to a Dubins vehicle, reformulates

the problem as a variant of the Traveling Salesman Problem

in order to obtain an optimal solution [15].

2The design of the ASV is publicly available on https://afrl.cse.
sc.edu/afrl/resources/JetyakWiki/

Though the above selective coverage work phrases the

problem in terms of coverage, it bears kinship with the liter-

ature for informative motion planning, that is, the problem of

planning a path using limited resources in order to maximize

the amount of information gained. Unfortunately informative

motion planning problems are usually NP-hard optimization

problems. The formulation of these problems require the def-

inition of an information metric that can be associated with

the locations or path. Since the information metric cannot

be known a priori for a real-world scenario, approximations

are done using methods such as Gaussian Processes. This

means that informative motion planning can be applied to

practical problems, such as mapping wireless signal strength

on a lake [16], understanding salinity at a river confluence,

or investigating algal blooms [17] and sampling areas with

high chlorophyll [18]. Despite the success of these projects,

qualitative considerations involved in the formulation of our

problem mean that reformulating it as an informative motion

planning problem would not necessarily produce data with

the desired qualities, and it would be difficult to devise an

information metric that obtains the desired result.

In this work, we address the autonomous coverage prob-

lem for river surveying to automate common surveying

techniques used by surveyors, thus increasing the efficiency

of the coverage. We formulate the riverine coverage problem

as a geometric problem and use the resulting patterns to

justify the use of each approach in different real world

scenarios. In the following section, the problem is formally

defined and the different approaches are described.

III. PROPOSED METHODS

Our objective in this paper is to automate different ap-

proaches used by river surveyors and develop more efficient

planning for each of them. We consider an ASV that was

deployed with a variety of depth sensors to survey the

riverbed. The ASV moves within a known environment,

described by an occupancy grid map M : R
2 → {0, 1},

derived from Google satellite imagery. Values of 0 indicate

the portion of the river we intend to cover, while 1 indicates

locations outside that region of interest, which we treat as

obstacles. From a given starting point vs, we can implicitly

infer the general direction of coverage.

In this section, we describe algorithms executing three

types of coverage patterns in such contexts:

• Section III-A presents a pattern, termed L-cover, which

moves in passes parallel to the shore. This pattern is

particularly suitable for use with a side-scanning sonar.

• Section III-B describes a pattern, termed Z-cover, which

‘bounces’ between the river shores. This approach is

used for performing river surveying with a single pass

which is suitable for long term deployments.

• Section III-C proposes a T-cover pattern, where passes

made across the river, perpendicular to the shore.

These three methods differ in the length of the paths they

generate, in the density of the coverage pattern, and in the

number of turns needed to execute those patterns.



A. Longitudinal Coverage (L-Cover)

Our first approach L-Cover performs coverage in a bous-

trophedon pattern, with passes parallel to the edges of the

river. The goal of the algorithm is to split the river into

subregions that can be covered with the same number of

passes. The algorithm takes as input the map of the river M ,

the starting point vs and a parameter s describing the desired

spacing between the passes; see Algorithm 1. First, we

identify the downriver direction (the red line in Figure 3(a))

and compute an ordered list, denoted Cvec, of contour points

of the shore (Line 2-3). Next, the algorithm sequentially

traverses the contour Cvec with a step size ∆w connecting

opposite edges with straight line segments, denoted l. ∆w

is the distance between each pair of segments li and li+1.

Then, the river is split into clusters of subregions based on

the width of the river, denoted by len(), and the desired

spacing s (Lines 4-11). Any small clusters are merged with

the nearest neighbor cluster that has similar width (Lines 13-

15). Finally, parallel passes are generated for each resulting

cluster Cl (Line 17). The resulting path π is a list of all

sequential passes from each cluster (Line 19). Examples of

the results of the algorithm, with different values of s, are

presented in Figure Figure 2.

Algorithm 1 L-Cover

Input: binary map of river M , starting point vs
spacing parameter s

Output: a π path

1: ∆w← initialize()
2: Cvec ← getDirectionalContours(M)
3: θ ← getDownRiverDirection(Cvec, vs)
4: while the end of the river is not reached do

5: l← getNextSegment(∆w,Cvec, lprev, θ)
6: if len(l)− len(lprev) ≤ s then

7: insert l in to Clcurr
8: else

9: save cluster Clcurr in Clvec
10: Clcurr ← createNewCluster(l)
11: end if

12: end while

13: for each Cl ∈ Clvec do

14: Merge Cl with closest neighbor within tolerance

15: end for

16: for each Cl ∈ Clvec do

17: p← generatePasses(Cl, s)
18: append p to π

19: end for

20: return π

B. Zig-Zag Coverage (Z-Cover)

Z-Cover partial coverage approach, is based on a zig-

zag pattern which aims to cover a substantial portion of

the environment in a single pass along the river. The

core idea of the proposed algorithm is to build a coverage

path that gathers information along and across the river

(a) (b)

Fig. 2. An example of trajectories and clusters generated by L-Cover
approach on a small section of Congaree river with different coverage
density values (alternating colors mark different clusters).
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Fig. 3. (a) A sketch of triangle selection procedure. (b) A section from
the result of the Equal Triangle algorithm applied on Congaree river.

simultaneously. By ensuring that consecutive triangles have

approximately equal areas, we ensure that the ratio of the

covered areas across the river area approximately same.

Algorithm 2 outlines the approach. It takes as input the

map M of the river and the starting point vs. Just as in the L-

Cover algorithm, the Cvec vectors of directional contours are

acquired (Line 2-3). Then, each time the algorithm searches

for a next point, it does so by drawing lines from the current

location towards the opposite shore. An acceptable next point

is searched for among the intersections of the opposite shore

with d possible lines l1, l2, ...ld (blue lines in Figure 3(a))

that form θ0+ iα, i = 1, 2, . . . , d degree angle relative to the

direction downriver. If one of these points forms a triangle

with the previous two points on the path, with area within

tolerance of the area of the previously selected triangle (the

triangle with green edges in Figure 3(a)), it will be selected.

If no such point exists within d intersections, the tolerance

∆ǫ will be increased and the algorithm will do the same

search again (Lines 13-15). The tolerance ∆ǫ is predefined

and can be tuned if necessary.

C. Transversal Coverage (T-Cover)

Finally, we consider T-Cover, which performs a continuous

lawn-mower motion pattern perpendicular to the shores of

the river. The algorithm uses the same information as L-

Cover, namely the map M , the start location vs, and the

coverage spacing s. After acquiring directional contours,

it generates passes, perpendicular to the shores, spaced by

distance s from each other. This is similar to covering a



Algorithm 2 Z-Cover

Input: binary map of river M , starting point vs
Output: a π path

1: θ0, d, α, ∆ǫ← initialize()
2: Cvec ← getDirectionalContours(M)
3: θ ← getDownRiverDirection(Cvec, vs)
4: while the end of the river is not reached do

5: for each i ∈ 1,. . . , d do

6: vcurr ← getIntersectionPoint(li, Cvec, α)
7: p1, p2 ← getPreviousTwoPoints(π)
8: Scurr ← computeAreaOfTriangle(vcurr, p1, p2)
9: if |Scurr − Sprev| ≤ ∆ǫ then

10: append vcurr to π

11: end if

12: break

13: if i == d and π is empty then

14: ∆ǫ++

15: i← 1

16: end if

17: end for

18: vcurr ← getNextPoint(Cvec)
19: end while

20: return π

single cell of the Boustrophedon Cellular Decomposition,

albeit the direction of the coverage varies with the river’s

meanders. This approach is utilized when the quantities

measured change rapidly over time and the transverse profile

of the river bed is required.

IV. EXPERIMENTS

The performance of the proposed coverage strategies was

first tested extensively on different size and shape river

maps. Then, some of the generated paths were deployed

both in simulation using the Stage simulator [19] and in

the field to perform large scale river surveying that covered

in total 35.82km distance. In the latter case, the developed

algorithms were deployed on the AFRL Jetyaks [4]. The

ASVs are equipped with a PixHawk controller that performs

GPS-based waypoint navigation, a Raspberry Pi computer

that runs the Robot Operating System (ROS) framework [20]

recording sensor data and GPS coordinates. In addition,

different types of acoustic range finding sensors were used

during deployments.

A. Performance Analysis

The proposed methods were tested on a set of real maps

with up to 33km long segments of river. Because Z-cover is a

partial coverage method it has been compared against a fixed-

angle approach used for manual surveying operations [8].

With the latter, boat always navigates to the opposite shore

by making a fixed-angle turn relative to the near shore. The

qualitative results in Figure 4 demonstrate the motivation

behind the Equal Triangle Heuristic approach for improving

this operation. When automated, the fixed degree method

resulted in severe overshooting and thus loss of coverage

Fig. 4. Contrasting two Z-Cover methods: 45 degree heuristic zig zag
method (left) with the equal triangles coverage (right) described in this
paper. [Note: this excerpt is 5% of the original map]

area. Meanwhile, the Equal Triangle approach ensures more

even coverage.

The primary metrics considered to evaluate performance

of the coverage tasks are:

• Covered Area (%), expressed as a percentage of the

total area of the region of interest. For all algorithms we

assume that the travel path π has a width proportional

to the spacing value s.

• Return Path (%), defined as the percentage of the

distance traveled to return back to the starting location

vs after coverage was completed over the total travel

distance. This metric is especially important for large

scale operations, as returning to the initial location

might be time and energy consuming.

The coverage will be efficient if it will maximize covered

area while minimizing the return path length. It is worth

noting that in the classical coverage path planning problem,

the robot has to return to the starting position and there are

areas (dead-ends) where the robot enters covering and then

has to traverse back resulting into double coverage. Earlier

work [21] address this problem utilizing the Chinese Postman

Problem formulation. During riverine coverage, there is only

a single segment which is covered and at the end the ASV

has a single return trip to the starting point, as such we do not

use the total distance travelled metric as it is not informative.

In summary:

1) Even though T-Cover and L-Cover approaches show

similar performance on completeness, when account-

ing for the need for a return trip, the T-Cover method is

clearly outperformed by the L-Cover methods in terms

of efficiency of the coverage path.

2) The quantitative results validate the qualitative obser-

vation for differences between the Z-Cover algorithm

and fixed-angle approach discussed above; see Table I.

The Equal Triangles Method produces paths with

slightly higher coverage rate.

3) T-Cover method introduces more turns in the path

compared to the L-Cover. When using a side scan sonar

for bathymetric mapping this can cause loss of data.

B. Field trials

The main objective of the field trials is to ensure that

the ASVs are able to collect adequate data when following

the trajectories generated by the proposed algorithms. We



TABLE I

THE AVERAGE RESULTS OF Z-COVER, L-COVER AND T-COVER APPROACHES FROM SIMULATION.

Z-Cover (Fixed-angle Heuristic) Z-Cover (Equal Triangles) L-Cover T-cover

Return Path (%) 43.3 % 41.4% 8.9% 16.17%

Area Covered 29.39% 31.05% 92.65% 91.42%

deployed an ASV to execute both the L-Cover and the Z-

Cover algorithms on a 0.25km2 area of the Congaree River,

that had an average width of 91m. For these experiments

the ASV was equipped with three different Sonar sensors

(see Section IV-C). Note that in this work we are assuming

that the footprint of the bathymetric sensor (when side-scan

sonars are used) is constant and can be calculated based on

the average depth of the area/river.

The depth measurements gathered from both experiments

were used to produce a bathymetric map of the covered area

utilizing a Gaussian Process (GP) mapping technique [22].

To evaluate the performance of both algorithms for depth

map generation the uncertainty map was produced based on

the root-mean-square error (RMSE). The results showed that

even the operation time is longer for the L-Cover algorithm

but the data collected ultrasonic range sensor is resulting in

more accurate depth map. The depth map produced by data

collected using L-Cover, T-Cover and Z-Cover patterns are

presented in Figure 5.

The boat’s trajectories in Figures 6(a)-6(d) are closely

aligned to the ideal mission plan in Figures 6(e)-6(h), with

small deviations caused by GPS error and environmental

forces (wind, current). The effect of those forces have been

studied in our previous work [23] and are not the subject

of this work. In addition the execution of L-Cover on

the smaller region from different region of Congaree river

with 0.1km2 area is presented in Figures 6(d), 6(h). The

resulting time and distance traveled during each experiment

with actual coverage distance are presented in Table II.

And finally a qualitative difference was observed when

backscatter images of the riverbed were produced for both

autonomous and manual coverage Figure 7. It is worth

noting that the manual operation trajectory is not complete

compared to the path of L-Cover; see Figure 7(d). The time

of operation in both cases was similar (close to 2hr) during

which the autonomous operation covered a region twice the

area of the manual coverage; compare Figure 7(a,c) and

Figure 7(b,d). Moreover, the mosaicing is both complete

and cleaner because of fewer overlapping tracks and odd

orientations to the lines.

C. Riverbed Mapping

Different acoustic sensors have been deployed over the

course of the field trials in order to evaluate their per-

formance and to consider the effect of different coverage

motions to the quality of the collected data. More specif-

ically, a CruzPro DSP Active Depth, Temperature single

ping SONAR Transducer was used for the majority of the

experiments; see Figure 8(a). As only a single data point is

collected at the time, the coverage is sparse and an integration

strategy needs to be utilized as discussed above. The second

sensor used was the Humminbird helix 5 chirp SI GPS G2

imaging sonar. Being a low cost, proprietary sensor, all the

collected data has to be post-processed. Finally, a long range

3DSS-DX-450 side scan transducer from Ping DSP [24] was

deployed a limited number of times. As can be seen in

Figure 8(b), rotations and repeated scans do not match very

well due to the sensitivity to orientation error. Acoustic data

processing is beyond the scope of this paper.

TABLE II

COVERAGE TIME AND DISTANCE RESULTS FROM FIELD DEPLOYMENTS.

Algorithm Z-Cover T-Cover L-Cover

Time traveled 42m 1hr 09m 1hr 45m

Total Distance 5.2km 10km 13.02km

Coverage Distance 3km 7.3km 11.02km

V. CONCLUSIONS

This paper presented three strategies that perform partial

and complete coverage used in different surveying scenarios.

The Z-Cover algorithm shows improvements over the fixed-

angle based approach used in practice by scientists for man-

ual surveying. Both complete coverage algorithms perform

boustrophedon coverage. L-Cover performs coverage parallel

to the shores of the river and takes into account the width of

the river for generating the passes, while T-Cover performs

coverage perpendicular to the shores of the river.

The performance of the algorithms is validated on a large

number of river maps with different size and shape of con-

tours. In addition, the algorithms were tested in simulation

and in the real world. The field trials were performed on

0.25km2 and 0.1km2 regions of the Congaree River.

Taking into account the challenges encountered during

field deployments, obstacle avoidance strategies must be

implemented for both underwater and above water obstacles.

A practical consideration is to deploy upstream, thus, in case

of a failure the ASV will drift back towards the deployment

site. The natural extension of this work is distributing the

coverage task between multiple robots [25], [26]. Another

aspect that we are interested in is planning the coverage path

taking into account general knowledge about river flow based

on the meanders [9]. With this the river flow speed will be

utilized to improve coverage time and energy consumption.

In particular, after modeling the current in the river [23],

path planning will associate different cost values depending

on the direction of travel with respect to the direction and

strength of the current.
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