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Abstract— This paper proposes a solution to the problem of
cooperative exploration using an Unmanned Ground Vehicle
(UGV) and an Unmanned Aerial Vehicle (UAV). More specifi-
cally, the UGV navigates through the free space, and the UAV
provides enhanced situational awareness via its higher vantage
point. The motivating application is search and rescue in a
damaged building. A camera atop the UGV is used to track
a fiducial tag on the underside of the UAYV, allowing the UAV
to maintain a fixed pose relative to the UGV. Furthermore, the
UAV uses its front facing camera to provide a birds-eye-view to
the remote operator, allowing for observation beyond obstacles
that obscure the UGV’s sensors. The proposed approach has
been tested using a TurtleBot 2 equipped with a Hokuyo laser
ranger finder and a Parrot Bebop 2. Experimental results
demonstrate the feasibility of this approach. This work is based
on several open source packages and the generated code is
available on-line.

I. INTRODUCTION

With the proliferation of unmanned air vehicles (UAVs)
a new viewpoint, a birds-eye-view, has become available in
many domains, allowing structure inspection, environmental
monitoring, virtual tourism, and search and rescue. The
majority of aerial vehicles are severely limited in the sensing
payload they can carry due to weight constraints. As such,
simple tasks such as obstacle avoidance and localization in
an unknown environment become rather challenging. On
the other hand, ground robots, while extremely capable
in navigating safely inside an unknown environment, are
restricted to a limited field of view. Deploying a robot team
comprised of a ground and an aerial vehicle enables an
enhanced field of view while maintaining safe navigation and
localization. Recent advances in robotics have made collab-
oration among a heterogeneous team of robots possible [1].
At the same time, many interesting problems associated with
multi-robot collaborative exploration are being discussed,
such as coordination, communication protocols, bandwidth
constraints, etc. [2], [3]. One motivating application is search
and rescue in a damaged building, where the UGV navigates
on the ground while the UAV maintains a fixed pose above
the UGV employing a robot-tracker sensor consisting of a
camera and fiducial marker. The robot team could search and
map dangerous areas, monitored by a remote operator at a
safe distance.

The goal of this paper is to present a collaborative
exploration approach utilizing a UGV and a UAV. The
UGYV, a Kobuki TurtleBot 2 equipped with a Hokuyo laser
range finder, is responsible for guiding the UAV through
the corridors of a building. The UAV, a Parrot Bebop 2
equipped with a forward facing camera, provides enhanced
situational awareness to a remote expert. The UAV does not

Fig. 1. A Parrot Bebop 2 hovering over a Kobuki TurtleBot 2.

process all data and commands on-board; instead, utilizing a
WiFi connection, the sensor data are transmitted to a ground
station where all the processing takes place. Currently we
utilize two computers: one on the UGV and a separate one
as a ground control station (GCS). A unique fiducial tag
placed on the bottom of the UAV is tracked by a wide angle
camera on top of the UGV, and the relative pose between
the two vehicles is estimated.

Using cooperative localization, the pose of the UAV is
calculated using the TurtleBot’s pose and the relative pose
of the two robots. This calculated pose is compared to the
pose provided by ORB-SLAM2 [4], a monocular SLAM
(Simultaneous Localization and Mapping) package run using
data provided by the UAV’s camera. These two localization
techniques improve the accuracy of UAV’s estimated pose,
allowing for easier path planning and tracking of the tag.

Related work is discussed next. Section III outlines the
proposed methodology. Experimental results and factors af-



fecting the performance are discussed in Section IV. The
paper concludes with a discussion of lessons learned and
future directions.

II. RELATED WORK

Cooperative robotics has been explored as early as the
90’s, such as when Cao et al. [5] discussed possible future
applications and the open problem of collaboration between
autonomous robots. Yuta and Premvuti [6] discussed how to
organize multiple autonomous robots. Several previous ex-
periments have examined the best software for tag tracking,
autonomous communication between robots, or have used
similar setups involving both a ground and an aerial based
robot. Collaboration between UGVs and UAVs has been
proposed for a variety of fields. For example, in the detection
and fighting of wildfires [7], in measuring the amount
of nitrogen in the soil for agricultural applications [8],
for surveillance [9], and for detecting and disposing of
mines [10]. UAVs have also been used to monitor traffic [11].

A. Robot Collaboration

Chaimowicz and Kumar [12] discussed ground robot and
aerial robot localization in their 2007 paper. Their research
focused on environments with limited GPS access, and
on using GPS in conjunction with other sensors. Similar
concerns also drove the work of Frietsch et al. [13]. However,
unlike these two previous works, the approach proposed
by this paper assumes no GPS access, instead relying on
cooperative localization [14] between the two vehicles as
well as pose estimates calculated from the laser scan and
cameras.

Another area of interest is collaboration between sea-based
robots and aerial robots; see Murphy et al. [15] and Shkurti
et al. [1]. In Murphy’s experiment, the robots were used to
survey storm damage from Hurricane Wilma. It was also “the
first known use of unmanned sea surface vehicles (USVs)
for emergency response” [15]. In their paper titled “Multi-
domain monitoring of marine environments using a hetero-
geneous robot team”, Shkurti et al. used underwater vehicles,
airboats, and aerial vehicles to autonomously collect footage
of underwater scenes.

MacArthur and Crane [16] investigated using a UAV in the
state estimation of a UGV. In their paper, they discuss camera
calibration and extracting pose from camera data, as well as
the coordinate transforms needed. Unlike with this project,
GPS was integrated with pose information. MacArthur and
Crane found that localization of a UGV using a passive UAV
was successful in both simulated and experimental runs.

Cooperation between UAVs and UGVs for target detection
and formation holding was proposed by Tanner [17]. Duan
and Liu [18] discuss an overview of multiple vehicles col-
laborating with a focus on military applications. Papachris-
tos and Tzes [19] proposed a tethered solution to address
the limited battery time for longer operations. Autonomous
landing on a UGV charging station was proposed by Rezelj
and Skocaj [20].

B. Tag Tracking

Other projects on similar topics have focused more on
landing the drone on a target rather than following the
target for cooperative exploration with a ground vehicle.
One example is the research by Minhua and Jiangtao,
which involved landing an AR.Drone 2.0 on an augmented
reality tag that designated a landing pad [21]. Minhua
and Jiangtao tried two different methods of tracking the
landing pad. The first was a QR code, which they found
gave the UAV more information about the landing area,
but at the cost of more processing time [21]. This caused
delays and inaccuracy while tracking the QR code. The
second method they tried was tracking augmented reality
tags through a package called ar_track_alvar, which
they found processed the tag faster. This faster computation
is possible because ar_track_alvar is initialized with
the size of the tag to help it better determine the position
of the tag relative to the frame given. In this experiment,
Minhua and Jiantao modified the front camera of the drone to
point towards the ground for better tag tracking because the
front camera has a higher resolution [21]. They also experi-
mented with using ar_track_alvar in conjunction with
tum_ardrone, a wrapper for PTAM (Parallel Tracking
and Mapping) and PID controller for the drone, when they
were landing the AR.Drone on a tag. They found that using
ar_track_alvar to find the tag and tum_ardrone for
the PID controller to move the UAV into position of the tag
landing zone worked fairly well [21].

Fig. 2. An example of a QR code is shown first, while two fiducial tags
generated by ar_track_alvar are shown after.

Another example of previous work related to autonomous
flight is the experiment by Rezelj and Skocaj focused on
landing a modified AR.Drone on a TurtleBot with an aug-
mented reality tag, so that the drone could charge and then
take off again by making use of the ground vehicle’s longer
battery life [20].

Although a fiducial tag will be used as a marker for the
UGV in this paper, it is important to point out that other
methods of tracking are available, such as tracking a colored
object or a 3-D moving target, such as in Chakrabarty’s
experiment with an AR.Drone [22].

Lawrence and Turchina [23] evaluated different ap-
proaches to fiducial tag tracking. In their experiments
on pose estimating software packages, they found that
ar_track_alvar was the best package for estimating
the pose of a tag from the frame of a camera. Packages
they tried include: ar_sys, visp_auto_tracker, and
ar_track_alvar. However, not all of them work with
ROS and some require a wrapper. It is important to note that



the camera they used to test the packages had a resolution
of 640x480, while our tracking camera has a resolution of
1920x1080. The higher resolution of the Bird’s Eye View
camera allows for better tag tracking, since the tag can move
farther distances and still remain within view of the camera.
The next tested package, ar_sys, gave a range of 30cm to
120cm at 30Hz. The next package, visp_auto_tracker,
had a range of 60cm to 300cm at 30Hz. One major drawback
of this package was that if the UAV lost sight of the tag, it
needed to re-establish at the minimum distance to continue
tracking. Thus with this package, any time the tag was lost
the UAV would have to maneuver to a precise location
to reinitialize the tracking. Lastly, Lawrence and Turchina
tested ar_track_alvar, which ran from 30cm to 300cm
at 10Hz. This package had the best range for establishing
tracking and is what is used in this approach. One problem
of tag tracking software, in addition to range limitations and
reinitializing the package when the tag is lost, is blurring
of the tag due to motion. This makes detecting the tag more
difficult, and is discussed in detail in “A motion blur resilient
fiducial for quad-copter imaging” by Meghshyam Prasad et
al. [24].

One problem with ar_track_alvar is determining
what to do if the tag moves out of view of the cam-
era. If the tag is not visible, the package has no way of
tracking the UGV. Huang et al. proposed a solution to
this in their paper “An Object Following Method Based on
Computational Geometry and PTAM for UAV in Unknown
Environments” [25]. Their solution was to use a Kalman filter
in order to predict the velocity of the tag, so the tag can be
found and tracking reinitialized.

C. Monocular SLAM

Monocular Simultaneous Localization and Mapping relies
on computer vision techniques to calculate the pose of the
robot and map the environment. In this work, monocular
SLAM is performed on the UAV’s front camera for state
estimation. Real-time monocular SLAM was once thought
impossible due to high computational costs; one of the first
implementations was in the Parallel Tracking and Mapping
(PTAM) package. Now, there exist a great variety of monoc-
ular SLAM packages, including LSD-SLAM [26], SVO [27],
and RatSLAM [28]. Many open-source vision-based SLAM
packages were compared in the 2016 paper by Quattrini Li
et al. [29]. ORB-SLAM [4] was found to be one of the better
performing packages, and is used in this project.

PTAM was originally made by Klein and Murray in
2007 [30]. Using the information of the UAV’s camera it
is able to find “features,” or the edges of detected obstacles,
in order to estimate distance traveled as well as scale of
distances of objects from the UAV. PTAM has also been used
in the collaboration of multiple UAVs. Bazen et al.’s 2016
experiment [31] involved coordinating a fleet of quad-rotors
using ardrone_autonomy and tum_ardrone. They
found that, while the completed missions were more accurate
when PTAM was used, the missions were successful less
frequently. They theorized this was due to delay “between

acquisition of information by the drones and their actual
displacement based on this information” [31].

Another later monocular SLAM package, ORB-
SLAM [4], improves upon the work by Klein and
Murray. ORB-SLAM uses ORB features, which are binary
features that are invariant to rotation and scale. Unlike
PTAM, ORB-SLAM is able to initialize with no user input,
which is necessary for autonomous robot systems. ORB-
SLAM allows for more accurate mapping by performing
loop closure, where loops are detected and the ends merged
to remove drift over time. Additionally, the number of
keyframes used by ORB-SLAM when matching features
increases depending on the complexity of the image, unlike
in PTAM where keyframes increase over time. This is done
by “culling” keyframes that are no longer used, and allows
for ORB-SLAM to run for longer periods of time.

D. Cooperative Localization

Cooperative localization (CL) deals with estimating the
pose of teams of mobile robots using sensor data. This is
done in order to provide enhanced localization compared to
the robots’ localization capabilities without cooperation. In
order for this to be done, a transformation matrix between
two robots must be calculated. Cooperative localization was
first introduced by Kurazume et al. [32] in 1994. At the
time it was known as ‘“cooperative positioning”. In this
experiment, robots were separated into two different teams:
one team moving, while the other team remains a stationary
landmark for the other team. The teams then switch roles
until all robots reach their target position.

The term “cooperative localization” first appeared in 1998
in works by Bison et al. and Rekleitis et al. [33], [14]. Since
its conception, CL has been applied to many different prob-
lem types in both 2- and 3-D, including vision-based [34],
[35], sonar-based [36], [37], and range-based [38], [39].
Two types of cooperative localization techniques especially
relevant to this paper are those dealing with vision-based
and 3-D problems. In 2009, Bahr et al. used cooperative
localization for the localization of autonomous underwater
vehicles. The goal of this work was to “create a fully mobile
network of Autonomous Underwater Vehicles (AUVs) that
perform acoustic ranging and data exchange with one another
to achieve cooperative positioning for extended duration
missions over large areas” [40].

Early work was done on vision-based CL by Jennings,
Murray, and Little [41]. In this work, two stereo vision-based
mobile robots explore and map their environment. One robot
finds landmarks in the environment that the second robot then
uses to localize itself relative to the first robot’s reference
frame. This allows the robots to collaborate on tasks using
a common local reference frame without a complete map
of the environment. In 2011, Chang et al. [42] worked with
humanoid robots in the RoboCup environment to localize
and track moving objects using vision-based cooperative
localization. First, they estimated the robot pose by modeling
the uncertainty of motion commands and measurements.
Then when other robots were within the field of view, state



estimates were refined using the estimated pose and distances
calculated based on the image.

III. APPROACH

In this section we describe the necessary parts of the
Bird’s Eye View system and how they must act together in
order to achieve the goals set out above. The robots must
be able to communicate with each other and with a Ground
Control Station. One of the robots must detect the fiducial
tag and extract the coordinate transformation between the
UAV and the UGV. The UAV has to be able to hover above
the UGV while tag-tracking is maintained. The UGV must
autonomously explore an indoor environment, and the UAV
must know the pose of the UGV and move accordingly while
maintaining tag tracking.

In the development of the UAV/UGYV system, several open
source ROS packages were used: bebop_autonomy, as a
driver for the Bebop and joystick; usb_cam, a driver for the
Logitech HD Pro Webcam C910; and ORB-SLAM 2 [4], a
monocular SLAM package.

Ground
Control
Station

Fig. 3. Shows the network connections between the ground Control Station
(GCS), the TurtleBot, and the Bebop. Connections are shown in blue.

A. Robot Team Network

Communication between the UAV, UGV, and a Ground
Control Station is enabled by a network connecting the 3
systems. The Bird’s Eye View project requires two PCs:
a Ground Control Station (GCS) and a TurtleBot PC. The
TurtleBot PC is connected to the TurtleBot and the Hokuyo
laser scanner via USB. A portable router and power source
(for the router) are also placed on the TurtleBot. The specific
router used in this project is the TP-Link 150Mbps Wireless-
N Nano Pocket Router. The TurtleBot PC was connected
to this router using an Ethernet cable. The Ground Control
Station was then connected wirelessly via WiFi to the router.
These two connections allow the TurtleBot PC and GCS to
communicate with each other. Since the TurtleBot PC can be
controlled wirelessly using the GCS, the GCS can now be
used to control both the Bebop and the TurtleBot. The GCS

must be kept within range of the portable router in order for
both robots to operate correctly. However, the TurtleBot PC
will always be within range of the router. All components
of the Bird’s Eye View network are shown in the diagram
below; see Fig. 3.

B. Movement of the UGV

Two different motion strategies were used for the UGV.
First, in order to challenge the tracking capabilities of the
UAV, the UGV is placed inside an enclosed area and a
random walk is executed. The UGV moves forward until
reaches near an obstacle, then performs an in-place rotation
of 180 degrees plus a small random value, then moves again
in a straight line. The UAV was able to follow the UGV
through out these movements, even though in place rotations
are more challenging. Second, the UGV uses a center-of-
the corridor following algorithm employing a PID controller
to navigate hallways. This algorithm compares the distances
read by the laser scanner 60 degrees off the center of the
UGV. As the UGV moves forward, it also turns slightly
favoring the side with the shorter distance. This is the core
behavior of the generalized Voronoi graph algorithm [43].

Communication between the two robots improves the
UGV’s movement algorithm. The UGV does not start mov-
ing until the UAV is able to see the fiducial tag. This al-
lows for a much simpler initialization process. Furthermore,
should the UAV lose sight of the tag for more than two
seconds, the UGV will stop moving and wait for the UGV
to find the tag again. Should the UGV be unable to find the
tag again, it is possible for an operator to step in and move
the UAV back into position using the joystick controller.

C. Tag Detection & Movement of the UAV

When first launched by a trained operator, the UAV must
be moved into position so the fiducial tag is above the
TurtleBot’s camera using a Logitech F710 joystick and
the bebop_autonomy package. The joystick allows for
precise control in moving the UAV to a position where it
is able to recognize the tag. The joystick also provides a
safety feature to control the UAV should loss of control
occur during the flight. Once in position, the UAV then au-
tonomously follows the UGV utilizing the fiducial tag. Early
work employed the Parrot AR.Drone 2.0 and the tag was
mounted on the UGV; see Fig. 4. This early approach was
abandoned due to the low camera quality of the AR.Drone
which resulted in frequent loss of tracking.

The Bird’s Eye View system uses tags generated by the
ar_track_alvar ROS package. When a tag is within
view of the UGV’s upward-facing camera, the estimated pose
of the tag is published to the ar_pose_marker ROS topic;
see Fig. 5. The drone then moves so that the tag remains
directly over the camera. This is done by transforming the
tag’s pose to X, y, z, and yaw values relative to the UAV’s
frame of reference. To maintain tracking, the tag must remain
within the camera’s field of view. A 4.6 cm tag was found
to be most visible from a height of 0.65 to 0.95 meters.
As a result, a constant height value of 0.8 meters is added



Fig. 4.
UGWV.

Early approach using a Parrot AR.Drone 2.0 and the tag on the

to the negative z dimension. Next, the x- and y-velocities
of the tag are calculated using the current state of the tag,
the previous state, and the time difference between the two
states. The current pose of the tag and the tag velocities are
used to calculate the required speed of the UAV in order to
maintain sight of the tag. The UAV’s velocities are calculated
as follows:
UAV.angular.z = tag.yaw * c

UAV.linear.z = tag.z * ¢
UAV.linear.x = tag.x x d + tag.vx
UAV.lineary = tag.y x d + tag.vy

In these equations, ¢ and d are constant scaling factors. These
factors are necessary because the bebop_autonomy driver
expects velocities between -1 and 1 inclusive. Best results
were obtained using ¢ = 0.4 and d = 0.07.

D. Cooperative Localization

The Bird’s Eye View package performs the cooperative
localization of the UAV using the pose of the UGV and the
pose of the tag. First, the odometry data is transformed from
the base_link frame to the map frame. This transformation
converts the local pose at the rotational center of the robot
to the fixed world frame, which does not drift over time.
The camera is located approximately 0.45 meters above
the TurtleBot’s base, which is taken into account when
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Fig. 5. Camera feeds: In the top image, the Bebop 2 flies over the UGV
with a tag. The bottom image shows the UAV’s front camera view.
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Fig. 6.  Shows the relationships between the different odometry and
localization methods used.
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calculating the UAV’s pose. Next, the relationship between
the fiducial tag’s position and the TurtleBot’s camera is
obtained using the data provided by ar_track_alvar.
This pose is added to the UGV’s pose to determine the
UAV’s current position in the world frame. Since the UAV’s
and UGV’s poses are both with respect to the world frame,
they are easily plotted in rviz' alongside the laser scan data.
Figure 6 shows how the different odometry and SLAM data
relate to one another.

lwiki.ros.org/rviz



E. UAV Localization Using ORB-SLAM

In addition to being calculated through cooperative local-
ization, the UAV’s pose is also estimated using the ORB-
SLAM 2 package. ORB-SLAM detects features in the UAV’s
camera feed and uses the change in location of these features
to determine the pose of the camera. These features can
be seen in Fig. 5; new features are added every time a
new keyframe is taken. Because most monocular vision
based SLAM algorithms, like ORB-SLAM, do not have scale
information, either from ground odometry, from stereo, or
from inertial data, it is impossible to calculate the scale of the
estimated poses. As a result, ORB-SLAM uses an arbitrary
scale. In order to compare the ORB-SLAM pose estimates
to the poses calculated using cooperative localization, the
scale of the ORB-SLAM data must be adjusted to match.
The data is translated to the start position in the world frame
and then multiplied by a scaling factor. This scale factor is
computed using the distance between the current pose of the
UAV and the pose when the tag first enters the camera’s
field of view. The ratio between the distance as estimated
by ORB-SLAM and by cooperative localization is used as a
scale factor. Since the scale factor remains close to constant,
the scale factor found using the cooperative localization pose
can be used even when tag tracking is no longer maintained.

Fig. 7.
corridor (blue UGV, pink UAV), while the bottom shows a random walk in
an enclosed space.

The top figure shows the poses of the two robots navigating a

F. Rejected Approach

Originally this project was attempted using an AR.Drone
2.0 rather than a Bebop. The ROS package tum_ardrone

was used as a PID controller and SLAM (Simultaneous
Localization and Mapping) package. In that iteration, the
tag was placed on the UGV while the UAV used its bottom-
facing camera to track the tag’s motion; see Fig. 4. However,
the Parrot AR.drone UAV was unable to use the front and
bottom cameras simultaneously. To deal with this issue, we
attempted a workaround using a camera switching node to
toggle between the front and bottom camera’s approximately
once a second. The goal was to switch between cameras
continuously at a rate that allowed the UAV to track the UGV
while still collecting data about the environment with the
front camera. However, this approach did not succeed. PTAM
was not able to accurately estimate the UAV’s pose with
such a limited number of camera frames, resulting in large
amounts of drift. Additionally, the bottom-facing camera on
the AR.Drone had a lower resolution, meaning if the UGV
moved at a rate greater than 0.2 meters per second, the UGV
could move out of view of the UAV in the time it took the
cameras to switch, which would lead to a loss of tracking.
Furthermore, the switching delay caused corrupted images
every so often. In addition to difficulty in tracking the tag, the
Parrot AR.Drone 2.0 was very unstable in position keeping
and it easily drifted away from the target.

Fig. 8. Center-of-the-corridor ORB-SLAM experiments: (a) The top image
shows a map of features and keyframes generated by ORB-SLAM. (b) In the
bottom image, the UGV trajectory is shown in blue, the UAV trajectory as
calculated by CL in pink, and the UAV trajectory according to ORB-SLAM
in green.



X-dimension: Along the Corridor

UAV cL
\

UAV OBSLAM

150 20
time in seconds

UAvCL

o e

PP Y L5 e L
4

UAV OrbSLAM

WL
-
! .
o5t gr"\r
F ¥ . . . , .
h w0 00 0 00 =0 £ 30
time inseconas

Height: UGV at0 m, UAV at 1.1 m
T T T

UGV odometry

.
§
i | L
.y Al N
I T T T A S R
R L IR K R L PN
N ' ) [
L} 1]

[LE Ao
AN e
N

20 250 200

U ATV T
; Vi A A
i !

fi
4%

UAV OBSLAM

150 20
time in seconds

Fig. 9. Pose Estimation for the UGV and UAV. The X, Y, and Z estimates
from the experiment depicted in Fig. 8 are plotted. In each image, the top
plot presents the odometric estimate of the UGV; the middle plot contains
the estimated pose of the UAV by combining the odometric value of the
UGV and the CL transformation; and the bottom plot presents the estimate
based on the ORB-SLAM package, scaled according to the CL value.

IV. RESULTS

The Bird’s Eye View project can be evaluated by com-
paring the poses of the UAV and UGV to determine how
well the UAV succeeds in following the UGV. The pose
of both the UAV and UGV are visualized in rviz, and the
pose provided by cooperative localization is compared to the
pose calculated by ORB-SLAM. Finally, the video from the
TurtleBot’s camera is examined to determine if any issues in
tag detection or UGV following are present.

Figure 7 shows a long trial run down the 3rd floor of
Swearingen Engineering Center This experiment ran for 800
seconds. At a speed of .15 meters/second, the UAV and UGV
covered 120 meters. For increased distance, the speed of the
UGYV could be increased. However, if the speed is too high,
the UAV will be unable to follow the tag. This is because at
high speeds the UAV will move out of view of the UGV’s
camera. During this experiment, the operator intervened one
time when the UAV flew directly under an A/C vent and was
blown off course. The length of this experiment shows that
the UAV is able to follow the UGV for long distances without
drifting off course. As can be seen in Fig. 7, the UAV very
closely followed the UGV as it navigated the hallway. The
tag remained within view as the robots rotated, and tracking
was maintained. The tag was seen 89% of the time when run
at a frequency of 30 Hz.

Figure 8(a) shows the ORB-SLAM resulting feature points
and keyframes used in calculating the pose of the UAV. This
pose is given in a world reference frame. However, since
ORB-SLAM does not have any knowledge of the scale of the
system, it is not the same world coordinate frame used by the
UGV and cooperative localization. In order to be compared
directly to those poses, the ORB-SLAM data must be scaled
accordingly. Figure 8(b) shows the ORB-SLAM data scaled
and plotted next to the CL estimate and UGV’s trajectory.
This scaled pose is used as an estimate for the UAV’s world
frame pose when the tag is not visible by the system. Using
the UGV’s global pose and ORB-SLAM, the UAV attempts
to find the UGV autonomously if tracking is lost.

Figure 9 presents the evolution of the position of the
UGYV and the UAV based on different estimation approaches.
The three figures show the values of the X-axis (along the
direction of travel); the Y-axis (around 1 m drift of the
UAV); and the Z-axis. In each figure, the top plot shows
the odometry values for the UGV; the middle plot shows the
estimate of the UAV’s pose based on CL; and the bottom plot
contains the estimates from ORB-SLAM scaled using the
information from CL. The longest motion was along the X-
axis; as expected the Z-axis results are constant for the UGV
as it operates on flat terrain, the UAV though, maintained a
nominal 1.1 m height, with small variations.

In all of the experimental data collected, the pose of the
UAV and UGV are very similar, excluding the difference in
height above the ground. The UGV successfully navigates
the corridors of the Swearingen Engineering building, staying
in the center of the hallway, and the resulting maps accurately
show the robots’ paths through the hallways. The system



is able to successfully recover from a loss of tag tracking
using the ORB-SLAM estimated pose. As all of these
objectives are met, one can say the two robots are able to co-
operatively and autonomously explore and map an unfamiliar
environment.

V. CONCLUSION

This paper aims to determine the abilities of a UAV and
UGV team to autonomously search, map, and explore an
indoor environment. The two vehicles remain in contact with
each other visually and over WiFi. Cooperative localization
of the UAV using the UGV’s pose and relative pose between
the two is combined with the UAV’s pose provided by
ORB-SLAM for more accurate localization. The framework
developed in this paper is targeted towards search and rescue
operations.

The results show that the UGV is able to autonomously
navigate the environment and that the UAV is able to follow
the UGV using vision-based techniques for long periods
of time. The pose of the UAV is calculated both using
cooperative localization and the monocular SLAM package
ORB-SLAM 2 for enhanced localization. Upon a loss of
tag tracking, the ORB-SLAM estimate is used to attempt
recovery of the system. These poses are compared to the
TurtleBot’s pose as calculated from the laser data to show
the viability of this approach. All code used in this paper is
available online?.

Future work will consider expanding the ORB-SLAM
output to perform 3-D mapping of an area by fusing the data
from the UAV’s front camera and the UGV’s laser scanner.
Currently the maps provided by the laser rangefinder and
ORB-SLAM are kept separate, but will be combined for
increased accuracy.

Further extensions of this work will exchange the UGV
for an Autonomous Surface Vehicle (ASV), like the one in
Fig. 10, to assist in environmental monitoring. Having a base
to land will extend the range of operations for UAVs and
provide additional information.

Fig. 10. Autonomous Surface Vehicle (ASV) based on the Mokai Eclipse
platform.

2afrl.cse.sc.edu/afrl/resources/code/
birdseyeview
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