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Abstract— We present the adaptation of an optimal terrain
coverage algorithm for the aerial robotics domain. The general
strategy involves computing a trajectory through a known
environment with obstacles that ensures complete coverage of
the terrain while minimizing path repetition. We introduce
a system that applies and extends this generic algorithm to
achieve automated terrain coverage using an aerial vehicle. Ex-
tensive experimental results in simulation validate the presented
system, along with data from over 100 kilometers of successful
coverage flights using a fixed-wing aircraft.

I. INTRODUCTION

This paper presents a realization of an optimal terrain
coverage algorithm for an Unmanned Aerial Vehicle (UAV).
The problem formulation consists of generating a path that
completely covers the area in a bounded environment, while:
• avoiding a set of obstacle regions with arbitrary shape
• preventing from flying over previously covered regions
• starting from and ending at the same location
The problem of coverage using an aerial vehicle has many

applications, including: environmental inspection, search and
rescue, surveillance, etc. Providing an optimal trajectory in
terms of minimum travel distance is very important espe-
cially in time-critical scenarios such as search and rescue,
while it also helps to minimize operational cost in general.

Our approach to terrain coverage is to decompose a 2-
dimensional environment with obstacles into simple regions
using the Boustrophedon Cellular Decomposition (BCD)
algorithm [1]. This representation leads to a systematic
motion pattern that covers each region individually and
completely, by using a back and forth motion. The original
Boustrophedon family of algorithms guarantees the complete
coverage of an unknown environment with no bounds on the
distance travelled. Mannadiar and Rekleitis [2] introduced a
variant of the algorithm that ensures the complete coverage
of an environment with known obstacles, that guarantees
optimality in terms of distance travelled. It is important to
note that these algorithms assume that the vehicle is either
holonomic or redundant, meaning that it can either turn in
place or move in all directions independently.

In contrast, in this paper we extend the optimal coverage
algorithm [2] for the general class of non-holonomic robots.
We compute a set of waypoints outlining the desired cover-
age path, which is then realized by a robot controller that
accounts for the vehicular dynamics of the target robot. Be-
cause waypoint-based control can be less maneuverable than
direct velocity-based steering, this coverage approach can
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Fig. 1. Our fixed-wing UAV landing after a successful coverage session.

no longer guarantee minimal travel distance for all robotic
vehicles. Thus, we generalize the criterion of coverage
optimality within a robot-independent context as minimizing
the distance travelled over previously covered regions.

This paper’s main contribution consists of addressing
practical issues related to the deployment of our theoretical
complete coverage algorithm to control a fixed-wing UAV
shown in Fig. 1. Our field trials produced numerous complete
aerial coverage sessions resulting in over 100 km of total
flight distance. We also conducted extensive testing using a
simulated version of the aircraft to determine the impact of
various system parameters on the overall coverage quality.

II. RELATED WORK

Choset and Pignon [1] first introduced the Boustrophedon
Cellular Decomposition (BCD) family of algorithms for
coverage-based path planning in an unknown environment.
Their general coverage strategy extended the Seed Spreader
algorithm [3] for producing back-and-forth sweeping mo-
tions through the free space. Acar et al. [4] further de-
veloped BCD-based coverage with experimental verification
for a variety of control Morse functions. Mannadiar and
Rekleitis [2] presented a variant of this technique which guar-
anteed optimal coverage for an arbitrary known environment.
Previous algorithms proposed by Zheng et al. guaranteed
a performance of at most eight times the optimal cost for
known terrains [5], using additional constraints for the free
space configuration. The reader is referred to [2], [6] for
information on other general coverage strategies and for an
extensive survey of coverage research.

The aerial robotics community has developed a number
of systems that either directly achieve terrain coverage or
use similar techniques to address other applications such as
search and rescue. Gaudiano et al. [7] investigated swarm in-
telligence and UAV control, with extensions to collaborative
aerial coverage. Agarwal et al. [8] proposed a multi-UAV
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coverage solution for a rectilinear polygonal environment
that focused on assigning partitions of the environment
proportionally based on each vehicle’s capabilities, although
computing explicit trajectories was not within their scope.
Maza and Ollero [9] presented a similar technique for
distributed coverage of a polygonal environment with no
obstacles. Their algorithm divided the free space into simple
regions and focused on selecting a per-region coverage
pattern that minimized the number of turns, which is an
interesting solution to optimize performance.

Ahmadzadeh et al. conducted extensive research on
coverage-style aerial surveillance [10], [11] with the goal
of minimizing the amount of uncovered area given certain
time constraints. Their work addressed explicit concerns for
vehicle dynamics and sensor range, and explored a wide
variety of different solutions to achieve surveillance.

Cheng et al. presented a solution to 3-D complete coverage
by projecting the environment into non-planar surfaces [12].
Their approach focused on designing a time-optimal trajec-
tory within this manifold, which is devoid of obstacles.

Several solutions to search-related problems within uni-
form distributions presented motion strategies that are readily
extendable to achieve coverage [13]–[15]. These systems
employed probabilistic models of the abstract problem to
derive robust algorithms, although their use of approximation
techniques could potentially impede the optimality of cov-
erage. In addition, addressing the completeness of coverage
using search-related strategies remains an open problem.

III. AERIAL COVERAGE
The problem of covering the area of a bounded envi-

ronment while avoiding a known set of arbitrarily shaped
obstacles is solved using a two-stage hierarchical solution.
First, an off-line analysis of the environment decomposes
the free space into a set of simple regions, called cells, and
determines an Eulerian circuit through all connected cells.
During the on-line stage, back-and-forth sweeping motions
are generated to cover individual cells while following the
Eulerian circuit. Previous developments [2] primarily focused
on the off-line components of the algorithm, and assumed
that the target vehicle could move in all directions indepen-
dently. This section begins with a review of the off-line anal-
ysis technique, and then elaborates on additional components
required to ensure complete and optimal coverage for non-
holonomic robots, such as a fixed-wing UAV.

The off-line algorithm breaks down free space using
the Boustrophedon Cellular Decomposition (BCD) method.
BCD-based coverage was originally proposed for the context
of a terrestrial robot exploring through an unknown environ-
ment with obstacles. Cells of the BCD are populated as the
robot sweeps back and forth through the free space. When
the vehicle encounters a new obstacle in its path, it adopts a
locally optimal strategy by choosing to cover the uncovered
cell closest to its current location. Depending on the obstacle
layout however, this strategy may force the robot to travel
through previously covered areas in the process.

On the other hand, in aerial coverage one typically deals
with known environments, since satellite maps of the terrain

can be readily obtained. The definition of obstacles is also
more flexible than in the terrestrial context. Assuming that
the vehicle flies at a fixed altitude, certain terrains and struc-
tures such as mountains, high-rise buildings, and even re-
stricted airspace still pose as (pseudo-) physical obstructions
to the robot. More commonly however, there are application-
specific areas where there is no need for coverage; for
example, in a wilderness search operation, villages and large
bodies of water do not need to be covered. The presented
work deals only with the latter type of obstacles.

A. Off-line Analysis Algorithm
Off-line analysis of the environment consists of partition-

ing the free space into cells using the BCD method, and then
generating an Eulerian circuit through all connected cells by
solving a linear programming formulation.

The input to the system is a bitmap representation of the
environment that differentiates between obstacles and free
space. The BCD algorithm divides the free space into cells by
sweeping a line through the bitmap and identifying locations,
known as critical points, where the connectivity of the free
space on the line changes by the presence of an obstacle.
Without loss of generality, the direction of the sweep is
assumed to move along the x-axis. The position of critical
points and the boundaries of cells are stored respectively as
vertices and edges of the Reeb graph structure G = 〈V,E〉.

The Reeb graph is used as input to the Chinese Postman
Problem [16] to calculate an Eulerian circuit, which consists
of a closed path traversing through every cell at least once.
This is achieved by doubling selected edges of the Reeb
graph, although no edge needs to be duplicated more than
once [16]. The Eulerian circuit is the solution to the linear
programming instance described in Eq. 1:

Minimize z = ∑
e∈E

(cexe) (1)

subject to the following constraints:

∑
e∈E

(anexe)−2wn = kn, ∀ n ∈V ;

xe ∈ Z+, ∀ e ∈ E;
wn ∈ Z+, ∀ n ∈V ;

where:

∑
e∈E

(anexe) is the number of added edges to node n∈V . For

the result to be Eulerian, an odd number of edges must
be added to nodes with odd degree and an even number
of edges must be added to nodes with even degree;

ane is 1 if node n meets edge e, and 0 otherwise;
xe is the number of added copies of edge e in the solution;

wn is an integer variable that will force ∑
e∈E

(anexe) to be

odd for odd nodes and even for even nodes;
kn is 1 for nodes with odd degree, and 0 otherwise;
ce is a real number representing the cost of edge e.
To prevent repeat coverage, cells corresponding to doubled

Reeb graph edges are split into non-overlapping top and
bottom sub-cells. One of the simplest methods for splitting
cells is to divide along the mid-points between the top and
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Fig. 2. Result of the off-line analysis phase for a 13 km × 10 km region.
Darkened areas delineate obstacles; white lines depict cell boundaries, red
lines and cell numbers indicate Eulerian circuit.

bottom boundaries. Unfortunately, because the mid-points at
the left and right extremities of the cell do not necessarily
correspond to the locations of critical points, the robot must
sometimes backtrack through the covered area to reach the
critical point and subsequently the next cell. We employed
a more efficient cell-splitting scheme which guarantees that
sub-cells will share the same critical points as their parent,
by interpolating between the bounding critical points and
between the top and bottom boundaries of the original cell.

At the end of the off-line analysis phase, the resulting
Eulerian circuit outlines a cyclic path through all connected
cells in the environment. Fig. 2 shows the decomposed
cells and sub-cells for a sample environment, where the
corresponding numbers illustrate the Eulerian circuit and
consequently, the order of coverage.
B. Per-Cell Coverage Pattern

Given an Eulerian circuit through all cells of the free
space, each cell can be covered by generating back-and-forth
Seed Spreader motions, which is very well documented in the
literature [1], [3], [17]. The resulting trajectory is represented
as a set of waypoints forming parallel sweep lines through the
cell. The direction of coverage is defined as the orientation
of the coverage progression as the robot moves through the
free space, which is orthogonal to all of the sweep lines.

A crucial parameter required by the Seed Spreader algo-
rithm is the coverage footprint, which measures the spacing
between consecutive parallel sweep lines in the back-and-
forth motion path. Different factors contribute to the defini-
tion of the coverage footprint, depending on the intended ap-
plication. For example, if the robot is to record atmospheric
samples, then the footprint width would correspond to the
sensor’s range. In the context of visual coverage, where an
UAV continuously records “bird’s-eye view” pictures of the
terrain, the footprint width depends on the camera’s field of
view, the UAV’s altitude, and the required amount of image
overlap. In this paper the focus is solely on visual coverage.

It is known that the footprint width of the Seed Spreader
algorithm can affect the overall quality of coverage [2].
In particular, the footprint width determines whether the
robot will arrive at the top or the bottom boundary of a

(a) (b)

Fig. 3. Results of off-line analysis using (a) the default direction of
coverage, and (b) after aligning with the dominant axis of the free space.

completed cell. Depending on the location of the next cell
in the Eulerian circuit however, the robot might need to
backtrack through previously covered terrain. One method
to prevent these disjunctions is to assume a default footprint
width and find the best configuration out of all possible
Eulerian circuits. Unfortunately, enumerating through all
possible Eulerian circuits is a #P-complete problem [18], and
the best configuration might still contain disjunctions. More
importantly, in certain situations it is not possible to estimate
the footprint width, for example if the vehicle’s altitude
during visual coverage is unknown prior to deployment.

Our implementation used a more efficient method which
eliminates disjunctions completely, by adding an extra sweep
line in the back-and-forth motion pattern. This guarantees a
continuous path across cell boundaries, and the process can
be done during flight. Although this method does not improve
the length of the flight path, in the case of visual coverage the
increased overlapping regions in images might be beneficial
to post-processing activities such as image stitching.
C. Direction of Coverage

The BCD algorithm sweeps through the bitmap in the
direction of coverage. This direction impacts the shapes of
cells in the Reeb graph and subsequently the length of the
sweep lines in the Seed Spreader pattern. The quality of the
coverage path can be improved by changing the direction of
coverage, since fewer longer straight paths are preferred over
many shorter ones. This is especially desirable when working
with non-holonomic vehicles [19], since they cannot perform
in-place turns. Fig. 3 illustrates that rotating the map prior to
the construction of the BCD can reduce the presence of sharp
cusps and make cells more elongated, thus minimizing the
number of turns. We now propose three different strategies
for selecting the direction of coverage, each of which rotates
the map before running the BCD algorithm.

Given that boundaries are shared between obstacles and
free space, one method is to set the direction of coverage
orthogonal to the dominant edge orientation for obstacle
boundaries, which would arguably produce longer sweep
lines as a result.

An alternative strategy is to align the direction of coverage
directly with the distribution of the free space, under the
assumption that the length of sweep lines will be maxi-
mized along the dominant axis of the free space. Given the
eigenspace decomposition for free space pixel coordinates,
the direction of coverage is set orthogonally to the heading
of the eigenvector with the largest eigenvalue. This ensures
that cells produced by the BCD are mostly elongated, which
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Fig. 4. Two strategies for steering non-holonomic vehicles along the ideal
path (shown in red): process the waypoints outlining the desired trajectory
using a greedy path planner (a) or add curlicue orbits at corners (b).

in turn minimizes the number of turns in the coverage path.
Finally, certain environmental conditions can also af-

fect the quality of coverage. For example, crosswind can
constantly divert UAVs from their desired flight path. By
aligning the direction of coverage to be perpendicular to the
dominant wind heading, most of the crosswind force will be
shifted to the lateral wind component.

D. Non-Holonomic Vehicle Control

The coverage algorithm generates desired coverage paths
in a robot-independent manner by using a set of waypoints,
which is then given as input to a robot motion controller.
The completeness of coverage assumes that the robot travels
through this path exactly; despite being trivial for robots that
can turn in-place, additional logic is needed to steer a non-
holonomic robot through the specified path efficiently.

Certain robots including fixed-wing aircrafts offer inte-
grated motion planners that take waypoints as input. These
planners typically employ a greedy strategy, by issuing a
maximum turning rate until the vehicle aligns its heading to
the destination. Fig. 4(a) illustrates this behavior when the
vehicle turns around to transition between consecutive sweep
lines. Processing waypoints corresponding to the coverage
trajectory directly using a greedy path planner might violate
the footprint width and compromise the completeness of
coverage. In the illustrated example, although the UAV had a
minimum turning radius of 45 m, the greedy planner caused a
miss-distance of about 80 m at the beginning of the second
sweep line. One way to resolve this issue is to adjust the
footprint width to compensate for these deviations.

As an alternative, Fig. 4(b) depicts a corner-steering
strategy that allows non-holonomic robots to remain on the
designated coverage path. Rather than carrying out a turn
directly, the robot is steered in a circular orbit to manually
align it with the upcoming segment. The orbit’s size is
determined from the vehicle’s minimum turning radius, and
the orbit is positioned such that it intersects with both line
segments. This curlicue strategy is well suited for most
turning angles, although it is not required for mild turns
where the vehicle can adjust its course without deviation. In
contrast, if the turning angle is too steep, i.e. near 0◦, then
the resulting orbit placement will veer the vehicle away from
the desired path. These rare occurrences can be addressed by
relocating the orbit to be tangential to the cusp of the turn.

Fig. 5. Our robotic platform is a commercial fixed-wing UAV with an
on-board autopilot microprocessor and a gimbal-mounted camera.

IV. HARDWARE SETUP

The unmanned aerial vehicle shown in Fig. 5 is a
rigid body fixed-wing plane commercially available from
Procerus R© Technologies. Its 1 meter wingspan is built using
expanded polypropylene foam, which is useful for absorbing
the impact upon touchdown. A brushless electric motor
powered by batteries can drive the plane at average ground
speeds of 14 m/s and for flight durations of up to 30 minutes.

This aircraft is controlled by an on-board autopilot micro-
processor, which receives instructions from the ground con-
trol software wirelessly. The autopilot is connected to various
sensors, including an accelerometer, a gyroscope, a pitot tube
(for measuring pressure and wind speed), and a GPS unit. In
addition, an on-board camera attached to a pan-tilt gimbal
device transmits live analog video stream at 30 Hz via a
separate radio frequency. This UAV can operate in many
modes, ranging from joystick-based manual control to fully
autonomous waypoint-based navigation.

The presented coverage system is implemented in C++
under Linux, on-board a 1.66 GHz dual-core laptop, and
communicates with a networked ground control computer.

All of the experiments presented in this paper were con-
ducted at various fixed altitudes. During flight, the gimbal’s
orientation is continuously regulated to align it perpendicular
to the ground plane. This removes the need to transform
frames using projective geometry, and also establishes a
uniform pixel density in the acquired images. The reader
is referred to [20] for a discussion on the gimbal control
algorithm as well as other information on this UAV.

V. EXPERIMENTAL RESULTS

Extensive testing of the optimal coverage system was
conducted using the Aviones [21] 6-DOF UAV simulation
software, and also during several field trials. These sessions
validated the optimality of the realized trajectory resulting
from the implemented coverage system. Each experiment
also investigated the impacts of a specific parameter or aspect
of the system on the quality of coverage.

The performance of the system is quantified both by the
total trajectory length and the elapsed time for each complete
coverage session. Although these two metrics are strongly
correlated, the total flight distance provides a somewhat
isolated assessment of the coverage path; in contrast, the
flight duration represents the quality of coverage for each
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Fig. 6. Simulated coverage paths for a 13 km × 10 km region at 300 m altitude with no wind. Star denotes start and end of flight. The UAV travelled
(a) 590.9 km in 11 h 56 m using the greedy path planner, and (b) 740.7 km in 14 h 56 m using the curlicue strategy.

particular session, since it accounts for internal factors such
as battery levels as well as external conditions such as wind.
A. Large Scale Simulation

Assessing the scalability of the algorithm, Fig. 6 depicts
two complete aerial coverage sessions over a 13 km × 10 km
environment containing multiple curved and polygonal ob-
stacles These sessions were carried out in simulation both
because the real UAV lacked sufficient battery to sustain such
a flight, and more importantly because it allows the two con-
trol schemes, namely the greedy and curlicue controllers, to
be evaluated under an optimal environment without wind. To
remain faithful to the real UAV’s capabilities, the coverage
footprint was determined based on an operational altitude of
300 m and with a 46◦ field of view of the camera.

As mentioned previously in Sec. III-D, one method to
compensate for path deviations resulting from using the
greedy path planner is to decrease the effective coverage
footprint width. Given these operational altitude and camera
settings, and knowing that the UAV’s minimum turning
radius in the absence of wind is 50 m, the effective coverage
footprint is about 70% of the original width. Unfortunately,
simulation results using this setting nearly doubled the length
of the original path, even in the absence of wind.

Rather than compensating for the deviations caused by
the greedy path planner, the two control techniques are
compared using the same footprint width to estimate the
difference in performance between a non-holonomic vehicle,
such as a fixed-wing aircraft, using curlicue patterns versus a
holonomic robot, such as a helicopter, following the original
waypoint path. Since the fixed-wing simulator was used in
both cases however, the latter results can only approximate
the performance of a holonomic vehicle.

The flight paths recorded from both experiments are
provided in Fig. 6. Under ideal environmental conditions,
The elapsed time and total flight distance both indicate a
25% increased penalty for using the curlicue strategy; this
provides an estimate of the additional resources required to
achieve complete coverage in a large scale environment.

TABLE I
SIMULATED COVERAGE RESULTS FOR A 1 KM × 0.6 KM REGION AT

150 M ALTITUDE UNDER DIFFERENT WIND CONDITIONS.

Alignment of Coverage Direction
Default Obs. Edges Free Space Wind

Time (No Wind) 21 m 54 s 21 m 59 s 21 m 26 s –
Dist. (No Wind) 13.61 km 13.69 km 13.36 km –

Time (7 m/s Wind) 28 m 57 s 25 m 23 s 27 m 13 s 27 m 39 s
Dist. (7 m/s Wind) 15.14 km 13.24 km 14.46 km 15.19 km

B. Alignment of Coverage Direction
The optimal direction of coverage, assuming that such

a value exists, is strongly dependent on the obstacle lay-
out for each particular environment. Nevertheless, several
simulated coverage sessions were conducted on a terrain
with one obstacle after aligning the direction of coverage
using different strategies. Although the chosen environment
is arguably overly simplistic, the coverage path generated
using this terrain was well matched to the UAV’s capabilities.

Table I enumerates the elapsed times and flight distances
resulting from changing the direction of coverage using
various alignment methods. In the first set of experiments,
the UAV simulation was carried out in the absence of wind
to determine the isolated effects of aligning the direction
of coverage perpendicular either to the dominant obstacle
edge orientation or to the dominant axis of the free space
distribution. Unfortunately, the resulting paths exhibit nearly
identical performance, arguably due to the simplicity of the
chosen terrain. On the other hand, this suggests that the
direction of coverage might not be an important factor for the
scale of operations relevant to the specific UAV hardware.

The same three experiments were then repeated after
introducing a static 7 m/s wind, where the wind direction
was manually set to be perpendicular to each direction of
coverage, to maximize deviations from the desired trajectory.
The static wind setting was anecdotally observed to produce
similar results compared to real flight sessions. In addition, a
separate session was carried out after aligning the direction of
coverage to be perpendicular with the wind heading. Looking
at the second row of elapsed time results in Table I, the
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(a) (b)
Fig. 7. Simulated coverage paths for a 1 km × 0.6 km region at 150 m altitude with 7 m/s wind (arrow shows direction). Star denotes start and end of
flight. Our UAV travelled (a) 14.46 km in 27 m 13 s under alignment with free space, and (b) 15.19 km in 27 m 39 s under alignment with wind direction.

presence of wind appeared to have consistently increased
the duration of coverage in all four sessions. Interestingly,
in the final experiment where the rotation forced the wind to
be perpendicular to the direction of coverage, the vehicle’s
velocity oscillated between 20 m/s along the wind and 10 m/s
against the wind, which delayed the coverage overall. Thus,
one should consider both the costs and benefits of the wind
alignment technique, especially in time-critical scenarios.

Investigating the flight distances, one of the sessions
(alignment with obstacle edges) actually resulted in a shorter
coverage trajectory than previous results under no wind
conditions. Upon further inspecting the data, the crosswind
can be seen in Fig. 7(a) to have significantly warped the
back-and-forth sweeping motions. In contrast, the flight
trajectory resulting from alignment with the wind direction
in Fig. 7(b) displayed minimal deviation from the original
set of waypoints determined by the coverage algorithm.

As predicted previously, no single alignment method re-
sulted in unilateral performance improvements, even for a
simple one-obstacle terrain. For settings with little or no
wind factor, the choice of alignment ultimately depends on
whether the resulting cell shapes lead to a reduction in the
number of turns. On the other hand, it was observed that
aligning the direction of the sweep lines to be parallel to
a strong wind force will extend the duration but will also
ensure that the vehicle remains on course.
C. Global vs Local Optimality

This set of simulations compared the cell-selection tech-
nique for the coverage algorithm presented in this paper
against the locally optimal approach of choosing the closest
uncovered cell. Because the latter can lead to different paths
depending on the first visited cell, seven locally-optimal
coverage sessions were conducted on a 1 km2 terrain with
two obstacles to exhaustively test all possible scenarios.
An additional session was carried out using the proposed
algorithm in this paper, with identical configurations.

The proposed globally optimal algorithm completed cov-
erage in 24 m 04 s with a total flight distance of 15.01 km,
whereas the locally optimal sessions lasted between 25 m 46 s

and 27 m 29 s with traveled distances ranging from 16.05 km
to 17.13 km. These results indicate that the globally optimal
cell traversal strategy produced an average time and distance
improvement of 10%, even for the simple environment tested.
Although more testing is needed to be conclusive, the gap in
performance would arguably grow with the presence of more
obstacles and would decrease when covering larger terrains.
D. UAV Field Trial

Extensive field experiments over farmland terrain have
resulted in a total flight distance of 213.8 km during nu-
merous coverage sessions, with 118.9 km accounting for
completed coverage for various obstacle placements. All of
the configuration parameters used in the simulated coverage
sessions, including those in this paper, were obtained from
real data collected during these extended field trials.

The final experiment revisits the comparison between the
greedy robot controller and the curlicue technique, although
this time the coverage sessions were performed using an
actual fixed-wing UAV, above a farmland terrain affected by
a 5-8 m/s wind. Observing the resulting trajectories and flight
data in Fig. 8, the elapsed time and distance both indicate an
85% increased penalty for using the curlicue strategy. One of
the main causes for the large performance gap can be seen
in the curlicue path – rather than flying in circular orbits, the
wind constantly pushed the UAV off course.

The collected aerial footage was used to estimate the com-
pleteness of coverage by analyzing the overlap percentage
among video frames. The flight session using the greedy
controller resulted in 66.6% single coverage, 28.3% repeated
coverage, and 5.1% missed coverage, whereas the curlicue
session resulted in 35.1% single coverage, 64.1% repeated
coverage, and 0.8% missed coverage. The large amount of
repeated coverage in the latter session is primarily caused
by the circular orbits generated by the curlicue controller,
as seen in Fig. 8(b). Also, the reduction of the footprint
widths to accommodate an integer number of sweep lines
per cell caused a certain amount of overlap in both sessions.
Furthermore, because the wind deviated the UAV off course,
the collected footage skipped over a small amount of terrain.
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(a) (b)
Fig. 8. Actual coverage paths from an UAV field trial, for a 1 km × 0.7 km region at 150 m altitude with 5-8 m/s wind (arrow shows direction). Star
denotes start and end of flight. Both directions of coverage were pre-aligned with obstacle edges. Our UAV travelled (a) 9.10 km in 12 m 48 s using the
greedy path planner, and (b) 17.25 km in 23 m 42 s using the curlicue strategy.

The two coverage sessions were replicated in simulation
using a fixed wind factor computed from field data. The UAV
travelled 10.2 km in 16 m 19 s using the greedy path planner,
and 19.3 km in 30 m 38 s using the curlicue controller.
Comparing to the field trial results, the slightly increased
distance and duration values are attributed to a combination
of the inaccuracies in the replication of the setup and of the
simulation. More importantly however, the performance gap
between the two motion controllers remain at about 87%,
which is near identical to the results obtained in field.

VI. CONCLUSION

In this paper we presented a realization of an optimal
coverage algorithm on a fixed-wing unmanned aerial vehicle.
We designed a hierarchical, robot-independent system that
decomposes a bitmap representation of the environment into
free space regions, computes an optimal circuit through
these connected regions, and produces a motion path for
complete coverage which accounts for the range of the
deployed sensor. We propose two robot-specific controllers
for carrying out the generated motion path while accounting
for the dynamics of a non-holonomic vehicle.

Our experiments included over 100 km of successful visual
coverage flights with a real fixed-wing vehicle, together with
thousands of kilometers of flight in simulation. Extensive
testing validated the robustness and efficiency of the pro-
posed approach, and discovered the effects on the quality
of coverage of different motion planners, of the direction of
coverage, and of environmental factors such as wind.

We are currently investigating the effectiveness of alter-
native motion patterns such as sawtooth and spiral shapes
for covering free space regions. We are also continuously
expanding our experimental repertoire for a wider range of
system parameters and obstacle configurations. Finally, on-
going efforts to integrate this system with various terrestrial
and naval vehicles will ultimately lead to heterogeneous
multi-robot collaborative coverage.
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