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Abstract— In this paper we present an approach for localizing
a sensor network augmented with a mobile robot which is
capable of providing inter-sensor pose estimates through its
odometry measurements. We present a stochastic algorithm
that samples efficiently from the probability distribution for the
pose of the sensor network by employing Rao-Blackwellization
and a proposal scheme which exploits the sequential nature
of odometry measurements. Our algorithm automatically tunes
itself to the problem instance and includes a principled stopping
mechanism based on convergence analysis. We demonstrate the
favourable performance of our approach compared to that
of established methods via simulations and experiments on
hardware.

I. INTRODUCTION

In this paper we present an approach for probabilistically

localizing a network made up of both static and mobile com-

ponents based on relative inter-component pose estimates.

This problem of self-localization in sensor networks is recog-

nized as a key requirement for many network applications [1]

and is considered an important step in the overall goal of

developing self-adapting and self-configuring networks.

We consider the case where our network is augmented

with a mobile robot which is capable of providing inter-

sensor pose estimates through odometry measurements, as

shown in Figure 1. In this scenario, the robot’s motion

through the network facilitates localization by explicitly

transferring positional information between sensor locations.

By maintaining an ongoing estimate of the robot’s location,

the position of any sensor it interacts with can be proba-

bilistically estimated, (and updated), given the appropriate

motion and measurement models.

Our approach is to use a Markov Chain Monte Carlo

(MCMC)-based algorithm that allows us to sample from

the probability distribution function (PDF) for the pose of a

sensor network. We overcome the often-prohibitive compu-

tational effort required by MCMC approaches by employing

the following techniques: 1) we use a unique, odometry-

specific proposal distribution that exploits the conditional de-

pendencies present in our problem domain; 2) we apply Rao-

Blackwellization to effectively reduce the dimensionality of

our sample space; 3) we automatically tune the parameters

of our proposal technique to achieve desired acceptance
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Fig. 1. The components of the camera sensor network used in the
experimental results of the paper.

rates; and 4) we employ convergence analysis based on

the Gelman-Rubin statistic [2] as a stopping mechanism

that informs us when the samples we have gathered closely

represent the underlying pose distribution. Note that few

existing methods for sensor network localization compute

the full probability distribution for the node positions, due

to the computational burden it entails. Existing approaches

to sensor network localization generally estimate only the

maximum likelihood configuration and use a Gaussian as-

sumption in the computation of confidence intervals.

The problem we consider in this work is similar to the

simultaneous localization and mapping (SLAM) issue in

traditional mobile robot research, but there are some key

differences. Our sensors, which correspond to landmarks

in the SLAM problem, are uniquely identifiable, so there

is no correspondence ambiguity. Additionally, we can as-

sume that the mobile robot will operate, for the most part,

within the confines of a sensor-network deployed region

and will ultimately visit the local area of each network

component many times. Most importantly, in sensor network

self-localization, the initial mapping effort is a one-time task,

the results of which will likely be used for the lifetime of the

network. Therefore the use of computationally sophisticated

techniques are appropriate.

One potential application of our work is in the construction

of a smart house in which actuators and sensors respond to

the behaviour of the resident in order to help them with

their daily activities [3]. For example, such a technology

could allow aging seniors more independence and therefore

a better quality of life. Furthermore, it could allow them to

stay longer in their own residence than might otherwise be

possible, alleviating pressure on public institutions. A mobile

robot combined with a sensor network in such a system could

aid the resident in many tasks, but must deal with navigation

and localization.
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The contribution of this work is an efficient, MCMC-

based, global localization technique used to directly recover

a representation for the PDF for the pose of a mobile-

robot augmented sensor network. Our approach uses a

novel, self-tuning proposal method in conjunction with Rao-

Blackwellization to achieve fast mixing rates and employs

a principled stopping mechanism that detects when our

approach has adequately characterized the underlying dis-

tribution.

In the remainder of this paper, we first provide some

background on related work and then give a formal definition

of the problem we are addressing. We then discuss the details

of our approach to sensor network localization and assess

its performance against those of established methods via

simulations and real world experiments.

II. RELATED WORK

Traditional sensor network self-localization efforts have

focused on estimating distances between sensors. Tech-

niques include the use of the received communication signal

strength in radio networks [4], or time-of-arrival ranging

using ultrasound [5]. These techniques typically have limited

accuracy and the localization algorithms must be able to

handle some degree of noise in the range data [6]. A

theoretical analysis of the ability of a group of sensors or

robots to self-localize from range-only estimates is given

by [7]. While much of the research conducted on sensor

networks is based on developing distributed, computation-

ally efficient algorithms appropriate for networks of low-

powered sensor platforms, recently there has been a shift

towards more complex approaches incorporating advanced

probabilistic techniques and graphical models, e.g. [8]. The

traditional sensor network assumption of homogenous sys-

tems of resource-impoverished nodes is making way for

tiered architectures that incorporate network components of

significant computational sophistication [9].

Complex probabilistic approaches are especially appropri-

ate when variants of the localization problem are considered

in which the network includes one or more mobile com-

ponents. In these cases, as we have mentioned earlier, the

resulting problem formulation often bears many similarities

to those posed in the framework of the SLAM problem. The

extended Kalman filter, as pioneered by Smith et al. [10], is a

common approach to SLAM. Sampling-based methods have

also been considered, such as FastSLAM [11]. However,

several authors have noted that the filtering approach, which

maintains only the most recent pose of the mobile agent,

is prone to errors, and have instead estimated the entire

set of previous poses. For example, Dellaert and Kaess

[12], [13], formulate a smoothing approach based on similar

assumptions to those traditionally associated with optimal

filtering (as in the Kalman filter).

Other methods employ hybrid online and offline, global

correction methods to the SLAM problem. Scan-Matching

for Alignment [14] and its later practical implementation,

known as Local Registration and Global Correlation, [15]

are two examples of such approaches.
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Fig. 2. The calibration and mapping scenario described in this paper. The
robot moves through the environment, calibrating each sensor and estimating
both its own position as well as the positions of each sensor in a common
coordinate frame.

Recently there have been a few efforts that have em-

ployed a global approach to estimating the distribution for

sensor network locations using computationally expensive

techniques [16], [17]. These efforts return a PDF which in-

herently includes confidence estimates for the pose estimates,

but they are not necessarily practical for networks actuated

by a mobile robot. The use of a robot’s motion to facilitate

localization has been recently examined, e.g. [18], however,

the focus has been on real-time, filtering techniques.

The use of MCMC-based approaches to mobile robot

aided sensor network self localization has been considered

by [19]. This work focused on the use of MCMC as a correc-

tive tool for faster, filtering-based inference techniques. The

approach can be considered a variant of single-component

Metropolis-Hastings, a common technique for constructing

a Markov chain in high dimensional state spaces [20].

Although additional methods are used to improve the mixing

rate of the chain, the algorithm presented in [19] is too

expensive computationally to be generally applicable and is

designed to be used as a complement to other methods.

III. PROBLEM DEFINITION

Sensor network localization is defined as the problem of

estimating the pose of each sensor node mi, to build a

map mn = [m1 m2 ... mn]. We assume non-overlapping

sensor fields, which means that a mobile agent is required

to move between sensors within the network to estimate

their relative locations; see Figure 2. Node positions can

be measured relative to the position of the robot at a given

time, st, which is the most recent component of the robot’s

path, st = [s1 s2 ... st], and so both quantities must be

estimated simultaneously. The available measurements are

sensor observations, zt, and odometry measurements, ut.

This problem can be modeled as the probabilistic in-

ference of the map and the robot poses conditioned on

the observations, as represented by the underlying directed

graphical model. The posterior distribution, p(mn, st|zt, ut),
can be factored into the product of many local conditional

distributions, by exploiting the conditional independencies as

is common practice for probabilistic graphical models.
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For the sensor network localization problem involving

a mobile agent, there are two classes of local conditional

likelihoods: p(st|ut, st−1) which is known as the motion, or

odometry model of the robot; and p(zt|st,mi), the measure-

ment model which relates the poses of the sensor nodes to

that of the robot. These two distributions can be determined

empirically or by physical modeling for a particular instantia-

tion. In the remainder of the paper we will present an efficient

MCMC global inference technique that directly samples from

the posterior distribution, p(mn, st|zt, ut), based on models

of these two distributions.

IV. PROBABILISTIC SENSOR NETWORK

SELF-LOCALIZATION USING MCMC

We employ MCMC to sample sensor node locations

according to our probability model and construct a particle-

based representation of the underlying probability distribu-

tion function. Conceptually, we form a graph < V,E >,

where V is the set of vertices and E the set of connecting

edges. The vertices of this graph are the robot positions

over time st and the sensor locations mn. The edges, or

constraints, are the odometry measurements ut connect-

ing consecutive robot positions and the measured relative

positions zt between the robot poses and sensor network

components. Using a model characterizing the error in the

measurements, we can calculate the density of any particular

configuration x = (mn, st) through the application of Bayes

law:

p(x|zt, ut) =
p(zt, ut|x)p(x)

p(zt, ut)
(1)

p(x|zt, ut) ∝ p(zt, ut|x)p(x) (2)

We assume that the prior, p(x) = p(mn, st), is uniform, so

the relative likelihood of a particular configuration can be

evaluated by factoring p(zt, ut|x), into the product of the

likelihoods of all constraints (edges) given our motion and

measurement models. In this manner we can evaluate the rel-

ative density of our target distribution given a configuration:

π(x) = p(zt, ut|x) (3)

=
∏

k

p(zk|x)
∏

k

p(uk|x) (4)

=
∏

k

p(zk|sk, θk)
∏

k

p(uk|sk, sk−1) (5)

where θk indicates the sensor node mi, i ∈ {1 : n}
observed by (or observing) the robot at time step k. An

efficient method for evaluation of this density is presented

in subsection B.

Given this ability to calculate the relative density of our

target distribution at a specific point, we can employ the

well known Metropolis-Hastings (M-H) algorithm [21] to

generate representative samples. M-H constructs a Markov

chain by accepting proposed transitions from the current state

xi to a new state xj based on their relative likelihoods and

that of the proposal function. In theory this approach can be

used to characterize any distribution given only the ability

to calculate the target density and a reasonable proposal

scheme. In our application of the M-H algorithm to sensor

network localization, we use a proposal function Q(x′|x),
described in subsections A and C, that generates a new state

x′ given the current state x. The proposal x′ is then either

accepted or rejected with probability α, where α is:

α = min

(

1,
π(x′)Q(x|x′)

π(x)Q(x′|x)

)

(6)

A. Odometry-Specific Proposal Scheme

In order to improve the rate at which the Markov chain

approaches an equilibrium distribution, i.e. the mixing rate,

we employ a proposal scheme which exploits domain knowl-

edge regarding the sequential nature of our odometry mea-

surements. A change in position early in the odometry path

of the robot affects its position from that point forward in

time. To model this behaviour, the current state x = (st,mn)
in the chain is altered to produce a new proposed state x′

through the following procedure:

1) A pose sj is selected (as described shortly).

2) The initial j − 1 robot poses, [s1, . . . , sj−1], are kept

the same as in x.

3) The position of robot pose sj is altered by the addi-

tion of zero-mean, normally distributed noise with a

covariance Σj .

4) The effect of the change in sj is propagated forward

to change the locations of all following robot poses,

[sj+1, . . . , st]. That is, the successive odometry con-

straints are kept rigid.

The above steps are repeated as new samples are required.

In order to obtain a balanced sampling, iterated rounds

of random selection without replacement are performed to

select poses, sj . This proposal scheme temporarily groups

correlated components of the state space together during pro-

posals in order to facilitate more rapid mixing, a technique

known as blocking that has shown to be effective in related

domains; e.g. see [22].

While this proposal method applies to the odometry

portion of our state space, the sensor positions must be

considered either through the Rao-Blackwellization (RB)

process described next or by alternating the proposal scheme

described above for the robot poses st with one that pro-

poses alterations individually to each of the sensor positions

m1, . . . ,mn in turn. In the next paragraph, we will briefly

describe such a proposal scheme for the sensors mn to aid

in the description of the RB step.

For sensor node mi, we generate a proposal distribution

Qi(x
′|x) that is based on constraints existing between sensor

mi and any of the robot poses. Specifically, let θk indicate the

sensor node mi, i ∈ {1 : n} observed by (or observing) the

robot at time step k, as defined earlier. Now let Si represent

the set of those poses such that if sk ∈ Si then θk = mi.

Now let Zi represent the corresponding set of constraints (or

measurements) providing pose estimates between sensor mi

and each of the robot poses s ∈ Si. A linear approximation is

then applied to the measurement model, yielding a separate

Gaussian distribution for mi given each pose s ∈ Si and its
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corresponding measurement z ∈ Zi. The product of these

separate distributions is calculated and used as the proposal

distribution Qi for the pose of mi. A sample is then drawn:

(x′, y′, θ′) ∼ Qi as a potential new location for mi and is

accepted or not based on the equation:

α = min

(

1,
p(m′

i|Si, Zi)Qi(mi|Si, Zi)

p(mi|Si, Zi)Qi(m′

i|Si, Zi)

)

(7)

(from Equation 6) where m′

i represents the newly proposed

location for mi.

B. Rao-Blackwellization

Rao-Blackwellization is a powerful technique for state

estimation, as demonstrated by Montemerlo et al. for the

SLAM problem [11]. By applying a similar approach to

network localization, we can greatly accelerate the mixing

rate of our chain. Although our method is only guaranteed

to produce exactly representative samples for certain classes

of models, a good approximation to the real distribution is

obtained in most circumstances, and the results considerably

exceed the efforts achieved by standard filtering techniques

under the same circumstances.

Instead of sampling from p(st,mn|zt, ut) directly, we

sample from the factor p(st|zt, ut). This is accomplished by

approximating p(mn|st, zt, ut) with a closed form formula

and marginalizing this factor out. We use a product of

Gaussians similar to the proposal function Q described in

the previous section. The product of Gaussians is obtained

by linearizing the measurement model, yielding separate

distributions for mi given each pose s ∈ Si and its cor-

responding measurement z ∈ Zi. We then take the product

of these separate distributions, qi, as an approximation to

p(mi|s
t, zt, ut). We can now approximate p(st|zt, ut) as

follows:

p(st|ut, zt) =

∫

p(st|ut)p(mn|st, ut, zt)dmn (8)

= p(st|ut)

n
∏

i=1

∫

p(mi|s
t, ut, zt)dmi

≈ p(st|ut)

n
∏

i=1

∫

qi(mi|Si, Zi)dmi

where Si and Zi are as defined in the previous section. Given

samples drawn from the approximation of p(st, |zt, ut), we

can characterize the target distribution p(st,mn|zt, ut) using

either the approximation to p(mn|st, zt, ut), or the real

distribution; the second requiring the use of a technique

such as importance sampling. This process of improving the

accuracy of an estimator by marginalizing out variables is a

technique referred to as Rao-Blackwellization [23].

C. Automatic Tuning

In keeping with accepted practice, we ensure adequate

mixing by adjusting the proposal parameters while running

the chain for an initial tuning period. This tuning period is

divided into a number of smaller time windows [t1, t2 . . .] in

which the chain is run for some fixed number of proposals.

The proportion of proposals accepted for each component,

j, is then calculated for the current time window t, and this

value is compared to the target mixing ratio L and adjusted

accordingly using an exponential averaging scheme for use

in the next time window.

D. Stopping Mechanism

MCMC requires an initial sampling effort before the chain

approaches the target distribution. In practice, this initial

portion of the chain is discarded to reduce correlation with

the starting point. This is known as the burn-in period. After

the burn-in period, samples are drawn periodically from the

chain until convergence analysis indicates that the samples

obtained are representative of the target distribution.

To indicate convergence, our approach employs the

Gelman-Rubin statistic [2], which measures the potential for

variance reduction by additional simulations and is com-

monly known as a potential scale reduction factor (PSRF ).

PSRF is calculated by running a number of instances of

the algorithm described above in parallel and calculating the

Gelman-Rubin statistic for a number of indicator features,

namely the X and Y co-ordinates of the sensor positions.

We stop our algorithm once the maximum PSRF value

obtained over these indicator features falls below the standard

threshold value (1.2). For the sake of convenience and

brevity, in the remainder of this paper we will refer to

the parallel instances of the algorithm, described above, as

restarts and our calculated convergence metric as the PSRF

obtained. .

V. RESULTS FROM SIMULATIONS

We investigated the performance of our localization al-

gorithms on data obtained in simulation. Our simulator

models the motion of a robot through a camera network

using empirically determined noise models and environment

characteristics and thus generates similar data to that gath-

ered with a physical system. Using this simulator we found

evidence demonstrating the superior ability of our MCMC-

based localization algorithm to accurately represent network

pose distributions in comparison to two other standard state

estimation techniques: the Rao-Blackwellized particle filter

(RBPF), and the extended Kalman filter (EKF).

Our simulator places N sensor nodes on a two-

dimensional plane with a uniform distribution. These nodes

are connected via potential pathways and motion of a robot

is then simulated through this environment. To choose a

destination sensor, a quasi-random walk strategy is employed

biased towards visiting new nodes. More sophisticated explo-

ration algorithms have been studied in [24].

At each step t, the robot’s motion is captured as odometry

measurement ut, and a sensor measurement zt is obtained

from the sensor observing the region occupied by the robot.

For these experiments, zero-mean, normally distributed noise

is added to the odometry measurements for each of the

rotation and translation motions, and also to the sensor

measurements. We assume known mean µ and covariance

Σ for each of the noise signals added to our measurements.
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(a) (b) (c)

(d) (e) (f)

Fig. 3. Results for 4 step paths through a 3 sensor network for the algorithms: (a) MCMC (b) RBPF (K = 5000), and (c) EKF. Data obtained for
50 step paths through a 6 sensor network for the algorithms: (d) MCMC (e) RBPF (K = 20000), (black particles) and EKF (blue uncertainty ellipses).
For all of (a-e), crosses indicate the ground truth sensor positions. (f) Histogram comparing the relative log likelihoods (LLH) of the final configuration
samples obtained from the MCMC and RBPF (k = 20000) techniques for the simulation result shown in (d)The likelihoods were normalized such that
ground truth had a log likelihood of zero.

In order to provide benchmarks with which to compare the

performance of our localization algorithm, we implemented

for comparison purposes, two popular Bayesian filtering

approaches: a Rao-Blackwellized particle filter (RBPF), see

[25] [26], and also an Extended Kalman Filter (EKF), see

[27].

Two different RBPF implementations were used: a ‘basic’

variant that used the true motion model as the proposal distri-

bution and also a variant that linearized this two step motion

(rotation and translation) and incorporated the most recent

evidence (also linearized) into a closed form proposal. For

both versions, the sensor node distributions were maintained

internal to each particle as Gaussians. A full discussion of

the comparative performance of these two RBPF variants is

outside the scope of this paper. Where particle-filter results

are reported, we present data from the variant with the best

performance.

Our simulation results indicate that our technique out-

performs both the EKF and the RBPF at the task of in-

ferring a network pose distribution. Figure 3 shows the

results obtained from the different inference algorithms on

the same simulation data for a small scale version of the

localization problem under relatively noisy conditions.1 For

the MCMC approach, each restart was initialized with values

obtained by running the RBPF with only enough particles to

maintain a non-zero probability configuration. As described

in section IV, all of the restarts were run until the set of

samples produced by each instance had similar statistical

1We used 5 per cent rotational and translational error in the motion model,
and similar values for the measurement model.

MCMC Within-Cloud µ = 15.21

M = 5, N = 480 (10 Comparisons) σ = 0.68

Hausdorf Normalized
Algorithm Distance Hausdorf

Dh |Dh − µ|/σ
RBPF (K = 20000) 15.50 1.85

RBPF (K = 10000) 18.69 6.55

RBPF (K = 5000) 22.92 12.74

RBPF (K = 1000) 43.75 43.22

EKF 73.05 86.07

TABLE I

THE HAUSDORFF DISTANCE METRIC DEMONSTRATES PROXIMITY TO

THE TARGET DISTRIBUTION (DIRECTLY SAMPLED WITH MCMC). THE

NORMALIZED HAUSDORFF APPROXIMATES STANDARD DEVIATIONS

FROM THE TARGET. RESULTS FOR 4 STEP PATH. 3 SENSOR NETWORK.

characteristics.

Visual examination of distributions in Figure 3 shows that

the RBPF when used with K = 5000 particles produces

a similar distribution to the MCMC algorithm, although the

samples are not as homogeneously distributed.2 Linearization

approximations made by the EKF along with its limited

expressiveness reduce its accuracy and hence its output is

the most different from the MCMC result.

Quantitative analysis of the similarity between sets of

samples produced by the various methods can be performed

using a standard technique such as the generalized Hausdorff

2As a final step, in both our RBPF implementation and the MCMC
algorithm, the sensor locations are sampled from the closed form approx-
imation to their distribution given the robot poses. This is done for each
sample/particle obtained.
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Fig. 4. (a) Squared error of MLE of sensor positions as a function of robot
path length through a 6 senor network; (the same simulation presented in
Figure 3(d)). The RBPF sample mean result was slightly poorer than the
RBPF maximum likelihood sample, so it is not presented. (b) Potential scale
reduction factor (PSRF) as a function of computational effort for 4 sensor,
12 path length scenario.with 4 restarts.

distance:

Dh = kth max
a∈A

min
b∈B

(||a − b||)

where ||a − b|| is calculated using a L2-norm and the kth
largest value is selected based on the 95th quantile. The

Hausdorff distance provides a metric for sample set similarity

but, in standard formulation, the resulting units are unnor-

malized and difficult to interpret. We have normalized the

distance measurements based on statistics obtained over sub-

samplings of the true distribution such that our normalized

Hausdorff value is related to the likelihood of a query sample

set having resulted from sampling the true distribution.

Table I shows the original and normalized distance metric

values obtained when the particle clouds from the different

algorithms are compared to the MCMC result; the same

experiment presented in Figure 3. It can be seen that while

the PDF suggested by the EKF is significantly different from

the MCMC result, the performance of the RBPF improves

as a function of the number of particles used. For this size

of a problem, the data obtained from the RBPF with 20,000

particles is not significantly different from that of the MCMC

technique.

As the scale of the problem increases, however, it becomes

increasingly difficult for the filtering techniques to accurately

characterize the distribution. Figures 3(d) and 3(e) show

an example of results obtained from the different inference

algorithms on a moderately sized problem in which the robot

visits each of the sensors a number of times. Interestingly,

while both the EKF and the RBPF provide good estimates

of the maximum likelihood location for the sensors, their

uncertainty estimates are extremely poor in comparison to

the MCMC approach which, we argue, is portraying the

underlying distribution with reasonable accuracy. The EKF

is over-confident and the RBPF suffers severely from the

particle-depletion problem and shows a lack of diversity.

Further insight can be gained by considering the likelihood

of the final configurations obtained. Given an adequate

burn-in time, the log likelihoods of the final configurations

obtained by MCMC approach the same order of magnitude

as ground truth, and are typically much more likely than

results obtained from the RBPF, even with a large number

of particles; e.g. see Figure V.

Obtaining the MCMC results in these simulations ranged
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Fig. 5. (a) Approximate floor plan showing camera locations during
the experiment. (b) A graphical representation of inferred positions. Lines
summarize a section of the robot’s actual path (hidden for clarity) by the
relative poses between camera positions.

from several minutes to a few hours on a typical P4 computer

depending on the size and complexity of the trial. The

running time of the RBPF depended on the number of

particles used, but was consistently less than that of the

MCMC algorithm on the same trial. The EKF results were

generally obtained in only a few seconds per trial.

To use the MCMC technique to provide a maximum

likelihood estimate (MLE) for the sensor positions, one

can consider the sample with maximum likelihood (ML) or

the mean of the samples obtained. In our simulations, we

observed that the mean of the cloud consistently gave good

results, although an estimate obtained from the RBPF on the

same problem instance generally had similar accuracy; e.g.

see Figure 4(a). The performance of the maximum likelihood

MCMC sample had a much higher variance, and while it

was occasionally extremely accurate as an estimator, it was

overall less consistent.

Figure 4(b) demonstrates the improved convergence prop-

erties of the odometry-based proposal scheme used in

conjunction with RB over single-component Metropolis-

Hastings. Presumably the application of RB removes some

of the correlation between individual components of the state

space and allows much larger jumps than would otherwise

be possible. Supporting this idea is the observation that the

automatically tuned sigma values for individual components,

(i.e. the robot poses st), are in general larger when RB is

employed than when it is not for the same measurement data.

VI. EXPERIMENTAL DATA

We applied our MCMC approach to localization on map-

ping data gathered from a deployed camera sensor network

and a single mobile robot. The target sensor network is

located in an office environment, and consists of seven

networked cameras. The robot traveled through a pair of

loops connected by a long straight hallway with length

approximately 50 m as shown in Figure 5(a). A Nomadics

Scout robot mounted with a visual target was used to perform

a calibration procedure and obtain position measurements,

using the method described in [18].

Due to the size of the environment, and lack of line-

of-sight between camera positions, ground truth data could

not be collected for this experiment. There are several

measures which can be used for qualitative assessment of
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the estimation accuracy. First, care was taken to return the

robot to within a few centimetres of its initial position at

the end of the run, which implies the first and last robot

positions should agree very closely in any accurate estimate.

Also, camera location accuracy can be estimated visually, by

comparing to the camera locations recorded on Figure 5(a).

The final robot positions estimated by our method lie within

a meter of the initial position, which is a strong indicator of

map accuracy, as the path length is over 200 m in total.

When applied to the data gathered during these experi-

ments our algorithm converged in under 2 hours on a P4, 3.2

GHz machine with 1 GB of RAM. Figure 5 shows the results

obtained. This figure includes an approximation to the robot

path as a sequence of linear motions based on the ML config-

uration obtained. Although this MCMC approach is relatively

computationally expensive, sensor network calibration can

be considered a one-time expense and accurate location and

uncertainty results can be utilized for higher level planning

and reasoning purposes throughout the lifetime of the system.

VII. CONCLUSION

This paper presents an approach to probabilistic sensor

network localization that exploits a combination of emplaced

sensing nodes and a moving robot. Our approach is capable

of providing a representation of the underlying PDF with

much greater efficiency and accuracy than other currently

available options. This work also demonstrates the limi-

tations of current filtering-based techniques at accurately

representing uncertainty in the domain of sensor network

localization.

One open issue is how the quantity of data collected

affects the accuracy with which the PDF can be represented.

It appears that one possible optimization step could be to

omit some of the constraints in order to quickly arrive at

a distribution. Data could then be incrementally included

to improve accuracy. This could yield an ‘anytime’-style

algorithm that could quickly produce usable results which

become more refined with additional computation. A related

direction would be to alter a standard RBPF such as the

one implemented in this work to include a global correction

step utilizing our MCMC approach. Incorporating an MCMC

step in a RBPF has been considered before, e.g. by Doucet

et al. in [25], and should improve particle diversity and

ultimately bring the distribution suggested closer to the target

distribution.
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