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Inferring a Probability Distribution Function for the Pose of a Sensor
Network using a Mobile Robot

David Meger, Dimitri Marinakis, loannis Rekleitis, and Gregory Dudek

Abstract— In this paper we present an approach for localizing
a sensor network augmented with a mobile robot which is
capable of providing inter-sensor pose estimates through its
odometry measurements. We present a stochastic algorithm
that samples efficiently from the probability distribution for the
pose of the sensor network by employing Rao-Blackwellization
and a proposal scheme which exploits the sequential nature
of odometry measurements. Our algorithm automatically tunes
itself to the problem instance and includes a principled stopping
mechanism based on convergence analysis. We demonstrate the
favourable performance of our approach compared to that
of established methods via simulations and experiments on
hardware.

I. INTRODUCTION

In this paper we present an approach for probabilistically
localizing a network made up of both static and mobile com-
ponents based on relative inter-component pose estimates.
This problem of self-localization in sensor networks is recog-
nized as a key requirement for many network applications [1]
and is considered an important step in the overall goal of
developing self-adapting and self-configuring networks.

We consider the case where our network is augmented
with a mobile robot which is capable of providing inter-
sensor pose estimates through odometry measurements, as
shown in Figure 1. In this scenario, the robot’s motion
through the network facilitates localization by explicitly
transferring positional information between sensor locations.
By maintaining an ongoing estimate of the robot’s location,
the position of any sensor it interacts with can be proba-
bilistically estimated, (and updated), given the appropriate
motion and measurement models.

Our approach is to use a Markov Chain Monte Carlo
(MCMC)-based algorithm that allows us to sample from
the probability distribution function (PDF) for the pose of a
sensor network. We overcome the often-prohibitive compu-
tational effort required by MCMC approaches by employing
the following techniques: 1) we use a unique, odometry-
specific proposal distribution that exploits the conditional de-
pendencies present in our problem domain; 2) we apply Rao-
Blackwellization to effectively reduce the dimensionality of
our sample space; 3) we automatically tune the parameters
of our proposal technique to achieve desired acceptance
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Fig. 1.  The components of the camera sensor network used in the
experimental results of the paper.

rates; and 4) we employ convergence analysis based on
the Gelman-Rubin statistic [2] as a stopping mechanism
that informs us when the samples we have gathered closely
represent the underlying pose distribution. Note that few
existing methods for sensor network localization compute
the full probability distribution for the node positions, due
to the computational burden it entails. Existing approaches
to sensor network localization generally estimate only the
maximum likelihood configuration and use a Gaussian as-
sumption in the computation of confidence intervals.

The problem we consider in this work is similar to the
simultaneous localization and mapping (SLAM) issue in
traditional mobile robot research, but there are some key
differences. Our sensors, which correspond to landmarks
in the SLAM problem, are uniquely identifiable, so there
is no correspondence ambiguity. Additionally, we can as-
sume that the mobile robot will operate, for the most part,
within the confines of a sensor-network deployed region
and will ultimately visit the local area of each network
component many times. Most importantly, in sensor network
self-localization, the initial mapping effort is a one-time task,
the results of which will likely be used for the lifetime of the
network. Therefore the use of computationally sophisticated
techniques are appropriate.

One potential application of our work is in the construction
of a smart house in which actuators and sensors respond to
the behaviour of the resident in order to help them with
their daily activities [3]. For example, such a technology
could allow aging seniors more independence and therefore
a better quality of life. Furthermore, it could allow them to
stay longer in their own residence than might otherwise be
possible, alleviating pressure on public institutions. A mobile
robot combined with a sensor network in such a system could
aid the resident in many tasks, but must deal with navigation
and localization.
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The contribution of this work is an efficient, MCMC-
based, global localization technique used to directly recover
a representation for the PDF for the pose of a mobile-
robot augmented sensor network. Our approach uses a
novel, self-tuning proposal method in conjunction with Rao-
Blackwellization to achieve fast mixing rates and employs
a principled stopping mechanism that detects when our
approach has adequately characterized the underlying dis-
tribution.

In the remainder of this paper, we first provide some
background on related work and then give a formal definition
of the problem we are addressing. We then discuss the details
of our approach to sensor network localization and assess
its performance against those of established methods via
simulations and real world experiments.

II. RELATED WORK

Traditional sensor network self-localization efforts have
focused on estimating distances between sensors. Tech-
niques include the use of the received communication signal
strength in radio networks [4], or time-of-arrival ranging
using ultrasound [5]. These techniques typically have limited
accuracy and the localization algorithms must be able to
handle some degree of noise in the range data [6]. A
theoretical analysis of the ability of a group of sensors or
robots to self-localize from range-only estimates is given
by [7]. While much of the research conducted on sensor
networks is based on developing distributed, computation-
ally efficient algorithms appropriate for networks of low-
powered sensor platforms, recently there has been a shift
towards more complex approaches incorporating advanced
probabilistic techniques and graphical models, e.g. [8]. The
traditional sensor network assumption of homogenous sys-
tems of resource-impoverished nodes is making way for
tiered architectures that incorporate network components of
significant computational sophistication [9].

Complex probabilistic approaches are especially appropri-
ate when variants of the localization problem are considered
in which the network includes one or more mobile com-
ponents. In these cases, as we have mentioned earlier, the
resulting problem formulation often bears many similarities
to those posed in the framework of the SLAM problem. The
extended Kalman filter, as pioneered by Smith ez al. [10], is a
common approach to SLAM. Sampling-based methods have
also been considered, such as FastSLAM [11]. However,
several authors have noted that the filtering approach, which
maintains only the most recent pose of the mobile agent,
is prone to errors, and have instead estimated the entire
set of previous poses. For example, Dellaert and Kaess
[12], [13], formulate a smoothing approach based on similar
assumptions to those traditionally associated with optimal
filtering (as in the Kalman filter).

Other methods employ hybrid online and offline, global
correction methods to the SLAM problem. Scan-Matching
for Alignment [14] and its later practical implementation,
known as Local Registration and Global Correlation, [15]
are two examples of such approaches.

’m‘
— Robot Trajectory

Fig. 2. The calibration and mapping scenario described in this paper. The
robot moves through the environment, calibrating each sensor and estimating
both its own position as well as the positions of each sensor in a common
coordinate frame.

Recently there have been a few efforts that have em-
ployed a global approach to estimating the distribution for
sensor network locations using computationally expensive
techniques [16], [17]. These efforts return a PDF which in-
herently includes confidence estimates for the pose estimates,
but they are not necessarily practical for networks actuated
by a mobile robot. The use of a robot’s motion to facilitate
localization has been recently examined, e.g. [18], however,
the focus has been on real-time, filtering techniques.

The use of MCMC-based approaches to mobile robot
aided sensor network self localization has been considered
by [19]. This work focused on the use of MCMC as a correc-
tive tool for faster, filtering-based inference techniques. The
approach can be considered a variant of single-component
Metropolis-Hastings, a common technique for constructing
a Markov chain in high dimensional state spaces [20].
Although additional methods are used to improve the mixing
rate of the chain, the algorithm presented in [19] is too
expensive computationally to be generally applicable and is
designed to be used as a complement to other methods.

III. PROBLEM DEFINITION

Sensor network localization is defined as the problem of
estimating the pose of each sensor node m;, to build a
map m"™ = [my my ... my]. We assume non-overlapping
sensor fields, which means that a mobile agent is required
to move between sensors within the network to estimate
their relative locations; see Figure 2. Node positions can
be measured relative to the position of the robot at a given
time, s¢, which is the most recent component of the robot’s
path, s* = [s; s2 ... s, and so both quantities must be
estimated simultaneously. The available measurements are
sensor observations, z;, and odometry measurements, ;.

This problem can be modeled as the probabilistic in-
ference of the map and the robot poses conditioned on
the observations, as represented by the underlying directed
graphical model. The posterior distribution, p(m™, st|z¢, u?),
can be factored into the product of many local conditional
distributions, by exploiting the conditional independencies as
is common practice for probabilistic graphical models.
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For the sensor network localization problem involving
a mobile agent, there are two classes of local conditional
likelihoods: p(s¢|ut, s;—1) which is known as the motion, or
odometry model of the robot; and p(z:|s:, m;), the measure-
ment model which relates the poses of the sensor nodes to
that of the robot. These two distributions can be determined
empirically or by physical modeling for a particular instantia-
tion. In the remainder of the paper we will present an efficient
MCMC global inference technique that directly samples from
the posterior distribution, p(m™, s*|z*,u'), based on models
of these two distributions.

IV. PROBABILISTIC SENSOR NETWORK
SELF-LOCALIZATION USING MCMC

We employ MCMC to sample sensor node locations
according to our probability model and construct a particle-
based representation of the underlying probability distribu-
tion function. Conceptually, we form a graph < V. E >,
where V' is the set of vertices and E the set of connecting
edges. The vertices of this graph are the robot positions
over time s' and the sensor locations m™. The edges, or
constraints, are the odometry measurements u’ connect-
ing consecutive robot positions and the measured relative
positions z! between the robot poses and sensor network
components. Using a model characterizing the error in the
measurements, we can calculate the density of any particular
configuration x = (m™, s') through the application of Bayes
law:

p(*, u'|z)p()
— ey
p(z", ut)

p(z', u|z)p(x) 2)

We assume that the prior, p(z) = p(m™, st), is uniform, so
the relative likelihood of a particular configuration can be
evaluated by factoring p(zf,u'|x), into the product of the
likelihoods of all constraints (edges) given our motion and
measurement models. In this manner we can evaluate the rel-
ative density of our target distribution given a configuration:
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where 6 indicates the sensor node m;,i € {1 : n}
observed by (or observing) the robot at time step k. An
efficient method for evaluation of this density is presented
in subsection B.

Given this ability to calculate the relative density of our
target distribution at a specific point, we can employ the
well known Metropolis-Hastings (M-H) algorithm [21] to
generate representative samples. M-H constructs a Markov
chain by accepting proposed transitions from the current state
z; to a new state z; based on their relative likelihoods and
that of the proposal function. In theory this approach can be
used to characterize any distribution given only the ability
to calculate the target density and a reasonable proposal

scheme. In our application of the M-H algorithm to sensor
network localization, we use a proposal function Q(z'|x),
described in subsections A and C, that generates a new state
z' given the current state x. The proposal x’ is then either
accepted or rejected with probability «, where « is:

(| m@Q)
“= <1’ w(x)@(xw:c)) ©

A. Odometry-Specific Proposal Scheme

In order to improve the rate at which the Markov chain
approaches an equilibrium distribution, i.e. the mixing rate,
we employ a proposal scheme which exploits domain knowl-
edge regarding the sequential nature of our odometry mea-
surements. A change in position early in the odometry path
of the robot affects its position from that point forward in
time. To model this behaviour, the current state z = (s, m")
in the chain is altered to produce a new proposed state z’
through the following procedure:

1) A pose s; is selected (as described shortly).

2) The initial j — 1 robot poses, [sq,...,s;j_1], are kept
the same as in z.

3) The position of robot pose s; is altered by the addi-
tion of zero-mean, normally distributed noise with a
covariance ;.

4) The effect of the change in s; is propagated forward
to change the locations of all following robot poses,
[Sj+1;---,8¢). That is, the successive odometry con-
straints are kept rigid.

The above steps are repeated as new samples are required.
In order to obtain a balanced sampling, iterated rounds
of random selection without replacement are performed to
select poses, s;. This proposal scheme temporarily groups
correlated components of the state space together during pro-
posals in order to facilitate more rapid mixing, a technique
known as blocking that has shown to be effective in related
domains; e.g. see [22].

While this proposal method applies to the odometry
portion of our state space, the sensor positions must be
considered either through the Rao-Blackwellization (RB)
process described next or by alternating the proposal scheme
described above for the robot poses s’ with one that pro-
poses alterations individually to each of the sensor positions
mi,...,my in turn. In the next paragraph, we will briefly
describe such a proposal scheme for the sensors m™ to aid
in the description of the RB step.

For sensor node m;, we generate a proposal distribution
Q;(«'|x) that is based on constraints existing between sensor
m; and any of the robot poses. Specifically, let 6 indicate the
sensor node m;,7 € {1 : n} observed by (or observing) the
robot at time step k, as defined earlier. Now let .S; represent
the set of those poses such that if s € S; then 0 = m;.
Now let Z; represent the corresponding set of constraints (or
measurements) providing pose estimates between sensor m;
and each of the robot poses s € .S;. A linear approximation is
then applied to the measurement model, yielding a separate
Gaussian distribution for m; given each pose s € .S; and its
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corresponding measurement z € Z;. The product of these
separate distributions is calculated and used as the proposal
distribution @; for the pose of m;. A sample is then drawn:
(z',y',0") ~ Q; as a potential new location for m,; and is
accepted or not based on the equation:

min <1 p(m}]S;, Z;)Qi(m;|S;, Zz)) 7

o =

" p(mg|Si, Z;)Qi(m}|Si, Z;)

(from Equation 6) where m/ represents the newly proposed
location for m;.

B. Rao-Blackwellization

Rao-Blackwellization is a powerful technique for state
estimation, as demonstrated by Montemerlo er al. for the
SLAM problem [11]. By applying a similar approach to
network localization, we can greatly accelerate the mixing
rate of our chain. Although our method is only guaranteed
to produce exactly representative samples for certain classes
of models, a good approximation to the real distribution is
obtained in most circumstances, and the results considerably
exceed the efforts achieved by standard filtering techniques
under the same circumstances.

Instead of sampling from p(st,m"|2%, u') directly, we
sample from the factor p(st|z%, u?). This is accomplished by
approximating p(m™|st, 2, u') with a closed form formula
and marginalizing this factor out. We use a product of
Gaussians similar to the proposal function () described in
the previous section. The product of Gaussians is obtained
by linearizing the measurement model, yielding separate
distributions for m, given each pose s € S; and its cor-
responding measurement z € Z;. We then take the product
of these separate distributions, ¢;, as an approximation to
p(m;|st, 28, ut). We can now approximate p(st|zt,ut) as
follows:

p(stut, =) = / p(st fuYp(m™|st, ut, 2Hydm™  (®)

= p(st|ut)H/p(mi|st,ut,zt)dmi
i=1

i=1

where S; and Z; are as defined in the previous section. Given
samples drawn from the approximation of p(s?, |2¢, u!), we
can characterize the target distribution p(s®, m™|2z%, u®) using
either the approximation to p(m”"|s’,z u?), or the real
distribution; the second requiring the use of a technique
such as importance sampling. This process of improving the
accuracy of an estimator by marginalizing out variables is a
technique referred to as Rao-Blackwellization [23].

C. Automatic Tuning

In keeping with accepted practice, we ensure adequate
mixing by adjusting the proposal parameters while running
the chain for an initial tuning period. This tuning period is
divided into a number of smaller time windows [t1,t5...] in
which the chain is run for some fixed number of proposals.

The proportion of proposals accepted for each component,
7, is then calculated for the current time window ¢, and this
value is compared to the target mixing ratio L and adjusted
accordingly using an exponential averaging scheme for use
in the next time window.

D. Stopping Mechanism

MCMC requires an initial sampling effort before the chain
approaches the target distribution. In practice, this initial
portion of the chain is discarded to reduce correlation with
the starting point. This is known as the burn-in period. After
the burn-in period, samples are drawn periodically from the
chain until convergence analysis indicates that the samples
obtained are representative of the target distribution.

To indicate convergence, our approach employs the
Gelman-Rubin statistic [2], which measures the potential for
variance reduction by additional simulations and is com-
monly known as a potential scale reduction factor (PSRF).
PSRF is calculated by running a number of instances of
the algorithm described above in parallel and calculating the
Gelman-Rubin statistic for a number of indicator features,
namely the X and Y co-ordinates of the sensor positions.
We stop our algorithm once the maximum PSRF' value
obtained over these indicator features falls below the standard
threshold value (1.2). For the sake of convenience and
brevity, in the remainder of this paper we will refer to
the parallel instances of the algorithm, described above, as
restarts and our calculated convergence metric as the PSRF
obtained. .

V. RESULTS FROM SIMULATIONS

We investigated the performance of our localization al-
gorithms on data obtained in simulation. Our simulator
models the motion of a robot through a camera network
using empirically determined noise models and environment
characteristics and thus generates similar data to that gath-
ered with a physical system. Using this simulator we found
evidence demonstrating the superior ability of our MCMC-
based localization algorithm to accurately represent network
pose distributions in comparison to two other standard state
estimation techniques: the Rao-Blackwellized particle filter
(RBPF), and the extended Kalman filter (EKF).

Our simulator places N sensor nodes on a two-
dimensional plane with a uniform distribution. These nodes
are connected via potential pathways and motion of a robot
is then simulated through this environment. To choose a
destination sensor, a quasi-random walk strategy is employed
biased towards visiting new nodes. More sophisticated explo-
ration algorithms have been studied in [24].

At each step ¢, the robot’s motion is captured as odometry
measurement u;, and a sensor measurement z; is obtained
from the sensor observing the region occupied by the robot.
For these experiments, zero-mean, normally distributed noise
is added to the odometry measurements for each of the
rotation and translation motions, and also to the sensor
measurements. We assume known mean p and covariance
> for each of the noise signals added to our measurements.
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Fig. 3.
50 step paths through a 6 sensor network for the algorithms: (d) MCMC (e)

Results for 4 step paths through a 3 sensor network for the algorithms: (a) MCMC (b) RBPF (K = 5000), and (c) EKF. Data obtained for

RBPF (K = 20000), (black particles) and EKF (blue uncertainty ellipses).

For all of (a-e), crosses indicate the ground truth sensor positions. (f) Histogram comparing the relative log likelihoods (LLH) of the final configuration
samples obtained from the MCMC and RBPF (k = 20000) techniques for the simulation result shown in (d)The likelihoods were normalized such that

ground truth had a log likelihood of zero.

In order to provide benchmarks with which to compare the
performance of our localization algorithm, we implemented
for comparison purposes, two popular Bayesian filtering
approaches: a Rao-Blackwellized particle filter (RBPF), see
[25] [26], and also an Extended Kalman Filter (EKF), see
[27].

Two different RBPF implementations were used: a ‘basic’
variant that used the true motion model as the proposal distri-
bution and also a variant that linearized this two step motion
(rotation and translation) and incorporated the most recent
evidence (also linearized) into a closed form proposal. For
both versions, the sensor node distributions were maintained
internal to each particle as Gaussians. A full discussion of
the comparative performance of these two RBPF variants is
outside the scope of this paper. Where particle-filter results
are reported, we present data from the variant with the best
performance.

Our simulation results indicate that our technique out-
performs both the EKF and the RBPF at the task of in-
ferring a network pose distribution. Figure 3 shows the
results obtained from the different inference algorithms on
the same simulation data for a small scale version of the
localization problem under relatively noisy conditions.! For
the MCMC approach, each restart was initialized with values
obtained by running the RBPF with only enough particles to
maintain a non-zero probability configuration. As described
in section IV, all of the restarts were run until the set of
samples produced by each instance had similar statistical

I'We used 5 per cent rotational and translational error in the motion model,
and similar values for the measurement model.

MCMC Within-Cloud p=15.21
M =5, N =480 (10 Comparisons) | o = 0.68
Hausdorf | Normalized
Algorithm Distance Hausdorf
D |Dn — pl/o
RBPF (K = 20000) 15.50 1.85
RBPF (K = 10000) 18.69 6.55
RBPF (K = 5000) 22.92 12.74
RBPF (K = 1000) 43.75 43.22
EKF 73.05 86.07

TABLE I
THE HAUSDORFF DISTANCE METRIC DEMONSTRATES PROXIMITY TO
THE TARGET DISTRIBUTION (DIRECTLY SAMPLED WITH MCMC). THE
NORMALIZED HAUSDORFF APPROXIMATES STANDARD DEVIATIONS
FROM THE TARGET. RESULTS FOR 4 STEP PATH. 3 SENSOR NETWORK.

characteristics.

Visual examination of distributions in Figure 3 shows that
the RBPF when used with K = 5000 particles produces
a similar distribution to the MCMC algorithm, although the
samples are not as homogeneously distributed.? Linearization
approximations made by the EKF along with its limited
expressiveness reduce its accuracy and hence its output is
the most different from the MCMC result.

Quantitative analysis of the similarity between sets of
samples produced by the various methods can be performed
using a standard technique such as the generalized Hausdorff

2As a final step, in both our RBPF implementation and the MCMC
algorithm, the sensor locations are sampled from the closed form approx-
imation to their distribution given the robot poses. This is done for each
sample/particle obtained.
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Fig. 4. (a) Squared error of MLE of sensor positions as a function of robot
path length through a 6 senor network; (the same simulation presented in
Figure 3(d)). The RBPF sample mean result was slightly poorer than the
RBPF maximum likelihood sample, so it is not presented. (b) Potential scale
reduction factor (PSRF) as a function of computational effort for 4 sensor,
12 path length scenario.with 4 restarts.

distance:
Dy, = kth i —-b
h max min(|a — b))

where ||a — b|| is calculated using a L2-norm and the kth
largest value is selected based on the 95th quantile. The
Hausdorff distance provides a metric for sample set similarity
but, in standard formulation, the resulting units are unnor-
malized and difficult to interpret. We have normalized the
distance measurements based on statistics obtained over sub-
samplings of the true distribution such that our normalized
Hausdorff value is related to the likelihood of a query sample
set having resulted from sampling the true distribution.

Table I shows the original and normalized distance metric
values obtained when the particle clouds from the different
algorithms are compared to the MCMC result; the same
experiment presented in Figure 3. It can be seen that while
the PDF suggested by the EKF is significantly different from
the MCMC result, the performance of the RBPF improves
as a function of the number of particles used. For this size
of a problem, the data obtained from the RBPF with 20,000
particles is not significantly different from that of the MCMC
technique.

As the scale of the problem increases, however, it becomes
increasingly difficult for the filtering techniques to accurately
characterize the distribution. Figures 3(d) and 3(e) show
an example of results obtained from the different inference
algorithms on a moderately sized problem in which the robot
visits each of the sensors a number of times. Interestingly,
while both the EKF and the RBPF provide good estimates
of the maximum likelihood location for the sensors, their
uncertainty estimates are extremely poor in comparison to
the MCMC approach which, we argue, is portraying the
underlying distribution with reasonable accuracy. The EKF
is over-confident and the RBPF suffers severely from the
particle-depletion problem and shows a lack of diversity.
Further insight can be gained by considering the likelihood
of the final configurations obtained. Given an adequate
burn-in time, the log likelihoods of the final configurations
obtained by MCMC approach the same order of magnitude
as ground truth, and are typically much more likely than
results obtained from the RBPF, even with a large number
of particles; e.g. see Figure V.

Obtaining the MCMC results in these simulations ranged
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Fig. 5. (a) Approximate floor plan showing camera locations during
the experiment. (b) A graphical representation of inferred positions. Lines
summarize a section of the robot’s actual path (hidden for clarity) by the
relative poses between camera positions.

from several minutes to a few hours on a typical P4 computer
depending on the size and complexity of the trial. The
running time of the RBPF depended on the number of
particles used, but was consistently less than that of the
MCMC algorithm on the same trial. The EKF results were
generally obtained in only a few seconds per trial.

To use the MCMC technique to provide a maximum
likelihood estimate (MLE) for the sensor positions, one
can consider the sample with maximum likelihood (ML) or
the mean of the samples obtained. In our simulations, we
observed that the mean of the cloud consistently gave good
results, although an estimate obtained from the RBPF on the
same problem instance generally had similar accuracy; e.g.
see Figure 4(a). The performance of the maximum likelihood
MCMC sample had a much higher variance, and while it
was occasionally extremely accurate as an estimator, it was
overall less consistent.

Figure 4(b) demonstrates the improved convergence prop-
erties of the odometry-based proposal scheme used in
conjunction with RB over single-component Metropolis-
Hastings. Presumably the application of RB removes some
of the correlation between individual components of the state
space and allows much larger jumps than would otherwise
be possible. Supporting this idea is the observation that the
automatically tuned sigma values for individual components,
(i.e. the robot poses s'), are in general larger when RB is
employed than when it is not for the same measurement data.

VI. EXPERIMENTAL DATA

We applied our MCMC approach to localization on map-
ping data gathered from a deployed camera sensor network
and a single mobile robot. The target sensor network is
located in an office environment, and consists of seven
networked cameras. The robot traveled through a pair of
loops connected by a long straight hallway with length
approximately 50 m as shown in Figure 5(a). A Nomadics
Scout robot mounted with a visual target was used to perform
a calibration procedure and obtain position measurements,
using the method described in [18].

Due to the size of the environment, and lack of line-
of-sight between camera positions, ground truth data could
not be collected for this experiment. There are several
measures which can be used for qualitative assessment of
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