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Autonomous Planetary Exploration using LIDAR data

Ioannis Rekleitis, Jean-Luc Bedwani, and Erick Dupuis

Abstract—1In this paper we present the approach for au-
tonomous planetary exploration developed at the Canadian
Space Agency. The goal of this work is to autonomously navigate
to remote locations, well beyond the sensing horizon of the
rover, with minimal interaction with a human operator. We
employ LIDAR range sensors due to their accuracy, long
range and robustness in the harsh lighting conditions of space.
Irregular Triangular Meshes (ITMs) are used for representing
the environment providing an accurate yet compact spatial
representation. In this paper a novel path-planning technique
through the ITM is introduced, which guides the rover through
flatter terrain and safely away from obstacles. Experiments
performed in CSA’s Mars emulation terrain that validate our
approach are also presented.

I. INTRODUCTION

Mobile robotics has enabled scientific breakthroughs in
planetary exploration [1]. Recent accomplishments have
demonstrated beyond doubt the necessity and feasibility of
semi-autonomous rovers for conducting scientific exploration
on other planets. Both Mars Exploration Rovers (MERs)
“Spirit” and “Opportunity” have the ability to detect and
avoid obstacles, picking a path that would take them along
a safe trajectory. MER’s have reached traverses of 300m/sol.
On occasion, the rovers have had to travel to locations that
were at the fringe of the horizon of their sensors or even
slightly beyond.

The next rover missions to Mars are the “Mars Science
Laboratory” (MSL) [2] and ESA’s ExoMars [3]. Both of
these missions have set target traverse distances on the order
of one kilometer per day. Both the MSL and ExoMars rovers
are therefore expected to drive regularly a significant distance
beyond the horizon of their environment sensors. Earth-
based operators will therefore not know a-priori the detailed
geometry of the environment and will thus not be able to
select via-points for the rovers throughout their traverses.

One of the key technologies that will be required is the
ability to sense and model the 3D environment in which
the rover has to navigate. To address the above mentioned
issues, the Canadian Space Agency is developing a suite of
technologies for long-range rover navigation. For the pur-
poses of this paper, “long-range” is defined as a traverse that
takes the rover beyond the horizon of the rover’s environment
Sensors.

In the next Section we discuss the state-of-the-art in
robotic planetary exploration. Section II presents the over-
all process for planetary exploration together with a short
description of our test-bed. Next we present a summary
of our approach to environmental modelling, Section IV
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Fig. 1. The Mars terrain wi
provides a summary of our approach on terrain modelling
using LIDAR data. Section V presents a new algorithm for
planning an optimal path for the rover using the Irregular
Triangular Mesh (ITM) while keeping it a safe distance from
the detected obstacles. Next, the results from a variety of
experiments are presented in Section VI.

II. RELATED WORK

The work on planetary exploration can be divided ac-
cording to the sensing modality used and also according
to the environment representation used. Both vision [4]
and LIDAR [5] technologies have been proposed, each one
having different advantages and disadvantages. Early work
on planetary exploration using LIDAR [5], though promising,
was not compatible with the flight weight constraints. The
Mars Exploration Rovers are currently performing long tra-
verses using vision [6]. Vision although lightweight, requires
more computing power, has limited range and accuracy.
Currently, LIDAR based systems ! have been successfully
used in space missions on-Earth-orbit and thus are space
qualified. The major advantage of LIDAR systems is their
superior resolution and range.

The problem of autonomous long range navigation is also
very important in terrestrial settings. The DARPA grand
challenge in 2005 resulted in several vehicles travelling 132
miles over desert terrain [7]. The majority of the contestants
used a combination of multiple LIDAR, vision, and RADAR
sensors. Similar work involved traverses on the order to
30Km in the Atacama desert [8] using vision. See also [9] for
a discussion of the many challenges and additional related
work.

Currently, the most advanced exploration robots that have
been deployed for planetary exploration are the Mars Ex-
ploration Rovers (MER) “Spirit” and “Opportunity”. These
rovers have successfully demonstrated, on Mars, concepts
such as visual odometry and autonomous path selection from
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a terrain model acquired from sensor data [10]. The main
sensor suite used for terrain assessment for the MER has
been passive stereo vision [11]. The models obtained through
stereo imagery are used for both automatic terrain assessment
and visual odometry. Due to high computation load visual
odometry is rarely used on the MERs, a more efficient
algorithm was proposed for the Mars Science Laboratory
mission planned for 2010 [12].

In the case of automatic terrain assessment, the cloud of
3D points is used to evaluate the traversability of the terrain
immediately in front of the rover, defined as a regular grid of
square patches. In the case of visual odometry, the model is
used to identify and track features of the terrain to mitigate
the effect of slip [13]. LIDAR sensors have also been used
successfully for 3D mapping of underground mines [14].

For our work, we have been using a laser range sensor
(LIDAR) as the main sensing modality. Several factors have
motivated the choice of a LIDAR sensor: among others,
our mobility platform has very low ground clearance. A
LIDAR sensor is capable of providing range data to build
terrain models with 1-2cm accuracy. Such an accuracy would
be difficult to attain with most stereo vision systems over
the full range of measurement. Such accuracy is also very
important for the scientific return of the mission. In addition,
LIDAR sensors, return accurate geometric information in
three dimensions in the form of a 3D point cloud without
requiring additional processing. Finally, since they do not
rely on ambient lighting, we do not have to address the
problems arising from adverse lighting conditions.

III. OVERVIEW

The goal of our work is to navigate autonomously from the
current position to an operator-specified location which lies
beyond the sensing horizon of the rover. In order to achieve
this goal several components need to be developed, tested
and integrated. Figure 2 presents a schematic diagram of the
different components. We operate under the assumption that
a global map is available from satellite imagery, previous
missions, or from data collected during descent [15]. For
all the experiments a global map with one meter resolution
was used. At top level, the rover uses the global map
to plan a path from its current position to an operator-
specified location; the rover collects the first local scan
using its LIDAR sensor, then the global path is segmented
successively using the locally collected scans; each time an
optimal trajectory is planned through the ITM representation
of the local scan. Finally, the rover uses the local path to
navigate to the next way-point. At the current state, the pose
estimation from the IMU and the odometer, combined with
the trajectory length in the order of ten meters allows to
safely navigate in open loop without relocalizing between
successive scans. Preliminary localization test results, though
promising, have not yet proven to be robust enough. As such,
scan to scan localization is in the immediate future plans, but
outside the scope of this paper.

Our approach is implemented on a modified Pioneer P2-
AT robot; cf. Fig. 1. The robot is equipped with wheel
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Fig. 2.
tion.

encoders for odometry, a six-axis Inertial Measurement Unit
(IMU), and a digital compass for azimuth. Two different
LIDAR sensors have been used in the experiments. During
2006 an ILRIS 3D unit from OPTECH was used with a
range of over 1 km but with a field of view (fov) limited
to 40°. During 2007 and 2008 a scanning LIDAR sensor
is mounted on top of the robot to obtain detailed terrain
models for localization and path planning. It is using a SICK
laser mounted vertically on a pan-unit, which provides a 360°
field of view (fov). As the pan-unit rotates, the SICK scans
vertical slices, thus producing complete coverage all around
the rover. The LIDAR sensor is mounted at a low grazing
angle, as evidenced by the long shadows (lack of data) in the
scan; cf. Fig. 3a. The hight at which the sensor is mounted,
on several occasions, did not clear above obstacles or steeper
slopes, thus requiring frequent scans. On the other hand this
design choice introduced realistic challenges.

The main components of Autonomous Over-the-Horizon Naviga-

IV. TERRAIN MODELLING

As mentioned above, the main sensor of the robotic
platform is a 2D LIDAR sensor mounted on a pan-unit
thus producing full 2.5D data with a 360° fov. The sensor
returns a set of points in polar coordinates [p, ¢, 6] which
represent the distance to the obstacle (p), the elevation angle
(¢ € [-90°,90°]), and the azimuth (6 € [—180°, 180°]). The
angular resolution of our sensor can be set to 0.5° or 1°. The
main advantage of the LIDAR is that it directly provides a
2.5D point cloud giving the coordinates of the terrain in its
fov, with no need for post-processing. As a point cloud can
not be used for robotic operations such as path-planning and
navigation, a different representation was chosen. The main
requirements to be fulfilled are: the new representation had
to be compact, a single scan consists of tens of thousand of
points; it had to be compatible with navigation algorithms;
and, it must also preserve the scientific data contained in
the terrain topography. To fulfil these requirements, the ITM
terrain representation was chosen [16]. Our terrain modelling
approach has been presented before [17] together with an
analysis of the different terrain properties encountered in the
Mars emulation terrain used for our experiments. It is worth
noting that each individual scan results in a 2.5D surface,
however, the ITM formalism is capable of combining several
scans to model 3D structures such as overhangs. Next, we
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Fig. 3.

are going to review the key aspects of the terrain modelling
process to provide sufficient background for the discussion
of the autonomous navigation process.

The 2.5D points in polar coordinates are used as the
input to the Delaunay triangulation algorithm, which creates
triangles based on the adjacency of the data points. It is worth
noting that performing the triangulation in polar coordinates
allows us to eliminate shadow triangles and outliers in a
systematic manner. Figure 3a presents the 2.5D point cloud,
it is clear that even small obstacles create long shadows with
no measurements in them. The Delaunay triangulation in
polar coordinates is used which preserves the shadows; cf.
Fig. 3b. As a result there are no surface representations in
the areas for which there are no measurements. Finally the
full ITM is decimated by removing triangles that are nearly
co-planar, while ensuring that the original points are at a
distance less than two centimeters from the resulting mesh;
cf. Fig. 3c. The implementation of the terrain modelling and
decimation using a triangular mesh is done using the Visual-
isation Toolkit [18] libraries. Two different LIDAR sensors
have been used by CSA, with different range, fov, and
accuracy characteristics. More than two hundred scans from
the two LIDARS have been collected during our experiments.
Each scan contains 111,000 (SICK based LIDAR) or 31,200
(ILRIS 3D) points on average depending on the sensor. The
employment of ITMs for terrain modelling maintained the
high levels of accuracy while at the same time reducing the
data volume by 90%-95% [19].

The ITM preserves the science content from the topo-
graphical data, while capable of modelling concave geologi-
cal structures like overhangs and caverns. Please refer to [17]
for a discussion of various LIDAR modelling methods.
It is worth mentioning though the recent approach which
combines digital elevation maps with multiple layers [20] as
it models concave structures. However, the method in [20]
does not lead easily to path-planning.

V. PATH-PLANNING ON ITM

One of the advantages of the ITM representation is that
it is amenable to path planning. Indeed, the triangles in
the mesh form individual cells. While traversing the terrain,
the robot moves from one cell to another by crossing their
common edge. The ITM representation can therefore easily
be transformed into a graph structure where the cells are the
graph nodes and the common edges between cells are the
edges between the nodes of the graph. The path-planning
problem is then formulated as a graph search problem.

(a) The raw point cloud. (b) Delaunay triangulation in polar coordinates. (c) The decimated irregular triangular mesh

The results described in this paper were obtained using
Dijkstra’s graph search methods from the jgrapht java library
with a variety of cost functions taking into account distance
travelled, terrain slope, and terrain roughness. One of the
main advantages of graph search techniques is that they
do not get stuck in local minima: if a feasible path exists
between any two locations, graph search algorithms will find
it. In addition, given any cost function, Dijkstra’s algorithm
always returns the lowest cost solution between any two
locations.

It should be noted that the output of the graph search
algorithm is a series of cell identifiers. When traversed in
the given order, the cells will lead the robot from start to
destination along a path that is deemed safe and optimal
according to the given cost function. The robot’s guidance
and motion control algorithms, however, require a trajectory
composed of a series of points in 3D space. The easiest
way to convert cell ID’s to 3D points is to use the geometric
centers of the cells as trajectory points. The trajectory is then
the list of the center points of all cells in the list generated by
the graph search algorithm. This results in an unacceptable
trajectory that zigzags unnecessarily between cell centers.

It is therefore necessary to smooth out the resulting tra-
jectory by removing superfluous via-points in the trajectory.
The trajectory simplification algorithm first defines a safety
corridor as the set of all cells in the path generated by
the graph search algorithm. Each of these cells has been
identified by the planner as a safe area on which the robot
can tread. The trajectory generation algorithm then assigns
a via-point to the geometric center of every cell in the path.
The simplification algorithm removes intermediate points in
the trajectory and verifies whether the straight-line segment
joining the two points on either side of the removed via-
point stays on the safety corridor. This procedure is applied
iteratively starting from the initial location of the robot.
Points are removed as long as the safety corridor constraint
is not violated. At this point, the algorithm is re-started from
the location of the via-point that could not be removed and
stops when reaching the final destination.

In this context, the usage of ITM introduces additional
challenges. First, on flat terrain, the cells are relatively large.
Therefore, although large cells are preferable for safety
reasons, a cost function taking only distance travelled into
account would unduly penalize traversal through large cells
because the raw path zigzags between cell centers. On the
other hand, on rough terrain, the cells are much smaller and
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Fig. 4. Results of Path Planner on Typical Irregular Triangular Mesh

the resulting safety corridor can be very narrow, hence more
difficult to navigate.

In addition, the trajectory simplification algorithm, by
design, simplifies the trajectory until it skims the boundaries
of the safety corridor: the resulting trajectory can therefore
skim obstacles. If the width of the robot is not considered,
the planned trajectory will result in a collision between the
robot and the environment.

Figure 4 shows a path that was planned in a typical terrain
scan obtained using a LIDAR range scanner in CSA’s Mars
emulation terrain. The scan was acquired from the start point
located at the left end of the planned trajectory (the red multi-
segmented line). The figure clearly shows that the trajectory
remains within the bounds of a safety corridor without going
through the center points of every cell in the path.

These results were obtained using Dijkstra’s graph search
algorithm with the following cost function to compute the
cost of travelling from cell ¢ to cell j:

Il =4 |

Q=% —xilafe it )

where x; and x; are the geometric centers, and A; and A; are
the areas of cells ¢ and j respectively. The exponential term is
used to encourage the path to cross wide cells instead of long
thin cells. The parameters « and 3 are penalty multipliers
to take into account the slope of the terrain. Parameters «
and (§ are computed taking into account the footprint of the
robot.

The footprint of the robot is defined as C =
{c1,¢2,...,¢m}, the set of all cells with at least one vertex
within a distance r from x;; where r is a safety parameter.
The average normal of the terrain within the footprint is

defined as:
ST Agn
k=1 1kk 2
S @)
k=14
where A, and ny, are the area and the unit normal of cell
k. The cross-track vector and along-track vector are then
computed as:

ﬁ:

.
/

) &

Fig. 5. A model of the Mars emulation terrain together with the recorded
trajectories for all the different experiments performed in the 2007 testing
season.

and

a=c¢xn 4

The cross-track slope angle and the along track slope
angles are then computed as:

¢ = |atan2(c., /€2 + c2) (5)
¢ = atan2(a., /a2 + a2) (6)

The values of ¢ and 6 are then used to compute the slope
penalty parameters in equation 1 as follows:

and

o k’a% lf Hmzn < 9 S amaa:
a—{ 00 if 0 < Oy OF 0 > Oy @
5—{00 if ¢ > Pmas ®)

where k, is a scaling parameter and 6,,,iy, Omaz, a0d Gran
are platform specific threshold values.

One of the issues encountered during our field-testing was
due to the fact that the environment sensor has a 360° fov
and the Dijkstra’s graph search algorithm is a breadth-first
algorithm: it grows the search space from the start location
irrespective of the target destination. The planner ends up
spending much precious time searching in the direction
away from the destination. The A* graph search algorithm
was used in an attempt to reduce the computation time.
Preliminary results indicate that, using typical terrain models,
the computation time can be accelerated by a factor ranging
between 3 and 6. The path-planner using A* was also tested
off-line using the collected scans of the 2007 testing season.
Random destination points were selected at five and ten
meters from the location the scan was originated for all 107
scans. The computation time was on average 14 seconds for
the destinations at five meters, and 25 seconds for ten meters.
The proposed planning method was very efficient, the paths
were computed in seconds using ITMs with several thousand
triangles, and the computed paths were on average 25%
longer than a straight line between start and destination [19].
As noted earlier, a path was always found if a feasible
path, for a given cost function, existed. For an in-depth

e =1nx(x;—x) 3) discussion of the CSA’s path-planning approach, including
! the implementation of different cost functions, please refer
to [21].
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VI. EXPERIMENTAL RESULTS

The experiments were run at the Canadian Space Agency’s
Mars emulation terrain: a 60 meter by 30 meter rover test
area that emulates the topography of a broad variety of
Martian landscapes. The terrain includes plains, a hill, a
canyon and rock fields of varying density; cf. Fig. 1 for
a photograph of the terrain and Fig. 5 for a model of the
complete terrain. It is worth noting, that the model is four
years old and as the terrain is outdoors, wind, rain, and snow
have somewhat modify the topography, as such the model
is used mainly for illustrative purposes. A large number of
experiments were conducted in the 2006 testing session 2
using the ILRIS 3D LIDAR sensor with limited fov sensor.
In the 2007 testing session, the 360° fov sensor enabled us
to perform several experiments validating CSA’s approach to
fully autonomous over-the-horizon navigation. The first set
of tests conducted was for validating the accuracy of the 3D
odometry filter. A large number of closed trajectories was
executed varying in size and in location. Consequently, we
were able to quantify the error exhibited in terms of both the
length of the travelled trajectory as well as the morphology
of the terrain.

A statistical error analysis has revealed that the actual
error on position for the closed loop trajectories is on the
order of 2.19% with a standard deviation of 2.25%, of which
approximately 0.5% is due to the 3D odometry. The high
value of the standard deviation is due to the fact that three
experimental runs (out of 29) resulted in errors on the order
of 7%-8% due to excessive wheel slip.

Next a series of over-the-horizon trajectories were exe-
cuted to test the integrated system. Figure 5 presents the
trajectories of several experiments of autonomous over-the-
horizon navigation over a model of the Mars emulation
terrain. As can be seen, the experiments covered all the
terrain types. In particular long trajectories over flatter ter-
rain with sparse obstacles were traversed first, while the
climbing abilities of the mobile platform were tested during
the trajectories that appear in the middle of the terrain,
where two small hills are located. Finally, the robot was
able to navigate autonomously through an area littered with
obstacles depicted in the right side of Fig. 5.

Figure 6 presents the results from a representative fully
autonomous navigation experiment. First the model of the
Mars emulation terrain was used as the global map and the
operator entered the global destination, then a simple planner
was used to calculate the global path. Figure 6a shows all the
paths; the global path is presented as a dashed (blue) line, and
the planned local paths together with the odometric estimates
are drawn as green and red lines respectively. The start, the
two way points, and the global destination are also marked.
Figure 6b presents the first scan and the first local path. The
scan was used to determine the last point in the global path
that resides inside it and is accessible from the start position;
the selected point is then designated as the local destination.

2CSA’s location allows outside testing only during the summer and early
fall months, thus, the 2006 and the 2007 testing seasons were from June to
early November.

It is worth noting that due to the shadows, a point in the
global path could reside inside an isolated triangle in which
case it would not be reachable when used as a destination
for the local-path-planner. Way-Point-1 in Fig. 6a is the first
selected local destination. The rover planned and executed a
successful traversal and reached the first way point, at which
step it took the second scan; cf. Fig. 6¢c. The global path was
used again to determine the next local destination, second
way point, and the local path planner was used to plan the
second collision free path. Finally when the robot reached
the second way point the final destination from the global
path plan was reachable and the robot planned and executed
the final trajectory; cf. Fig. 6d.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we presented successful autonomous over-
the-horizon navigation experiments in a Mars-like terrain.
The operator selected a destination way beyond the sensing
horizon of our rover and then monitored as the robot selected
intermediate destinations, planned a safe path and traversed
to the next way-point. The Irregular Triangular Mesh rep-
resentation was used which enabled us to have a compact
yet accurate model of the environment. Path planning is
conducted in the ITM terrain model using the A* graph
search algorithm using a cost function that takes into account
the physical dimensions of the rover and its limitations to
traverse rough terrain. A new factor was introduced in the
cost function to handle the conditions of ITM where safe
terrain cells are typically large in size. Experimental results
demonstrating the feasibility of our approach are presented.

Upcoming work include further research on localisation
and scan matching. This will enable the rover to re-localise
by matching features in successive environment scans. Such
an approach has the potential to be computationally less
expensive than on-line visual odometry based on stereo
camera views. Current work includes a re-formulation of
the ITM terrain models to render them more amenable to
scan matching algorithms such as the Iterative Closest Point
algorithm.
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