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Abstract— This paper presents an extension to visual iner-
tial odometry (VIO) by introducing tightly-coupled fusion of
magnetometer measurements. A sliding window of keyframes
is optimized by minimizing re-projection errors, relative in-
ertial errors, and relative magnetometer orientation errors.
The results of IMU orientation propagation are used to effi-
ciently transform magnetometer measurements between frames
producing relative orientation constraints between consecutive
frames. The soft and hard iron effects are calibrated using an
ellipsoid fitting algorithm. The introduction of magnetometer
data results in significant reductions in the orientation error
and also in recovery of the true yaw orientation with respect
to the magnetic north. The proposed framework operates in
all environments with slow-varying magnetic fields, mainly
outdoors and underwater. We have focused our work on the
underwater domain, especially in underwater caves, as the
narrow passage and turbulent flow make it difficult to perform
loop closures and reset the localization drift. The underwater
caves present challenges to VIO due to the absence of ambient
light and the confined nature of the environment, while also
being a crucial source of fresh water and providing valuable
historical records. Experimental results from underwater caves
demonstrate the improvements in accuracy and robustness
introduced by the proposed VIO extension.

I. INTRODUCTION

Magnetic measurements are an often neglected source of

information mainly because of their sensitivity to ambient

noise; however, there are several situations in which they

can provide useful information with minimal cost and low

computational overhead. In this work we are targeting the

underwater domain with the use of a sensor suite [1]. The

used sensor suite, comprised of a stereo camera, a 9-axis

IMU, a water depth sensor, and a pencil beam mechanically

scanning sonar, can be deployed by a human to collect data

inside an underwater cave; see Fig. 1. We propose a tightly

coupled optimization-based fusion of visual, inertial, and

magnetometer information. Magnetometer measurements are

added as new factors to the keyframe-based sliding window

optimization graph proposed in [2]. We leverage the IMU

preintegration algorithm from [3], [4] to efficiently compute

magnetometer residuals for all measurements. Since the IMU

preintegration terms are already defined in the relative inertial
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Fig. 1: Sensor suite deployed inside the Cueva del Agua, Spain.

error, the additional computational cost is relatively small.

The magnetometer data are sensitive to the local magnetic

field and require an explicit calibration procedure. As such,

the magnetometer measurements are calibrated to account for

soft and hard iron effects using an ellipsoid fitting algorithm.

Experiments have shown that after calibration, the local

magnetic noise is relatively low throughout the trajectory.

Furthermore, magnetic data present an absolute measurement

based on the magnetic field of Earth and while noisy they

are consistent over long trajectories. Our target application

is the mapping of underwater caves.

Mapping underwater cave systems is extremely important

for environmental protection, fresh water management [5],

and resource utilization [6]. Moreover, caves provide valu-

able historical evidence as they present an undisturbed

time capsule [7]–[10], and information about geological

processes [11]. Diver centered mapping is a dangerous, labor-

intensive, tedious, and slow task. In addition to limited

visibility, color absorption, hazing, and lightning variations,

there is no ambient light and the environment is often

cluttered and fragile, making navigation difficult, with inad-

vertent motion maneuvers often reducing visibility to zero.

Furthermore, the confined environment prevents resurfacing

in case of a problem or emergency. During operations inside

underwater caves, there are two constraining factors. First,

the passages are often narrow, and the view on the way in is

completely different from the view on the way out, making

maneuvering difficult. Second, there is significant water flow

that makes staying in one spot to collect data in 360 degrees

very challenging. These conditions contribute to reducing the

number of loop closures that are feasible.

Moreover, underwater cave systems provide an exciting

opportunity to use magnetometer measurements as they

are devoid of significant magnetic disturbances due to fer-

romagnetic materials. The introduction of magnetic field

measurements in the state estimation process, proposed in



this paper, leads to two significant contributions. First of all,

absolute orientation measurements are introduced to orient

the produced trajectory with respect to the magnetic north.

This makes the produced trajectories compatible with the ex-

isting man-made maps of the caves. Second, the introduction

of magnetometer data constrains the produced trajectories

along the yaw direction, producing much more consistent

results, eliminating the orientation drift that plagued earlier

deployments [12].

To the best of our knowledge, our work is the first

to use IMU preintegration to introduce high frequency

magnetometer measurements in the optimization framework.

The proposed framework has been tested in a variety of

underwater caves in Florida and Mexico. Qualitative results

demonstrate the alignment of the produced trajectories to the

existing maps of the caves, and also a significant reduction in

orientation error (drift). The produced trajectories resulted in

significantly reduced error, compared to the baseline trajec-

tories obtained using COLMAP [13] (a bundle adjustment,

global optimization framework).

II. RELATED WORK

Vision-based state estimation has proven to be extremely

challenging due to the varying lightning conditions, scat-

tering and haziness from floating particulates, and color

variations due to light absorption in the water. Several visual

and visual-inertial state estimation packages have exhibited

severe failures [14], [15]. Rahman et al. [16] proposed

an extension of OKVIS [2] incorporating a pencil beam

mechanically scanning sonar, a water depth sensor, and loop

closure capabilities [17], [18]. The framework was then

adapted for inexpensive action cameras, GoPro 9, [19] pro-

ducing superior performance. More recent packages such as

ORB-SLAM3 [20], OpenVINS [21], etc. have demonstrated

better performance, but there is no in-depth analysis of their

accuracy and robustness.

Magnetometers have traditionally been fused with ac-

celeration and angular velocity measurements to estimate

the vehicle’s attitude; such systems are termed attitude

and heading reference systems (AHRS) [22]–[24]. Some

recent work on the fusion of magnetic field measurements

with a visual sensor has gained traction. Wang et al. [25]

performed visual, inertial, and magnetometer fusion first by

initializing the VIO in the reference frame of Earth and then

computing the error between magnetometer measurement

and Earth’s magnetic field. The authors included only mag-

netometer measurements near the keyframe, skipping most

of the high-frequency magnetometer measurements. Siebler

et al. proposed a particle filter method to use magnetic

field distortions for magnetometer calibration and localiza-

tion [26]; without focusing on continuous state estimation.

The closest approach to ours used inter-frame preintegrated

magnetometer measurements [27], [28]. However, it requires

an array of magnetometers measuring magnetic field and it’s

gradient. Our work is focused on a single 9-axis IMU without

requiring additional hardware enhancements.

Fig. 2: The body pose TWB
.

= (RWB, Wp) which coincides with 9-
axis IMU is tracked w.r.t the world frame W. The camera pose in
body frame TBC is fixed and known from prior calibration. The
world frame W coincides with East, North and Up direction in
Earth coordinates.

The calibration of soft and hard iron offsets for magne-

tometer is very important as they can introduce huge errors

in the estimation process. In [29] an iterative batch least

squares estimation was introduced to calibrate a full three-

axis magnetometer. Vasconcelos et al. used maximum like-

lihood estimation to find the optimal calibration parameters

that best fit the reading of the onboard sensors to calibrate

the 3-axis strapless magnetometer [30]. Kok et al. [31]

proposed maximal likelihood calibration using orientation

estimation from inertial sensors. Taking things to the next

step, Solin et al. created a map of the magnetic field in an

indoor environment by imposing a Gaussian process (GP)

prior to the latent scalar potential of the magnetic field [32].

III. VISUAL-INERTIAL-MAGNETOMETER FUSION

Visual-Inertial Odometry aims to estimate the pose of the

moving camera-imu system by fusing inertial information

with images. In this work, we extend visual-inertial odometry

to fuse magnetometer measurements in a tightly coupled

fashion using IMU preintegration.

A. Problem Formulation

We consider the visual inertial magnetometer odometry

problem where we want to track the state of a sensing

system (a handheld underwater sensor suite) equipped with

an IMU, a stereo/monocular camera, and a magnetometer.

The IMU frame coincides with the body frame ”B” we

want to track, and the transformation between the camera

and the IMU (TBC) is known by calibrating the extrinsic

parameters and remains constant throughout the experiment;

see Fig. 2 . In this work, we use a 9-axis IMU that includes

an accelerometer, a gyroscope, and a magnetometer. As

such, we assume that the magnetometer and IMU (gyroscope

and accelerometer) axes are aligned and that there is no

significant axis misalignment. When using stereo cameras,

we assume that they are rigidly attached with known extrinsic

parameters between the cameras and between the cameras

and the IMU.

Nonlinear keyframe-based sliding window optimization is

performed to estimate body poses and 3D landmark positions

by minimizing the reprojection error of landmarks seen in

the camera frame. Thus, we need to estimate the variables



X = {XB,L} where L represents 3D landmark positions

visible in the sliding window and XB = [x1, ...,xK ] holds

the system states at camera times 1 to K with K being the

total number of keyframes in the sliding window. The system

state xk at time tk holds position Wpk and orientation qk
WB

in the world frame, velocity in the inertial frame Wvk, as

well as biases of the gyroscope bk
g and accelerometer bk

a.

The system state can be written as

xk = [Wpk,qk
WB,Wvk,bk

g ,b
k
a] (1)

where qWB is the quaternion representation of the orientation

RWB.

B. Fusing visual, inertial and magnetometer measurements

The keyframe-based visual-inertial SLAM is formulated

as joint nonlinear optimization that maximizes the posterior

probability of the system state X . Using the problem formu-

lation proposed in [2], [18], the following cost function is

minimized

JV I(X ) =

K
∑

k=1

∑

j∈Jk

∥er
j,k∥2

Wr
j,k +

K
∑

k=1

∥ei
k∥2

Wi
k + ∥ep∥

2

(2)

where k denotes the camera frame index and j denotes the

landmark index. The cost function contains the reprojection

er, inertial ei, and marginalization ep residuals weighted by

their respective information matrices.

The reprojection error for the landmark W lj ∈ Jk is

calculated as er
i,j = h(W lj)−zj,k where Jk is the set of all

the landmarks visible in the keyframe k. Here, h(.) denotes

the camera projection model and zj,k the measurements

in the image coordinates. For more details, please refer to

[2]. The inertial residuals ei are obtained using the IMU

preintegration theory proposed in [3], [33] which is detailed

in Section III-C. We employ a marginalization strategy

similar to [2] to obtain the marginalization prior error term,

ep. Whenever a new frame is inserted in the optimization

window, the marginalization operation is classified into two

cases. If the oldest frame in the sliding window is not a

keyframe, it is marginalized together with the oldest speed

and bias states, and all its landmark measurements are

dropped to maintain sparsity. In the case where the oldest

frame is a keyframe, only the landmarks that are visible

in that frame but not in the most recent keyframe are

marginalized out.

We introduce the magnetometer residuals based on IMU

preintegration into Eq. 2 to obtain the cost function used

in this work as

J(X ) = JV I(X ) +

K
∑

k=1

∑

j∈Mk

∥em
j,k∥2

Wm
k (3)

where Mk denotes all magnetometer measurements attached

to the system state xk by the error term. In the remainder

of Section III, we use the output of the IMU preintegration

algorithm to derive the magnetometer error term em
j,k and

the residual weights Wm
k.

C. IMU Preintegration

In this section, we review the IMU preintegration formu-

lation, which in turn will be used to derive the magnetometer

residuals in Section III-D. The IMU preintegration formula-

tion is based on [3] inspired by continuous-time quaternion

kinematics from [33] and uses IMU bias manipulation

according to [4].

The accelerometer and gyroscope measurements in body

frame B at time t are affected by the additive white noise η

and slowing varying bias b

Bw̃(t) = Bw(t) + bg(t) + ηg

Bã(t) = RT
WB(Wa(t)− Wg) + ba(t) + ηa

(4)

The accelerometer and gyroscope noise is modeled as

additive Gaussian noise with ηa ∼ N (0, σ2
a · I) and ηw ∼

N (0, σ2
w · I), where I being the identity matrix. IMU biases

are modeled as a slowly varying random walk with ḃwt
=

ηbw
and ḃat

= ηba
where ηbw

∼ N (0, σ2
bw

· I) and

ηba
∼ N (0, σ2

ba
· I). Most modern 9-axis IMUs provide

high-frequency synchronized accelerometer, gyroscope, and

magnetometer measurements, as shown in Fig. 3. As such,

Wpi,qi
WB and Wvi can be propagated in the time interval

[tk, tk+1] using accelerometer and gyroscope measurements.

Although in practice IMU measurements may not perfectly

synchronize with image timestamps, the sensor setup is

calibrated using Kalibr [34] beforehand. Propagation in the

world frame requires knowledge of the initial state of the

system at time tk. Whenever the system state changes during

optimization, repropagation is needed. Thus, the IMU prein-

tegration is performed in the body frame to avoid repropa-

gation whenever system state is updated during optimization

for computational efficiency.

The propagation is performed in body frame Bk instead

of the world frame as

Rk
BW Wpk+1 = Rk

BW(Wpk + Wvj∆tk −
1

2
Wg∆tk

2) +αk+1

k

Rk
BW Wvk+1 = Rk

BW(Wvk − Wg∆tk) + βk+1

k

qk
BW ⊗ qk+1

WB = γk+1

k
(5)

where αk+1

k , βk+1

k and γk+1

k are the preintegration terms

which only depend on the inertial measurements and bi-

ases. These preintegration terms along with their covariance

BP
k+1

k can be updated iteratively using discrete accelerome-

ter and gyroscope measurements; see [3], [4] for details. The

preintegrated terms αk+1

k , βk+1

k and γk+1

k are updated using

the first-order approximation with respect to their biases if

the bias estimates are relatively unchanged as proposed in

[4]. Otherwise, we redo the propagation using the updated

bias estimates. The inertial error ei
k is obtained from Eq.

5 as

ei
k =













Rk
BW(Wpk+1 − Wpk − Wvj∆tk + 1

2Wg∆tk
2)−αk+1

k

Rk
BW(Wvk+1 − Wvk + Wg∆tk)− βk+1

k

2[(qkWB)
−1 ⊗ qk+1

WB ⊗ (γk+1

k )−1]xyz
bk+1
g − bk

g

bk+1
a − bk

a













.

(6)



Fig. 3: Illustration of visual, inertial and magnetometer measure-
ment timing

The preintegration term allows us to estimate the body

orientation at time j ∈ (k, k + 1] during recursive updates

which we will use to obtain the magnetometer error in the

next section.

D. Magnetometer Residuals

Magnetometer and IMU measurements obtained from 9-

axis IMU used in attitude and heading reference systems

(AHRS) are synchronized as shown in Fig. 3. The uncertainty

of magnetometer measurements is modeled as Gaussian

noise such that the magnetometer measurement is

Bm̃ = RT
WB Wm+ ηm (7)

where Wm is the earth’s magnetic field at the location in

world coordinate frame which is aligned with earth’s east,

north and up (ENU) direction. The magnetometer additive

white noise can be expressed as ηm ∼ N (0, σ2
m · I). We

estimate the magnetometer white noise similar to IMU [35]

using the allan-variance plot.

However, the magnetometer measures the superposition of

Earth’s magnetic field and local magnetic field because of the

presence of magnetic materials in the sensor’s vicinity. Thus,

the magnetometer is calibrated before experiments to esti-

mate the soft and hard iron effects. The calibration procedure

is explained in the next section. During VIO initialization, we

align the orientation of the body frame in the ENU direction.

When properly calibrated, the Earth’s magnetic field points in

the north-down direction. First, the upward-pointing gravity

direction is obtained from the accelerometer measurements.

The cross product of the magnetic field and the gravity

direction provides the east direction. The remaining axis can

be obtained from the cross product of the estimated axes.

This is a common procedure used in AHRS systems such as

the Madgwick filter [22] and the complementary filter [23].

Formulating the magnetometer residual directly in terms of

Eq. 4 has one significant drawback that any error during the

initial alignment is also included in the estimation process.

Thus, we formulate the magnetometer residuals as relative

orientation constraint between two consecutive frames.

For the magnetometer residual formulation, we assume

that the magnetometer samples are calibrated following the

procedure in Section III-E. Using the preintegrated orien-

tation term allows us to use all magnetometer measurements

between consecutive frames. Given the current consecutive

frame state estimates xk and xk+1, we define the magne-

tometer residual for measurement at time tj ∈ (tk, tk+1] as

em
j,k = Rk

BW Rk+1

WB Bm̃
k+1 −∆R

j
k Bm̃

j (8)

where ∆R
j
k is the propagated orientation between the time

interval [tk, tj ] and transforms the magnetometer measure-

ment from time j to k. This propagated orientation is the

rotation matrix representation of the intermediate preinte-

gration result γ
j
k. Rotation Rk

BW Rk+1

WB represents relative

orientation during the time interval [tk, tk+1] in the body

frame Bk and transforms the magnetometer measurement

from time tk+1 to tk. By expressing the error term in the

body frame, we can recursively calculate γ
j
k efficiently as

tj < tk+1. Thus, the magnetometer error using preintegrated

orientation allows us to use all the magnetometer measure-

ments in the time interval (k, k+ 1] to optimize the relative

orientation between consecutive frames. The magnetometer

residual does not depend on the position estimate; as such,

it does not directly affect the state’s position estimate.

However, a better orientation estimate will certainly yield

a better position accuracy in the long run.

The magnetometer measurement estimated at tk using

quaternion preintegration depends on the gyroscope noise.

However, the gyroscope noise is already considered while

computing γ
j
k and is significantly smaller than the magne-

tometer noise. Also, we found that the propagated orientation

variance was very small compared to the magnetometer vari-

ance. Thus, for simplicity and computational efficiency, we

assume that the magnetometer residual weights depend only

on the magnetometer sensor noise. Moreover, when the state

connected to the magnetometer residuals is marginalized,

the magnetometer residuals are added as the marginalization

prior along with the inertial and visual residuals.

E. Soft and Hard Iron Effect Calibration

The full magnetometer measurement model taking into

account the magnetic disturbances and sensor imperfections

can be modeled [30] as

Bm̂ = SRT
WB Wm+ h+ ηm (9)

where S represents the soft iron matrix and h represents

the hard iron effect. Hard iron effects arise because of the

permanent magnetization of the material and also depend

on the fixed sensor recording mechanism. In particular, we

can think of the hard iron effect as a constant bias h. Soft

iron effects are due to the magnetization of ferromagnetic

materials due to the local magnetic field and depend on the

orientation with respect to the local magnetic field [31]. The

soft iron effect can be represented as a 3×3 symmetric matrix

S. We do not consider other sources of magnetometer errors

that could arise from non-orthogonality of the magnetometer

axes or differences in sensitivity along the three magnetome-

ter axes [29].

Without the soft and hard iron offset, if we rotate a

magnetometer sensor then the magnetic field vector falls on

the surface of sphere with a radius equal to the magnitude

of the earth’s magnetic field. Eq. 9 can be seen as a

linear transformation that maps points on a sphere to an

ellipsoid [36]. Thus, the magnetometer calibration problem

can be interpreted as ellipsoid fitting of the points to the

sphere surface. We solve the ellipsoid fit problem detailed



in Kok et al. [31] to obtain the estimate of A = S−1

and the hard iron offset h. For correct calibration, the

magnetometer needs to be rotated along all three axes several

times. Magnetometer measurements are corrected in the body

frame as follows:

Bm̃ = A(Bm̂− h) (10)

These corrected measurements are used to calculate mag-

netometer residuals in the sliding-window optimization as

explained in Section III-D. In an indoor environment, these

hard and soft iron effects continue to change as we move

through the different areas. The underwater cave environment

is ideally suited for magnetometer fusion as the likelihood

of magnetic disturbance is minimal. As such, we performed

the calibration at the beginning and assumed that the local

magnetic field did not change significantly. During deploy-

ment, we performed calibration at the beginning and at the

end of the dive, both calibrations resulted in similar values,

validating the above assumption. On older datasets, we did

not record an explicit magnetometer calibration sequence. In

such a case, these are not enough magnetometer measure-

ments in all directions; thus full mapping from ellipse to

sphere is degenerate. Thus, we only calibrate the hard iron

effect. Figure 4 presents the ellipsoids fitted during complete

calibration for the new sensor and for partial calibration of

the old sensor.

Fig. 4: Magnetometer calibration ellipses fitted from explicit cali-
bration sequence (left) and partial calibration (right).

IV. EXPERIMENTAL RESULTS

We present evaluation results from two experiments in the

Devil’s Eye cave system, FL, USA and one experiment in

the Dos Ojos Cenote, QR, Mexico. In all experiments the

diver enters and exits the cave from the same location.

A. Datasets

All the datasets are collected utilizing the sensor suite

described in Rahman et al. [1]. The first dataset was collected

using IDS UI-3251LE cameras in a stereo configuration and

Microstrain 3DM-GX5-25 AHRS in the Devil’s cave system,

Florida. We call this dataset cave1 short and images are cap-

tured at 15Hz. The cave1 short dataset spans approximately

220m. The second dataset was collected with the same sensor

suite in Dos Ojos Cenote, QR, Mexico. This trajectory is

very long (∼680m) with a duration of more than 50 minutes.

COLMAP was unable to finish the complete trajectory due

to computational and memory constraints. Thus, this data set

is used only for qualitative evaluation.

The third dataset was collected using a similar sensor

suite in monocular setup with Flir BFS-U3-16S7C-C camera

and microstrain 3DM-GV7 AHRS. We call this dataset

cave1 long with total trajectory length of approximately

506m. Both datasets are very challenging in terms of low

brightness, illumination changes due to artificial lighting, and

low visibility.

B. Results

Due to the absence of GPS or motion capture systems

underwater, COLMAP [13] is used to produce baseline

trajectories. COLMAP is a Structure-from-Motion (SfM)

framework that performs joint optimization of camera poses

and map structure using global bundle adjustment. Since

one of the datasets only contains monocular images, we

consider the COLMAP trajectory up to scale for uniformity.

Thus, the trajectories are aligned with the COLMAP baseline

trajectories using sim3 alignment [37].

We compare the performance of our magnetometer formu-

lation with the VIO formulation from OKVIS [2] in terms

of absolute trajectory error (ATE) [38]. We include the

results of the VIO-only case without fusing magnetometer

measurements and compare them with the proposed method

after sim(3) alignment. Each method is run three times

and the absolute trajectory error in terms of degree/meters

is reported in Table I. As seen in the table, there is a

significant reduction in both translation and rotation RMSE.

In particular in the cave1 long dataset, both the rotation and

translation error decreased significantly from ∼15°to ∼6°and

from ∼14m to ∼3m.

TABLE I: Three times run mean absolute trajectory error (ATE)
for VIO with and without magnetometer compared with COLMAP
baseline after sim(3) alignment in terms of degree/meters.

dataset length VIO VIO+MAG

cave1 short 220m 6.31°/6.45m 4.48°/4.98m
cave1 long 506m 14.65°/14.57m 5.83°/3.37m

We also computed the relative trajectory error (RPE) that

computes the relative error between states at different times

with the focus on the yaw error [39]. RPE shows the

local drift over different sections of the trajectory and is

unaffected by previously accumulated error. The relative yaw

error calculated for cave1 long trajectory after aligning the

initial pose is shown in Fig. 6. We can see that when using

the magnetometer the yaw error remains constant over large

distances, whereas the VIO accumulates error when distances

keep increasing.

Two different deployments from the Devil’s Eye cave

system are presented in Fig. 5. The first deployment, a

short foray of 100 meters penetration inside the cave, can

be seen in the left image, and the drift in the trajectory

(blue) without magnetometer data fusion is clear. The visual

inertial magnetometer fusion (green) follows much more

closely the ground truth trajectory from COLMAP. More



Fig. 5: Trajectories from two deployments at the Devil’s Eye cave system, FL, USA. The first two images show the trajectories, COLMAP
(red) treated as ground truth, OKVIS VIO [2] (blue), and OKVIS with magnetometer (green) the proposed method. The first trajectory
was carried out with the old sensor suite [1] and was a short (∼220m) trajectory, the second was done with the new system and went
further (∼500m) trajectory. The final figure presents a section of the man-made map with the ground truth trajectory superimposed (the
blue background indicates the Santa Fe River over the cave). These trajectories are aligned at the origin (0,0) only to show endpoint error.

Fig. 6: Relative trajectory error (yaw) comparison between VIO and
VIO+magnetometer.

dramatic improvements are presented in the middle figure

with trajectory of more than 500 meters. Compared to the

globally optimized (COLMAP) trajectory there was reduc-

tion of positional error from 2.8% to 0.6%. The right image

presents a partial map of the cave system with the COLMAP

trajectory superimposed. The map is not up to scale, thus

some passages are not scaled uniformly. Nonetheless, the

trajectory follows the main passages of the cave system.

Figure 7 presents the trajectory resulting from the de-

ployment of the old sensor suite at the Cenote Dos Ojos.

During the 50-minute deployment, the sensor covered ap-

proximately 680 meters inside a highly decorated cave. The

large volume of data made the production of a COLMAP-

based ground truth trajectory infeasible due to computation

and memory constraints. As such, this trajectory is used

only as a qualitative comparison. As can be seen, the VIO

diverged by almost 100 meters. The trajectory obtained from

magnetometer fusion follows the path out much more closely

to the path taken on the way in. It is worth noting that

the sensor’s trajectory does not follow exactly the same

path; however, the confined structure of the cave passage

constrains the inbound and the outbound trajectories fairly

close.

V. CONCLUSION

In this paper we presented a novel approach for augment-

ing VIO with magnetic field data. The experimental results

Fig. 7: Trajectories (∼680m) from a deployment at Cenote Dos Ojos
cave system, QR, Mexico. OKVIS VIO [2] (blue), and OKVIS with
magnetometer (green) the proposed method. These trajectories are
aligned at the origin (0,0) only to show endpoint error.

demonstrated significant improvements in the accuracy of the

resulting trajectories, significant reduction in the orientation

error, and also the ability to orient the resulting trajectory

with the magnetic north. During the estimation process,

the magnetometer and the accelerometers provide absolute

attitude information (with respect the magnetic north and

the gravity vector).

Future work will explore the performance of the proposed

system during shipwreck mapping, where the sensor tra-

verses near metal structures. During initial calibration we

expect to recover the true yaw of the sensor with respect

to the magnetic north, enabling better positioning of the

underwater structure in space. Furthermore, deployments of

the proposed system on an autonomous underwater vehicle

will require placing the magnetometer at some distance

from the motors. A future experimental study will evaluate

the magnetic noise levels for popular vehicles, such as the

BlueRoV2 [40] or the Aqua2 AUV [41].
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