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Abstract— This paper addresses real-time dense 3D recon-
struction for a resource-constrained Autonomous Underwater
Vehicle (AUV). Underwater vision-guided operations are among
the most challenging as they combine 3D motion in the presence
of external forces, limited visibility, and absence of global
positioning. Obstacle avoidance and effective path planning
require online dense reconstructions of the environment. Au-
tonomous operation is central to environmental monitoring,
marine archaeology, resource utilization, and underwater cave
exploration. To address this problem, we propose to use
SVIn2, a robust VIO method, together with a real-time 3D
reconstruction pipeline. We provide extensive evaluation on
four challenging underwater datasets. Qur pipeline produces
comparable reconstruction with that of COLMAP, the state-of-
the-art offline 3D reconstruction method, at high frame rates
on a single CPU.

I. INTRODUCTION

Mapping underwater environments is an important and
challenging endeavor. Monitoring the coral reefs [1], ex-
ploring underwater caves [2] and recording the shape of
Cenotes [3] have tremendous significance in our understand-
ing and awareness of the environment. Underwater mapping
is also crucial for marine archaeology [4], infrastructure
maintenance, and during search and rescue missions. Au-
tomating mapping with Autonomous Underwater Vehicles
(AUVs) reduces risks to divers, enables longer operations
times and increases the frequency of mapping/exploration
missions.

Unfortunately, as demonstrated in recent work on com-
paring numerous open-source visual and visual/inertial state
estimation packages [5], [6], there are frequent failures
underwater due to a variety of reasons. In contrast to above-
water scenarios, GPS based localization is impossible. In
addition to the traditional difficulties of vision based localiza-
tion, the underwater environment is prone to rapid changes
in lighting conditions, limited visibility, and loss of contrast
and color information with depth [7], [8].

* The first two authors have contributed equally to the paper.

“Stevens Institute of Technology, Hoboken, NIJ, USA, 07030,
{wwangl03, nburgdor, pmordoha}@stevens.edu

bUniversity of South Carolina, Columbia, SC, USA,
bjshi@email.sc.edu, yiannisr@cse.sc.edu.

Clatitude Al Palo Alto, CA, USA, 94304 kbatsos@stevens.edu

dDartmouth College, Hanover, NH, USA, 03755
alberto.quattrini.li@dartmouth.edu

This research has been supported in part by the National Science Founda-
tion under grants 1943205, 1919647, 2024741, 2024541 and 2024653. The
authors would also like to acknowledge the help of the Woodville Karst
Plain Project (WKPP) and El Centro Investigador del Sistema Acuifero
de Quintana Roo A.C. (CINDAQ) in collecting data, providing access
to challenging underwater caves, and mentoring us in underwater cave
exploration. K. Batsos’s contributions were made while at Stevens.

29208,

(c) Coral Reef, Barbados

(d) Stavronikita, Barbados

Fig. 1: Datasets used in our experiments: (a) and (b) collected using
a custom sensor suite. (c) and (d) collected using the Aqua2 AUV.

In this paper, we focus on real-time, scalable, detailed 3D
mapping. These goals must be accomplished on a compu-
tational platform suitable for deployment on an AUV. Our
software requires only a CPU and follows a pipeline archi-
tecture that incurs an almost constant computational load by
processing fixed-length segments of the data at a time. The
proposed approach includes: robust real-time camera pose
estimation using SVIn2 [9] which fuses information from
the cameras and IMU;j; two-stage depth map estimation based
on multi-threaded CPU-based stereo matching followed by
visibility-based depth map fusion; and colored point cloud
generation.

We conducted a thorough evaluation comparing our
method to COLMAP [10], [11], which is the state-of-the-art
open-source 3D reconstruction framework. Our evaluation
considers run-time, depth map estimation, and dense recon-
struction on four challenging underwater datasets. The main
contributions of this paper lie on the integration of a state
estimation and 3D reconstruction pipelines and the analysis
of the feasibility of real-time dense reconstruction onboard.

II. RELATED WORK

The Structure-from-Motion (SfM) and Simultaneous Lo-
calization and Mapping (SLAM) literature is vast. Here, we
focus on approaches tailored for underwater deployment.
State estimation underwater is challenging due to color
saturation, floating particulates, and limited visibility [6].
Vargas et al. [12] proposed robust visual SLAM underwater
leveraging acoustic, inertial and altimeter/depth sensors in
addition to cameras. Tightly coupled fusion of visual, inertial,
and pressure sensors using forward and backward IMU
preintegration is discussed in [13]. We use the approach of



Rahman et al. [9] to obtain robust camera pose estimates
by fusing visual and inertial information in real time. Beall
et al. [14] demonstrate accurate sparse 3D reconstruction
of underwater structures from stereo videos. Joshi et al.
[15] augment a visual SLAM algorithm so that, after loop
closures, the map is deformed to preserve the relative pose
between each point and its attached keyframes.

Among the few authors that tackle dense underwater
stereo, Queiroz-Neto et al. [16] model light propagation to
overcome poor contrast and illumination. Relevant to our
method are general-purpose dense 3D reconstruction algo-
rithms [17]-[26] operating in online mode on the frames of
one or more video streams. They can achieve high through-
put, in many cases by leveraging powerful GPUs. They have
been evaluated qualitatively since appropriate benchmarks
with ground truth, other than KITTI [27], are not available.
Recently, learning-based approaches [28]-[33] have shown
promising results at high frame rates. Considering the lack
of ground truth data from relevant domains, training these
algorithms in supervised mode is practically impossible.
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Fig. 2: A diagram of the components of the proposed pipeline.
Given a pair of stereo images, we can estimate a depth map as
well as the pose of the camera, using SVIn2, in parallel. Once both
become available, depth maps can be fused to generate the final
point cloud.

III. PROPOSED APPROACH

Our approach to 3D reconstruction relies on two parallel
components: (1) a multi-sensor SLAM system, SVIn2 [9],
and (2) a real-time dense 3D mapping system, as shown
in Fig. 2. In this paper, we focus on the latter, as well
as a comprehensive comparison of our online system with
COLMAP [10], [11]. Our approach requires a calibrated
stereo camera rig and an IMU to provide the necessary
inputs. Moreover, SVIn2 can also take inputs from sonar
and pressure sensors.

A. Pose Estimation

Robot pose estimation relies on our previous work,
SVIn2 [9], [34], a tightly-coupled keyframe-based SLAM
system that fuses data from the cameras and IMU. We have
demonstrated that SVIn2 performs well in underwater envi-
ronments by explicitly addressing drift, loss of localization
and poor illumination via robust initialization, loop-closing,
and relocalization capabilities.

B. Depth Map Estimation

The stereo matching module estimates depth for every
pixel of the left image of a stereo pair of images. The

cameras are placed with their image planes approximately
parallel facilitating rectification in software via a pair of ho-
mographies [35] estimated using a calibration checkerboard.
This configuration allows the use of very fast algorithms for
dense correspondence estimation that operate on horizontal
epipolar lines. Metric depth can be obtained for each stereo
frame, due to the known camera calibration parameters,
regardless of the accuracy in camera pose estimation.

We are able to process stereo pairs at high throughput
leveraging multi-threaded CPU implementations (OpenMP)
without relying on GPUs. We accomplish this by carefully
designing every step of the stereo matching process. Our
implementation of matching cost computation is publicly
available'.

Matching cost computation. Stereo matching estimates
the likelihood [36] for each possible disparity that can be
assigned to a given pixel of the reference image, typically
the left. Disparity d is defined as the difference between
the horizontal coordinates of two potentially corresponding
pixels in the same epipolar line (scanline) in the left and
right image. Disparity is inversely proportional to depth Z,
which can be computed as:
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where b is the baseline (distance) between the camera centers
and f is the focal length.

To select the most likely disparity for each pixel in the
left image, we assess the photoconsistency of that pixel
with potentially matching pixels in the conjugate epipolar
line in the right image. This is accomplished by computing
a similarity or dissimilarity measure in matching windows
centered around the pixels under consideration. In this paper,
we experimented with the Sum of Absolute Differences
(SAD), which is a dissimilarity (cost). The cost values for
all pixels and disparities are accumulated in the cost volume
V', which is computed as follows with SAD:
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where I;, and I are the two images and W (x,y) is the
matching window.

We accelerate these computations using several techniques

including: integral images to compute sums in rectangular
sub-images in constant time [37] regardless of the matching
window size; careful design of the memory layout of all data;
and memoization.
Optimization. The fastest way to obtain a disparity map
from the cost volume is by selecting the disparity with the
smallest cost for each pixel. To obtain higher accuracy the
cost volume can be optimized by the widely-used Semi-
Global Matching algorithm (SGM) [38].

SGM is used for extracting a disparity map that approx-
imately optimizes a global cost function defined over 2D
image neighborhood by combining multiple 1D cost mini-
mization problems. Briefly, SGM favors constant disparity,

"https://github.com/kbatsos/Real-Time-Stereo



imposes a small penalty for disparity differences equal to
1 between adjacent pixels along the minimization direction,
and imposes a larger penalty for large discontinuities. This
has the effect of allowing slanted surfaces and reducing the
number of jumps in disparity. Here, we integrate the rSGM
implementation of Spangenberg et al. [39] opting for the
variant that considers only four 1D sub-problems to favor
speed. Disparity is converted to depth, which is then refined
to sub-pixel precision by fitting a parabola in the vicinity of
the minimum optimized cost [40].

Confidence estimation. Depth map fusion benefits from
confidence values conveying which depths are more reliable.
We attach a confidence to each depth after SGM using the
PKRN measure [41], which is the ratio of the second smallest
over the smallest cost for that pixel in the cost volume.
PKRN is effective in discriminating reliable from unreliable
depths and can be computed in negligible time during the
final disparity selection step.

C. Depth Map Fusion

Depth maps estimated by the stereo matching module are
reasonably accurate but contain noise due to lack of texture,
occlusion, and motion blur. Under the assumption that the
errors are not systematic and do not form hallucinated
surfaces, we can improve the depth maps by fusing them.
This approach takes as input overlapping depth and detects
consensus among depth estimates and violations of visibility
constraints as evidence for which depths are correct and
which are likely to be outliers.

Similar to our previous work [42], [43], the input for
computing a fused depth map for a given reference view
is a set of Ny depth maps and the corresponding confidence
maps in a sliding window of frames. The middle depth map
is used as reference and all depth and confidence maps are
rendered onto it. We denote depths rendered on the reference
view by Z; and depths in their original camera coordinate
systems by Z7. For each of the depth candidates Z; we
accumulate support and visibility violations.

Support comes from other depth candidates for the same
pixel that are within a small distance of Z;. Z; is then
replaced by the weighted average of the supporting depths,
with confidence values serving as weights. The confidence
of the blended depth estimate Z7 is set equal to the sum of
the supporting confidences. See Fig. 3 (left).
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where s;; is a boolean variable indicating whether Z; and Z;
support each other and 7'() is the indicator function which
is 1 when its argument is true.

There are two types of violations of visibility constraints:
occlusions and free space violations. An occlusion occurs
when Z; appears behind a rendered depth map from view k,
Zy,, on the ray of the reference view, as in Fig. 3 (middle),
while a free space violation occurs when Z; appears in
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Fig. 3: Illustration of depth map fusion. Points A, B and C are
depth candidates for pixels of the reference view, estimated directly
or rendered to it from other views. The orange line marks the
cross section of the surface estimated by view k. Left: point A
is supported by the orange surface. Middle: point B is occluded by
B’, which is in front of B in the ray of the reference view. Right:
point C violates the free space of C’ on the ray of view k. (Note
that there is no conflict between C and C”.)

front of an input depth map Z7 on the ray of view [, as in
Fig. 3 (right). Detected violations do not result in updates to
the fused depth, but the corresponding confidence is reduced
by the confidence of the conflicting estimate, similarly to Eq.
(4). We assign to each pixel the depth with the highest fused
confidence, after adding support and subtracting conflicts.
We then threshold confidence to reject outliers.

The fusion process is independent across pixels, and
is thus parallelizable. Rendering depth candidates to the
original depth maps to detect free space violations is the most
expensive step. Fusion operates in pipeline mode keeping a
small number of recent depth maps in memory at a given
time. At the next time step, the oldest depth map in the
sliding window is dropped and it is replaced by the most
recent one. As discussed in Section IV, the sliding window
we use is very short to keep latency low.

IV. EXPERIMENTAL RESULTS

In this section, we present experimental results on chal-
lenging underwater sequences. We evaluate both the sparse
and dense components of the 3D reconstruction system and
compare them to the corresponding aspects of COLMAP,
which operates much slower in offline mode.

A. Datasets

The datasets used in this paper were collected using a
custom made sensor suite [44]; see Fig. 1(a) and (b), and
an Aqua2 robot [45]; see Fig. 1(c) and (d). Both devices
are equipped with two iDS USB3 uEye cameras as stereo
pair, a MicroStrain 3DM-GX4-15 IMU, and a Bluerobotics
Bar30 water pressure sensor. The stereo images are recorded
at 15 Hz; inertial data at 100 Hz; and water pressure at 1 Hz
using onboard Intel NUC. A video light is attached to the
sensor suite unit to provide artificial illumination of the
scene. The Aqua2 AUV is a hexapod robot which utilizes
the motion from six flippers, each actuated independently by
an electric motor, to move in 3D.

We perform experiments on four datasets:

¢ Ginnie Ballroom, Gennie Springs, FL, USA

o Cenote, QR, Mexico

o Coral Reef, Barbados
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Fig. 4: Sample images from the underwater datasets.

« Stavronikita Shipwreck, Barbados

These underwater datasets present substantial challenges
for 3D reconstruction. The Ginnie Ballroom and Cenote
datasets are collected using a custom sensor suite [44]
operated by a diver, Fig. 4(a) and (b); while the Coral
Reef and Stavronikita Shipwreck datasets are collected using
the Aqua2 AUV performing a lawnmower pattern over the
scene, Fig. 4(c) and (d). These datasets form a diverse set
of underwater environments, including open, flat areas of
the seafloor, dense and richly structured shipwrecks, and
enclosed caverns with relatively uniform surfaces. In the
Coral Reef and Stavronikita Shipwreck datasets, we can rely
on natural light to illuminate the scene, but for the Ginnie
Ballroom and Cenote datasets, we must rely on artificial
illumination from the sensor suite.

B. COLMAP

In this section, we briefly describe COLMAP [10], [11],
a state-of-the-art, open-source Structure-from-Motion and
dense 3D reconstruction software used as a baseline in our
experiments. The sparse component of COLMAP takes as
input an unordered image collection, extracts and matches
features, builds the scene graph and performs bundle adjust-
ment. The dense reconstruction component jointly estimates
depth and surface normals using a PatchMatch Multi-View
Stereo (MVS) algorithm with pixel-wise view selection,
photometric and geometric priors. The depth maps are fused
based on multi-view geometric consistency to produce a
dense 3D reconstruction.

In our experiments, we pass the keyframes obtained from
SVIn2 to COLMAP to obtain bundle-adjusted camera poses,
dense depth maps and point clouds. Unless otherwise noted,
all dense reconstruction experiments are performed using
these camera poses as input.

C. Camera Pose Estimation Results

We compare two drastically different approaches for esti-
mating the trajectory: COLMAP which operates offline and
performs global bundle adjustment and SVIn2 which runs
online performing SLAM. Due to the known baseline of
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Fig. 5: Camera trajectories, estimated by SVIn2 [46] and
COLMAP [10] after sim3 alignment.

the stereo camera and the inertial data, SVIn2 produces tra-
jectories with correct scale. However, these trajectories may
suffer from drift, especially when loop closure opportunities
are unavailable. Due to global bundle adjustment, COLMAP
trajectories are more accurate, but scale may drift during
optimization. During post-processing, the scale discrepancy
is corrected by scaling the camera poses from COLMAP
using the known stereo baseline.

To enable comparisons, we provide the keyframes selected
by SVIn2 as input to COLMAP and align SVIn2 trajectory
with COLMAP using sim3 alignment [47]. We use the root
mean square Absolute Trajectory Error (ATE) metric [48] to
compare the trajectories. Note that in the absence of ground
truth, we can only measure the discrepancy between the
COLMAP and SVIn2. Fig. 5 shows the trajectories estimated
by COLMAP and SVIn2 after sim3 alignment, while Table I
shows the root mean square ATE in meters. The trajectories
are in general consistent up to a few cm in terms of ATE.

We were unable to obtain a complete trajectory on the
Stavronikita dataset using SVIn2 due to segments in which
the AUV maneuvered over the side of the wreck, thus facing
open water, causing SVIn2 to lose track. COLMAP, on the
other hand, attempts to match features over all images and
registers a lot of the frames bridging gaps. We only use the
COLMAP trajectory for Stavronikita in the remainder.

D. Dense Reconstruction

Stereo matching is performed on 800x600 images with
100 disparity levels using the Sum of Absolute Differences
(SAD) as the matching function in 3x3 windows. We gener-
ate a depth map for every frame after SGM optimization and
sub-pixel fitting and fuse three depth maps using the middle
frame as reference. We set the support radius during depth
map fusion, ¢, to 0.04 and the threshold on fused confidence
for outlier rejection, Cipyes, to 0.5.

Evaluation. In the absence of ground truth and of any
practical system for acquiring ground truth underwater, we
evaluate our online reconstruction pipeline by comparing the
output depth maps and 3D point cloud with those generated

TABLE I: Comparison of the SVIn2 and COLMAP trajectories
based on root mean square ATE in meters.

Dataset length[m]  rmse
Ginnie Ballroom 98.73 0.07
Cenote 67.24 0.19
Coral Reef 45.52 0.39
Stavronikita 106.30 N/A
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Fig. 6: Ginnie Ballroom dataset. Example depth maps from
COLMAP and Pipeline.

offline by COLMAP. It should be noted that the latter are
not perfect, but benefit from global optimization.

Run-time comparison. In the four datasets (Ginnie Ball-
room, Cenote, Coral Reef, Stavronikita) that we consider,
there are 13671, 3519, 3207, 8824 stereo pairs and 1519,
1401, 631 and 897 keyframes selected by SVIn2, respec-
tively. We ran the pipeline on an Intel i7-10700K desktop
with 32GB memory, while COLMAP is run on desktop
with Intel 19-12900K CPU, 32GB memory, and an NVIDIA
GeForce RTX 2080Ti GPU. Comparison of the run-times on
the keyframes between COLMAP and our pipeline is listed in
Table III. The pipeline outperforms COLMAP significantly
with respect to speed; it achieves a throughput ranging
between 2.8 and 10.2 fps on the four datasets, whereas
COLMAP runs at 0.05 - 0.3 fps, when considering all input
frames (not just keyframes), which are a true measure of the
length of the input videos.

TABLE 1II: Depth map evaluation: Comparison of COLMAP-
generated depth maps with raw and fused depth maps from the
pipeline. MoM (Median-of-Medians) is the median of the median
per-depth map absolute errors. MAE is the per-pixel mean absolute
depth error. All errors are in meters.

Raw Depth Maps vs COLMAP | Fused Depth Maps vs COLMAP

Dataset

MoM (m) MAE (m) MoM (m) MAE (m)
Ginnie Ballroom 0.127 0.452 0.063 0.079
Cenote 0.188 0.469 0.105 0.134
Coral Reef 0.400 0.626 0.327 0.402
Stavronikita 0.457 0.684 0.336 0.399

2D Metrics. Both COLMAP and the pipeline produce dense
depth maps, which, however, contain some holes without
depth estimates due to filtering. Avoiding to generate noise,
especially since the same surface may be reconstructed from
a different view, is desirable. Therefore, we only compare
depth estimates that exist in both depth maps by recording
the absolute depth error (AE). We then compute the mean
(MAE) and median of these errors per depth map, as well as
the MAE over an entire dataset and the median-of-medians
(MoM) as an approximation of the overall median over valid
depths.

3D Metrics. To compare the point cloud reconstruction from
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Fig. 7: Cenote dataset. Example depth maps from COLMAP and
Pipeline.

the pipeline with the offline reconstruction generated by
COLMAP, we utilize Chamfer distance metrics between the
two models. We refer to the pipeline point cloud as the source
and the COLMAP point cloud as the farget. Accuracy is the
mean Chamfer distance from every point in the source model
to the closest point in the target model. Completeness is the
mean Chamfer distance from every point in the target model
to the closest point in the source model. Precision and Recall
are the percentage of points that have a Chamfer distance
to the other set below a threshold; Precision is measured
from source-to-target and Recall is measured from target-
to-source. For our evaluation, we set the threshold to 0.1m.

Image

Fig. 8: Ginnie Ballroom (top), and Cenote (bottom).

Reconstruction results Table II summarizes the comparison
of both the raw and fused depth maps from the pipeline
with the geometric depth maps generated by COLMAP. The
fused depth maps produced from COLMAP and the pipeline
are similar for Gennie Ballroom and Cenote datasets with
median-of-medians and MAE in the 0.06 - 0.14 m range.
The depth maps for the Coral Reef and Stavronikita datasets
differ more, with both metrics in the 0.3 - 0.4 m range.
Fig. 6 and Fig. 7 show qualitative results, including raw
and fused depth maps from the pipeline and depth maps
from COLMAP. The COLMAP depth maps, while dense,
contain noisy artifacts in open regions of the scene, typically
resulting from floating particles and changes in illumination.
The raw depth maps generated by the pipeline are also



TABLE III: Run-time comparison between COLMAP and Pipeline.

Dataset COLMAP Pipeline

stereo pairs vertices MVS (min) total time (min) vertices  Stereo (ms/frame)  Fusion (ms/frame)  total time (min)
Ginnie Ballroom 1519 8,056,361 607.61 858.10 | 54,034,304 398.88 374.93 22.36
Cenote 1401 8,909,774 568.52 1250.53 | 91,036,005 360.49 418.71 20.92
Coral reef 631 3,833,107 254.31 337.99 | 66,733,182 369.35 677.65 12.44
Stavronikita 897 4,552,326 367.17 482.57 | 29,851,344 323.57 553.37 14.95

Precision and Recall (t=0.1m) Precision and Recall (t=0.1m)
10 — e —

COLMAP

COLMAP+Pipeline

Fig. 9: Stavronikita Shipwreck (top). Coral Reef (bottom).
COLMAP reconstruction results overlayed with the Pipeline recon-
struction.

noisy, but the fusion step removes noise and produces depths
corresponding to surfaces in the environment.

In Table IV, we show a quantitative comparison between
pipeline and COLMAP point clouds. For the Ginnie Ball-
room and Cenote datasets, the pipeline generates models
that are very close to COLMAP with both accuracy and
completeness less than 0.05 m, and precision and recall over
90%. Fig. 8 shows a local perspective of the generated point
clouds from the Ginnie Ballroom and Cenote datasets. Much
of the detail is preserved in the pipeline reconstruction, with
sparsity in areas of open water and smooth surfaces. The
reconstruction results for Stavronikita and Coral Reef are
inferior with accuracy and completeness less than 0.15 m,
and precision and recall in the range 40%-60%. This can
be explained in part by the sparsity of our models for these
two datasets. The point clouds of the Stavronikita and Coral
Reef datasets can be seen in Fig. 9 where the pipeline model
is overlayed on the COLMAP point cloud. Fig. 10 shows
examples of the Precision and Recall curves for the Ginnie
Ballroom and the Coral Reef as a function of the threshold.
(The default 0.1 m is marked with vertical lines.)

It should be noted that the Ginnie Ballroom and Cenote
datasets are collected by a slowly moving human diver
with artificial illumination. The Coral Reef and Stavronikita
datasets are collected by a fast-moving Aqua2 AUV in deep
ocean without any artificial lightning and contain irregular
surfaces. Thus, the images in the latter two datasets suffer
from motion blur and color saturation. This leads to noisy

TABLE IV: Point cloud evaluation between COLMAP and Pipeline.

Dataset pipeline-to-colmap colmap-to-pipeline
Precision (%)  Accuracy (m) | Recall (%) Completeness (m)
Ginnie Ballroom 96.9 0.029 97.5 0.019
Cenote 94.4 0.037 92.4 0.047
Coral Reef 52.3 0.109 60.3 0.114
Stavronikita 43.6 0.134 40.2 0.143
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Fig. 10: Precision and Recall plots for the Ginnie Ballroom and
Coral Reef datasets.

point clouds by both systems and larger discrepancies be-
tween them. COLMAP is somewhat more robust, but its
models are far from perfect on these data.

Real-Time Reconstruction using SVIn2 Poses In the last
experiment, we use poses obtained by SVIn2 as input to the
pipeline to simulate actual deployment of our approach. (A
comparison of pose estimation results between COLMAP
and SVIn2 is presented in Section IV-C.) To account for
discrepancy in dense reconstruction resulting from camera
pose tracking error, we use the RMSE error between SVIn2
and COLMAP poses as a threshold to compute precision and
recall as shown in Table V. The results show that the dense
reconstructions obtained using SVIn2 poses are accurate
compared to those of COLMAP, with both precision and
recall over 80% for all datasets. The pipeline results show
that even with drift in SVIn2 poses we are able to produce
comparable reconstruction to that of COLMAP. This paves
the way for real-time reconstruction onboard an Aqua2 AUV.
TABLE V: Point cloud comparison between COLMAP and

Pipeline. Both systems use SVIn2’s poses without bundle adjust-
ment.

threshold | pipeline-to-colmap | colmap-to-pipeline
Dataset (m) Precision (%) Recall (%)
Ginnie Ballroom 0.07 85.6 92.0
Cenote 0.19 91.2 89.0
Coral Reef 0.39 81.8 85.9

V. CONCLUSIONS

We have shown on a variety of challenging datasets that
an online 3D reconstruction system with robust VIO [9] can
obtain results on par with a much slower offline system.
Such an evaluation was missing from the literature and
helps answering the question on whether real-time dense
reconstruction is feasible onboard. Dense 3D representa-
tions of the environment estimated in real time will enable
improved navigation [49] and autonomous operations for
the Aqua2 AUV [50]. Furthermore, gaps and boundaries
of the dense reconstruction will effectively guide the AUV
towards frontier points [51] to enable mapping of underwater
structures [52].
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