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Abstract— This paper addresses real-time dense 3D recon-
struction for a resource-constrained Autonomous Underwater
Vehicle (AUV). Underwater vision-guided operations are among
the most challenging as they combine 3D motion in the presence
of external forces, limited visibility, and absence of global
positioning. Obstacle avoidance and effective path planning
require online dense reconstructions of the environment. Au-
tonomous operation is central to environmental monitoring,
marine archaeology, resource utilization, and underwater cave
exploration. To address this problem, we propose to use
SVIn2, a robust VIO method, together with a real-time 3D
reconstruction pipeline. We provide extensive evaluation on
four challenging underwater datasets. Our pipeline produces
comparable reconstruction with that of COLMAP, the state-of-
the-art offline 3D reconstruction method, at high frame rates
on a single CPU.

I. INTRODUCTION

Mapping underwater environments is an important and

challenging endeavor. Monitoring the coral reefs [1], ex-

ploring underwater caves [2] and recording the shape of

Cenotes [3] have tremendous significance in our understand-

ing and awareness of the environment. Underwater mapping

is also crucial for marine archaeology [4], infrastructure

maintenance, and during search and rescue missions. Au-

tomating mapping with Autonomous Underwater Vehicles

(AUVs) reduces risks to divers, enables longer operations

times and increases the frequency of mapping/exploration

missions.

Unfortunately, as demonstrated in recent work on com-

paring numerous open-source visual and visual/inertial state

estimation packages [5], [6], there are frequent failures

underwater due to a variety of reasons. In contrast to above-

water scenarios, GPS based localization is impossible. In

addition to the traditional difficulties of vision based localiza-

tion, the underwater environment is prone to rapid changes

in lighting conditions, limited visibility, and loss of contrast

and color information with depth [7], [8].
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Fig. 1: Datasets used in our experiments: (a) and (b) collected using
a custom sensor suite. (c) and (d) collected using the Aqua2 AUV.

In this paper, we focus on real-time, scalable, detailed 3D

mapping. These goals must be accomplished on a compu-

tational platform suitable for deployment on an AUV. Our

software requires only a CPU and follows a pipeline archi-

tecture that incurs an almost constant computational load by

processing fixed-length segments of the data at a time. The

proposed approach includes: robust real-time camera pose

estimation using SVIn2 [9] which fuses information from

the cameras and IMU; two-stage depth map estimation based

on multi-threaded CPU-based stereo matching followed by

visibility-based depth map fusion; and colored point cloud

generation.

We conducted a thorough evaluation comparing our

method to COLMAP [10], [11], which is the state-of-the-art

open-source 3D reconstruction framework. Our evaluation

considers run-time, depth map estimation, and dense recon-

struction on four challenging underwater datasets. The main

contributions of this paper lie on the integration of a state

estimation and 3D reconstruction pipelines and the analysis

of the feasibility of real-time dense reconstruction onboard.

II. RELATED WORK

The Structure-from-Motion (SfM) and Simultaneous Lo-

calization and Mapping (SLAM) literature is vast. Here, we

focus on approaches tailored for underwater deployment.

State estimation underwater is challenging due to color

saturation, floating particulates, and limited visibility [6].

Vargas et al. [12] proposed robust visual SLAM underwater

leveraging acoustic, inertial and altimeter/depth sensors in

addition to cameras. Tightly coupled fusion of visual, inertial,

and pressure sensors using forward and backward IMU

preintegration is discussed in [13]. We use the approach of



Rahman et al. [9] to obtain robust camera pose estimates

by fusing visual and inertial information in real time. Beall

et al. [14] demonstrate accurate sparse 3D reconstruction

of underwater structures from stereo videos. Joshi et al.

[15] augment a visual SLAM algorithm so that, after loop

closures, the map is deformed to preserve the relative pose

between each point and its attached keyframes.

Among the few authors that tackle dense underwater

stereo, Queiroz-Neto et al. [16] model light propagation to

overcome poor contrast and illumination. Relevant to our

method are general-purpose dense 3D reconstruction algo-

rithms [17]–[26] operating in online mode on the frames of

one or more video streams. They can achieve high through-

put, in many cases by leveraging powerful GPUs. They have

been evaluated qualitatively since appropriate benchmarks

with ground truth, other than KITTI [27], are not available.

Recently, learning-based approaches [28]–[33] have shown

promising results at high frame rates. Considering the lack

of ground truth data from relevant domains, training these

algorithms in supervised mode is practically impossible.

Fig. 2: A diagram of the components of the proposed pipeline.
Given a pair of stereo images, we can estimate a depth map as
well as the pose of the camera, using SVIn2, in parallel. Once both
become available, depth maps can be fused to generate the final
point cloud.

III. PROPOSED APPROACH

Our approach to 3D reconstruction relies on two parallel

components: (1) a multi-sensor SLAM system, SVIn2 [9],

and (2) a real-time dense 3D mapping system, as shown

in Fig. 2. In this paper, we focus on the latter, as well

as a comprehensive comparison of our online system with

COLMAP [10], [11]. Our approach requires a calibrated

stereo camera rig and an IMU to provide the necessary

inputs. Moreover, SVIn2 can also take inputs from sonar

and pressure sensors.

A. Pose Estimation

Robot pose estimation relies on our previous work,

SVIn2 [9], [34], a tightly-coupled keyframe-based SLAM

system that fuses data from the cameras and IMU. We have

demonstrated that SVIn2 performs well in underwater envi-

ronments by explicitly addressing drift, loss of localization

and poor illumination via robust initialization, loop-closing,

and relocalization capabilities.

B. Depth Map Estimation

The stereo matching module estimates depth for every

pixel of the left image of a stereo pair of images. The

cameras are placed with their image planes approximately

parallel facilitating rectification in software via a pair of ho-

mographies [35] estimated using a calibration checkerboard.

This configuration allows the use of very fast algorithms for

dense correspondence estimation that operate on horizontal

epipolar lines. Metric depth can be obtained for each stereo

frame, due to the known camera calibration parameters,

regardless of the accuracy in camera pose estimation.

We are able to process stereo pairs at high throughput

leveraging multi-threaded CPU implementations (OpenMP)

without relying on GPUs. We accomplish this by carefully

designing every step of the stereo matching process. Our

implementation of matching cost computation is publicly

available1.

Matching cost computation. Stereo matching estimates

the likelihood [36] for each possible disparity that can be

assigned to a given pixel of the reference image, typically

the left. Disparity d is defined as the difference between

the horizontal coordinates of two potentially corresponding

pixels in the same epipolar line (scanline) in the left and

right image. Disparity is inversely proportional to depth Z,

which can be computed as:

Z =
bf

d
(1)

where b is the baseline (distance) between the camera centers

and f is the focal length.

To select the most likely disparity for each pixel in the

left image, we assess the photoconsistency of that pixel

with potentially matching pixels in the conjugate epipolar

line in the right image. This is accomplished by computing

a similarity or dissimilarity measure in matching windows

centered around the pixels under consideration. In this paper,

we experimented with the Sum of Absolute Differences

(SAD), which is a dissimilarity (cost). The cost values for

all pixels and disparities are accumulated in the cost volume

V , which is computed as follows with SAD:

V (xL, y, d) =
∑

(u,v)∈W (xL,y)

|IL(u, v)− IR(u− d, v)| (2)

where IL and IR are the two images and W (xL, y) is the

matching window.

We accelerate these computations using several techniques

including: integral images to compute sums in rectangular

sub-images in constant time [37] regardless of the matching

window size; careful design of the memory layout of all data;

and memoization.

Optimization. The fastest way to obtain a disparity map

from the cost volume is by selecting the disparity with the

smallest cost for each pixel. To obtain higher accuracy the

cost volume can be optimized by the widely-used Semi-

Global Matching algorithm (SGM) [38].

SGM is used for extracting a disparity map that approx-

imately optimizes a global cost function defined over 2D

image neighborhood by combining multiple 1D cost mini-

mization problems. Briefly, SGM favors constant disparity,

1https://github.com/kbatsos/Real-Time-Stereo



imposes a small penalty for disparity differences equal to

1 between adjacent pixels along the minimization direction,

and imposes a larger penalty for large discontinuities. This

has the effect of allowing slanted surfaces and reducing the

number of jumps in disparity. Here, we integrate the rSGM

implementation of Spangenberg et al. [39] opting for the

variant that considers only four 1D sub-problems to favor

speed. Disparity is converted to depth, which is then refined

to sub-pixel precision by fitting a parabola in the vicinity of

the minimum optimized cost [40].

Confidence estimation. Depth map fusion benefits from

confidence values conveying which depths are more reliable.

We attach a confidence to each depth after SGM using the

PKRN measure [41], which is the ratio of the second smallest

over the smallest cost for that pixel in the cost volume.

PKRN is effective in discriminating reliable from unreliable

depths and can be computed in negligible time during the

final disparity selection step.

C. Depth Map Fusion

Depth maps estimated by the stereo matching module are

reasonably accurate but contain noise due to lack of texture,

occlusion, and motion blur. Under the assumption that the

errors are not systematic and do not form hallucinated

surfaces, we can improve the depth maps by fusing them.

This approach takes as input overlapping depth and detects

consensus among depth estimates and violations of visibility

constraints as evidence for which depths are correct and

which are likely to be outliers.

Similar to our previous work [42], [43], the input for

computing a fused depth map for a given reference view

is a set of Nf depth maps and the corresponding confidence

maps in a sliding window of frames. The middle depth map

is used as reference and all depth and confidence maps are

rendered onto it. We denote depths rendered on the reference

view by Zj and depths in their original camera coordinate

systems by Zo
j . For each of the depth candidates Zj we

accumulate support and visibility violations.

Support comes from other depth candidates for the same

pixel that are within a small distance of Zj . Zj is then

replaced by the weighted average of the supporting depths,

with confidence values serving as weights. The confidence

of the blended depth estimate Zs
j is set equal to the sum of

the supporting confidences. See Fig. 3 (left).

Zs
j =

sijZi

sij
, sij = T (||Zi − Zj || < ϵ) (3)

Cs
j =

sijCi

sij
, sij = T (||Zi − Zj || < ϵ) (4)

where sij is a boolean variable indicating whether Zi and Zj

support each other and T () is the indicator function which

is 1 when its argument is true.

There are two types of violations of visibility constraints:

occlusions and free space violations. An occlusion occurs

when Zj appears behind a rendered depth map from view k,

Zk, on the ray of the reference view, as in Fig. 3 (middle),

while a free space violation occurs when Zj appears in

Fig. 3: Illustration of depth map fusion. Points A, B and C are
depth candidates for pixels of the reference view, estimated directly
or rendered to it from other views. The orange line marks the
cross section of the surface estimated by view k. Left: point A
is supported by the orange surface. Middle: point B is occluded by
B’, which is in front of B in the ray of the reference view. Right:
point C violates the free space of C’ on the ray of view k. (Note
that there is no conflict between C and C”.)

front of an input depth map Zo
l on the ray of view l, as in

Fig. 3 (right). Detected violations do not result in updates to

the fused depth, but the corresponding confidence is reduced

by the confidence of the conflicting estimate, similarly to Eq.

(4). We assign to each pixel the depth with the highest fused

confidence, after adding support and subtracting conflicts.

We then threshold confidence to reject outliers.

The fusion process is independent across pixels, and

is thus parallelizable. Rendering depth candidates to the

original depth maps to detect free space violations is the most

expensive step. Fusion operates in pipeline mode keeping a

small number of recent depth maps in memory at a given

time. At the next time step, the oldest depth map in the

sliding window is dropped and it is replaced by the most

recent one. As discussed in Section IV, the sliding window

we use is very short to keep latency low.

IV. EXPERIMENTAL RESULTS

In this section, we present experimental results on chal-

lenging underwater sequences. We evaluate both the sparse

and dense components of the 3D reconstruction system and

compare them to the corresponding aspects of COLMAP,

which operates much slower in offline mode.

A. Datasets

The datasets used in this paper were collected using a

custom made sensor suite [44]; see Fig. 1(a) and (b), and

an Aqua2 robot [45]; see Fig. 1(c) and (d). Both devices

are equipped with two iDS USB3 uEye cameras as stereo

pair, a MicroStrain 3DM-GX4-15 IMU, and a Bluerobotics

Bar30 water pressure sensor. The stereo images are recorded

at 15Hz; inertial data at 100Hz; and water pressure at 1Hz
using onboard Intel NUC. A video light is attached to the

sensor suite unit to provide artificial illumination of the

scene. The Aqua2 AUV is a hexapod robot which utilizes

the motion from six flippers, each actuated independently by

an electric motor, to move in 3D.

We perform experiments on four datasets:

• Ginnie Ballroom, Gennie Springs, FL, USA

• Cenote, QR, Mexico

• Coral Reef, Barbados



(a) Ginnie Ballroom (b) Cenote

(c) Coral Reef (d) Stavronikita

Fig. 4: Sample images from the underwater datasets.

• Stavronikita Shipwreck, Barbados

These underwater datasets present substantial challenges

for 3D reconstruction. The Ginnie Ballroom and Cenote

datasets are collected using a custom sensor suite [44]

operated by a diver, Fig. 4(a) and (b); while the Coral

Reef and Stavronikita Shipwreck datasets are collected using

the Aqua2 AUV performing a lawnmower pattern over the

scene, Fig. 4(c) and (d). These datasets form a diverse set

of underwater environments, including open, flat areas of

the seafloor, dense and richly structured shipwrecks, and

enclosed caverns with relatively uniform surfaces. In the

Coral Reef and Stavronikita Shipwreck datasets, we can rely

on natural light to illuminate the scene, but for the Ginnie

Ballroom and Cenote datasets, we must rely on artificial

illumination from the sensor suite.

B. COLMAP

In this section, we briefly describe COLMAP [10], [11],

a state-of-the-art, open-source Structure-from-Motion and

dense 3D reconstruction software used as a baseline in our

experiments. The sparse component of COLMAP takes as

input an unordered image collection, extracts and matches

features, builds the scene graph and performs bundle adjust-

ment. The dense reconstruction component jointly estimates

depth and surface normals using a PatchMatch Multi-View

Stereo (MVS) algorithm with pixel-wise view selection,

photometric and geometric priors. The depth maps are fused

based on multi-view geometric consistency to produce a

dense 3D reconstruction.

In our experiments, we pass the keyframes obtained from

SVIn2 to COLMAP to obtain bundle-adjusted camera poses,

dense depth maps and point clouds. Unless otherwise noted,

all dense reconstruction experiments are performed using

these camera poses as input.

C. Camera Pose Estimation Results

We compare two drastically different approaches for esti-

mating the trajectory: COLMAP which operates offline and

performs global bundle adjustment and SVIn2 which runs

online performing SLAM. Due to the known baseline of

(a) Ginnie Ballroom (b) Cenote (c) Coral Reef

Fig. 5: Camera trajectories, estimated by SVIn2 [46] and
COLMAP [10] after sim3 alignment.

the stereo camera and the inertial data, SVIn2 produces tra-

jectories with correct scale. However, these trajectories may

suffer from drift, especially when loop closure opportunities

are unavailable. Due to global bundle adjustment, COLMAP

trajectories are more accurate, but scale may drift during

optimization. During post-processing, the scale discrepancy

is corrected by scaling the camera poses from COLMAP

using the known stereo baseline.

To enable comparisons, we provide the keyframes selected

by SVIn2 as input to COLMAP and align SVIn2 trajectory

with COLMAP using sim3 alignment [47]. We use the root

mean square Absolute Trajectory Error (ATE) metric [48] to

compare the trajectories. Note that in the absence of ground

truth, we can only measure the discrepancy between the

COLMAP and SVIn2. Fig. 5 shows the trajectories estimated

by COLMAP and SVIn2 after sim3 alignment, while Table I

shows the root mean square ATE in meters. The trajectories

are in general consistent up to a few cm in terms of ATE.

We were unable to obtain a complete trajectory on the

Stavronikita dataset using SVIn2 due to segments in which

the AUV maneuvered over the side of the wreck, thus facing

open water, causing SVIn2 to lose track. COLMAP, on the

other hand, attempts to match features over all images and

registers a lot of the frames bridging gaps. We only use the

COLMAP trajectory for Stavronikita in the remainder.

D. Dense Reconstruction

Stereo matching is performed on 800×600 images with

100 disparity levels using the Sum of Absolute Differences

(SAD) as the matching function in 3×3 windows. We gener-

ate a depth map for every frame after SGM optimization and

sub-pixel fitting and fuse three depth maps using the middle

frame as reference. We set the support radius during depth

map fusion, ϵ, to 0.04 and the threshold on fused confidence

for outlier rejection, Cthres, to 0.5.

Evaluation. In the absence of ground truth and of any

practical system for acquiring ground truth underwater, we

evaluate our online reconstruction pipeline by comparing the

output depth maps and 3D point cloud with those generated

TABLE I: Comparison of the SVIn2 and COLMAP trajectories
based on root mean square ATE in meters.

Dataset length[m] rmse

Ginnie Ballroom 98.73 0.07
Cenote 67.24 0.19
Coral Reef 45.52 0.39
Stavronikita 106.30 N/A



Image COLMAP Depth

Pipeline Raw Depth Pipeline Fused Depth

Fig. 6: Ginnie Ballroom dataset. Example depth maps from
COLMAP and Pipeline.

offline by COLMAP. It should be noted that the latter are

not perfect, but benefit from global optimization.

Run-time comparison. In the four datasets (Ginnie Ball-

room, Cenote, Coral Reef, Stavronikita) that we consider,

there are 13671, 3519, 3207, 8824 stereo pairs and 1519,

1401, 631 and 897 keyframes selected by SVIn2, respec-

tively. We ran the pipeline on an Intel i7-10700K desktop

with 32GB memory, while COLMAP is run on desktop

with Intel i9-12900K CPU, 32GB memory, and an NVIDIA

GeForce RTX 2080Ti GPU. Comparison of the run-times on

the keyframes between COLMAP and our pipeline is listed in

Table III. The pipeline outperforms COLMAP significantly

with respect to speed; it achieves a throughput ranging

between 2.8 and 10.2 fps on the four datasets, whereas

COLMAP runs at 0.05 - 0.3 fps, when considering all input

frames (not just keyframes), which are a true measure of the

length of the input videos.

TABLE II: Depth map evaluation: Comparison of COLMAP-
generated depth maps with raw and fused depth maps from the
pipeline. MoM (Median-of-Medians) is the median of the median
per-depth map absolute errors. MAE is the per-pixel mean absolute
depth error. All errors are in meters.

Dataset
Raw Depth Maps vs COLMAP Fused Depth Maps vs COLMAP

MoM (m) MAE (m) MoM (m) MAE (m)

Ginnie Ballroom 0.127 0.452 0.063 0.079
Cenote 0.188 0.469 0.105 0.134
Coral Reef 0.400 0.626 0.327 0.402
Stavronikita 0.457 0.684 0.336 0.399

2D Metrics. Both COLMAP and the pipeline produce dense

depth maps, which, however, contain some holes without

depth estimates due to filtering. Avoiding to generate noise,

especially since the same surface may be reconstructed from

a different view, is desirable. Therefore, we only compare

depth estimates that exist in both depth maps by recording

the absolute depth error (AE). We then compute the mean

(MAE) and median of these errors per depth map, as well as

the MAE over an entire dataset and the median-of-medians

(MoM) as an approximation of the overall median over valid

depths.

3D Metrics. To compare the point cloud reconstruction from

Image COLMAP Depth

Pipeline Raw Depth Pipeline Fused Depth

Fig. 7: Cenote dataset. Example depth maps from COLMAP and
Pipeline.

the pipeline with the offline reconstruction generated by

COLMAP, we utilize Chamfer distance metrics between the

two models. We refer to the pipeline point cloud as the source

and the COLMAP point cloud as the target. Accuracy is the

mean Chamfer distance from every point in the source model

to the closest point in the target model. Completeness is the

mean Chamfer distance from every point in the target model

to the closest point in the source model. Precision and Recall

are the percentage of points that have a Chamfer distance

to the other set below a threshold; Precision is measured

from source-to-target and Recall is measured from target-

to-source. For our evaluation, we set the threshold to 0.1m.

Image COLMAP Pipeline

Fig. 8: Ginnie Ballroom (top), and Cenote (bottom).

Reconstruction results Table II summarizes the comparison

of both the raw and fused depth maps from the pipeline

with the geometric depth maps generated by COLMAP. The

fused depth maps produced from COLMAP and the pipeline

are similar for Gennie Ballroom and Cenote datasets with

median-of-medians and MAE in the 0.06 - 0.14 m range.

The depth maps for the Coral Reef and Stavronikita datasets

differ more, with both metrics in the 0.3 - 0.4 m range.

Fig. 6 and Fig. 7 show qualitative results, including raw

and fused depth maps from the pipeline and depth maps

from COLMAP. The COLMAP depth maps, while dense,

contain noisy artifacts in open regions of the scene, typically

resulting from floating particles and changes in illumination.

The raw depth maps generated by the pipeline are also



TABLE III: Run-time comparison between COLMAP and Pipeline.

Dataset
COLMAP Pipeline

stereo pairs vertices MVS (min) total time (min) vertices Stereo (ms/frame) Fusion (ms/frame) total time (min)

Ginnie Ballroom 1519 8,056,361 607.61 858.10 54,034,304 398.88 374.93 22.36
Cenote 1401 8,909,774 568.52 1250.53 91,036,005 360.49 418.71 20.92
Coral reef 631 3,833,107 254.31 337.99 66,733,182 369.35 677.65 12.44
Stavronikita 897 4,552,326 367.17 482.57 29,851,344 323.57 553.37 14.95

COLMAP COLMAP+Pipeline

Fig. 9: Stavronikita Shipwreck (top). Coral Reef (bottom).
COLMAP reconstruction results overlayed with the Pipeline recon-
struction.

noisy, but the fusion step removes noise and produces depths

corresponding to surfaces in the environment.

In Table IV, we show a quantitative comparison between

pipeline and COLMAP point clouds. For the Ginnie Ball-

room and Cenote datasets, the pipeline generates models

that are very close to COLMAP with both accuracy and

completeness less than 0.05 m, and precision and recall over

90%. Fig. 8 shows a local perspective of the generated point

clouds from the Ginnie Ballroom and Cenote datasets. Much

of the detail is preserved in the pipeline reconstruction, with

sparsity in areas of open water and smooth surfaces. The

reconstruction results for Stavronikita and Coral Reef are

inferior with accuracy and completeness less than 0.15 m,

and precision and recall in the range 40%-60%. This can

be explained in part by the sparsity of our models for these

two datasets. The point clouds of the Stavronikita and Coral

Reef datasets can be seen in Fig. 9 where the pipeline model

is overlayed on the COLMAP point cloud. Fig. 10 shows

examples of the Precision and Recall curves for the Ginnie

Ballroom and the Coral Reef as a function of the threshold.

(The default 0.1 m is marked with vertical lines.)

It should be noted that the Ginnie Ballroom and Cenote

datasets are collected by a slowly moving human diver

with artificial illumination. The Coral Reef and Stavronikita

datasets are collected by a fast-moving Aqua2 AUV in deep

ocean without any artificial lightning and contain irregular

surfaces. Thus, the images in the latter two datasets suffer

from motion blur and color saturation. This leads to noisy

TABLE IV: Point cloud evaluation between COLMAP and Pipeline.

Dataset
pipeline-to-colmap colmap-to-pipeline

Precision (%) Accuracy (m) Recall (%) Completeness (m)

Ginnie Ballroom 96.9 0.029 97.5 0.019
Cenote 94.4 0.037 92.4 0.047
Coral Reef 52.3 0.109 60.3 0.114
Stavronikita 43.6 0.134 40.2 0.143

(a) Ginnie Ballroom (b) Coral reef

Fig. 10: Precision and Recall plots for the Ginnie Ballroom and
Coral Reef datasets.

point clouds by both systems and larger discrepancies be-

tween them. COLMAP is somewhat more robust, but its

models are far from perfect on these data.

Real-Time Reconstruction using SVIn2 Poses In the last

experiment, we use poses obtained by SVIn2 as input to the

pipeline to simulate actual deployment of our approach. (A

comparison of pose estimation results between COLMAP

and SVIn2 is presented in Section IV-C.) To account for

discrepancy in dense reconstruction resulting from camera

pose tracking error, we use the RMSE error between SVIn2

and COLMAP poses as a threshold to compute precision and

recall as shown in Table V. The results show that the dense

reconstructions obtained using SVIn2 poses are accurate

compared to those of COLMAP, with both precision and

recall over 80% for all datasets. The pipeline results show

that even with drift in SVIn2 poses we are able to produce

comparable reconstruction to that of COLMAP. This paves

the way for real-time reconstruction onboard an Aqua2 AUV.
TABLE V: Point cloud comparison between COLMAP and
Pipeline. Both systems use SVIn2’s poses without bundle adjust-
ment.

Dataset
threshold pipeline-to-colmap colmap-to-pipeline

(m) Precision (%) Recall (%)

Ginnie Ballroom 0.07 85.6 92.0
Cenote 0.19 91.2 89.0
Coral Reef 0.39 81.8 85.9

V. CONCLUSIONS

We have shown on a variety of challenging datasets that

an online 3D reconstruction system with robust VIO [9] can

obtain results on par with a much slower offline system.

Such an evaluation was missing from the literature and

helps answering the question on whether real-time dense

reconstruction is feasible onboard. Dense 3D representa-

tions of the environment estimated in real time will enable

improved navigation [49] and autonomous operations for

the Aqua2 AUV [50]. Furthermore, gaps and boundaries

of the dense reconstruction will effectively guide the AUV

towards frontier points [51] to enable mapping of underwater

structures [52].
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