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Abstract— This paper proposes a novel underwater Multi-
View Photometric Stereo (MVPS) framework for reconstructing
scenes in 3-D with a non-stationary low-cost robot equipped
with a monocular camera and fixed lights. The underwater
realm is the primary focus of study here, due to the challenges
in utilizing underwater camera imagery and lack of low-cost re-
liable localization systems. Previous underwater PS approaches
provided accurate scene reconstruction results, but assumed
that the robot was stationary at the bottom. This assumption
is limiting, as many artifacts, reefs, and man-made structures
are large and meters above the bottom. Our proposed MVPS
framework relaxes the stationarity assumption by utilizing a
monocular SLAM system to estimate small robot motions and
extract an initial sparse feature map. To compensate for the
scale inconsistency in monocular SLAM output, our MVPS
optimization scheme collectively estimates a high-quality, dense
3-D reconstruction and corrects the camera pose estimates.
We also present an attenuation and camera-light extrinsic pa-
rameter calibration method for non-stationary robots. Finally,
validation experiments with a BlueROV2 demonstrated the low-
cost capability of producing high-quality scene reconstructions.
Overall, this work is the foundation of an active perception
pipeline for robots (i.e., underwater, ground, and aerial) to
explore and map complex structures in high accuracy and
resolution with an inexpensive sensor-light configuration.

I. INTRODUCTION

We present novel work for solving the Multi-View Photo-
metric Stereo (MVPS) problem in the case of non-stationary
underwater robots (see Fig. | for the main long-term vi-
sion). PS is a well-known computer vision technique for
reconstructing high resolution scenes, considering stationary
cameras and various lighting sources [1], [2]. While we pri-
marily focus on the underwater domain due to its increased
challenges, our MVPS framework can be easily generalized
to above-water domains.

Scene reconstruction is an important aspect in many under-
water robotic applications, particularly for inspecting man-
made structures (e.g., oil rigs, ship hulls) [3], monitoring
target biological locations [4], and exploring reefs [5] and
archaeological sites [6]. Autonomous Underwater Vehicles
(AUVs) are becoming more commonly dispatched to tackle
these various tasks [7]. Not only can AUVs stay longer
underwater than a diver, but they are also typically set up
with a modular sensory suite — at the very least with an IMU,
monocular camera, single-beam echosounder, and lights [8],
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Fig. 1: How multi-view photometric stereo framework is applied to non-
stationary robots (i.e., BlueROV2) for exploring shipwrecks and producing
high-quality scene reconstruction models.

and more extensively (and at higher cost) with a multibeam
sonar, side scan sonar, and guidance-based equipment (i.e.,
fiber-optic gyroscope (FOG) IMU, acoustic Doppler Velocity
Log (DVL)) [9], [10].

Multibeam and other sonars were shown to be extremely
useful for accurate underwater scene reconstruction [3],
[11]. However, sonars lack visual (e.g., color, texture) and
resolution characteristics that cameras provide, which can be
enriched by fusing sonar and camera data. Stereo vision setup
is possible; however, not only does it require higher compu-
tation, but in scenes with significant uniformity (less varied
or repeating textures — common in underwater environment),
the left-right camera pixel correspondences can be erroneous
or impossible [12]. On its own, monocular camera imagery
input cannot provide accurate scene depth information [13].
IMU or DVL data can be integrated [14]-[16], as in Visual
Inertial Odometry systems. However, these methods produce
camera poses in a sparsely reconstructed scene, and we are
interested in dense reconstruction.

PS relies only on camera imagery and light sources
(artificial or natural). It is originally based [1] on the ob-
servation that an object’s surface normals can be estimated
by observing changes in the surface points’ reflected light
intensities among different images, where light source(s)
change position, but the camera’s position always stays in
place. For a review of different PS methods, we refer readers
to surveys [2], [17]. Lighting variations from moving light
sources have been utilized to infer shape from shadows [18],
while the interaction of video-lights with the walls of un-
derwater caves produced 3D reconstructions of the cave
passage [19].

MVPS for non-stationary underwater robots is to the
best of our knowledge a novel, unsolved problem. Early
approaches on MVPS in general environments [20]-[22]
required silhouettes to initialize shape. (We assume that the
object can be segmented for simplicity, but we do not use
the silhouettes for shape estimation.) There is also work



benefiting from the complementary strengths of PS and
MVPS [23]-[28].

Previous PS works [29]-[31] that tested with underwater
robots required that the robots stay settled on the bottom to
ensure that the camera does not move. This is undesirable
as target objects (e.g., corals, parts of shipwrecks) may be
located meters above the bottom, most underwater robots are
setup to be neutrally or positively buoyant, thus requiring
motor usage to stay at the bottom and that may cause
sediment stirring and image hazing, and, lastly, it is common
underwater practice to not touch the habitat in order to avoid
accidental interference with sensitive organisms and artifacts.
Furthermore, these prior PS works tested with small objects
(i.e., seashells, plastic containers), whose sizes are small
enough for short-range image capture, but different to the
task of reconstructing shipwrecks and reefs.

The main contributions of this paper are: (1) a novel
MVPS framework for computing 3-D scene models, con-
sidering camera non-stationarity, near-lighting model, and
initial knowledge from a monocular SLAM system, (2) non-
stationary calibration methods for underwater attenuation
and camera-light extrinsic parameters, and (3) real-world
experiments with a moving underwater robot integrated with
four independently controlled lights. From our proposed
framework, experiments, and qualitative/quantitative results,
we show the capability of a non-stationary robot to re-
construct underwater 3-D objects, using only a monocular
camera and lights.

This work represents the foundation for allowing inexpen-
sive robots to explore unknown scenes and produce high-
resolution models that are on par with what can be achieved
with high-end sensors and robots.

II. IMAGE FORMATION MODEL

Underwater scenarios are challenging for any image-based
method. Light attenuates (reduces in intensity) more exten-
sively in-water than in-air; as light travels in water, it is
scattered and absorbed by colliding particles, see Fig. 2
(left). Many methods attempt to estimate the attenuation
values [32]-[34], especially through a physics-based image
formation model [35]. In the image formation model, an
image I is captured by the camera’s image sensor' and is
described as a composition of direct signal D and backscatter
B:

I=D+DB (1

A. Direct Signal

Direct signal D corresponds to the amount of light that
has traveled from the light source, reflected from the visible
scene, and reached the camera’s image sensor. During the
light’s travel, it is attenuated by ﬁD , based on the water
medium’s characteristics:

1
D=—aLge P’ )
Z;

'We assume the pinhole model. We will also refer to grayscale images for
simplicity; color images require additional unknowns that will be considered
in future work. Explanations will also be simplified to a single pixel z,
corresponding to a unique surface point, such as I = I.
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Fig. 2: Left: Visualization of how direct signal and backscatter are gener-
ated and attenuated. Right: Under the near-lighting model, all parameters
correlated to surface points cannot be assumed to be the same.
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where a is the surface point’s albedo (or color), Lg is the
light reflected from the surface point, and z; = |PS;|+|OP|,
such that | PS;] is the distance from the light source S; to the
surface point P and |OP)] is the distance from the surface
point to the camera O. Simply, D is the distorted image of
a L, attenuated by B z;. The inverse-square law (Z%) is
applied, as light loses intensity over distance. '

B. Backscatter

Backscatter B corresponds to the amount of light that
never reached the visible scene surfaces, but was reflected
by particles in the water and arrived at the camera’s image
sensor. Similar to D, it is attenuated by certain water
medium’s attenuation properties, denoted here as 32:

1

2
2

B=— B®(1—¢#"%) 3)
Note, 57 and 37 are not assumed to be the same, as studied
in [35]. The veiling light B is also a characteristic of the
water medium, but it can be approximated as the color in
the image’s background (the far ‘infinite’ distance).

C. Complete Image Formation Model

The complete underwater image formation model for a
light source ¢ is as follows:

1
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i
where scalar k corresponds to image exposure.

D. Scene Reflection

The underwater scene is commonly assumed to be com-
posed of Lambertian surfaces [5], [30], [31]. Thus, given
a surface normal and light direction, the same amount of
reflected light will be observed in any viewing direction:

LR,i = Li<¢> n; ipsi = Li<¢> COS(ei) (5)

where 6; is the angle between the surface normal n; and any
incident (incoming) light direction lps;, and L;, is the light
intensity.

E. Light Models

In daylight, ambient light is a significant source of illu-
mination for the first 20-30 m deep in the water column’.
If it is present, then one can capture an image of the scene

2With increasing depth, ambient light’s intensity diminishes due to
attenuation and the inverse-square law [35].



with only ambient light present and use that to subtract the
following images that include artificial light sources.

Each artificial light source is represented as a point light
with an original intensity L;, and modeled with a Gaussian
diffuse filter. Following the model in [5], intensity is brightest
along its center directional line isi , but decreases with angle
¢ from this line:

Li, = L35 | o= [ Fo0%__ ©6)
E 77\ 2210g0.5

where ¢5q9 is the angle where the light’s power is at 50%.

We applied the near-lighting model, see Fig. 2 (right),
which is used in cases when the viewing/lighting distances
are small [31], or in our case, when the target object is as
large or larger than the viewing/lighting distances”.

III. ATTENUATION AND CAMERA-LIGHT CALIBRATION

Attenuation coefficients and camera-light extrinsic param-
eters can be calibrated prior to main deployment, preferably
in the same marine environment. Calibration techniques
traditionally use ground truth targets, such as a white Lam-
bertian board [31], a black-and-white checkerboard [32], or
a chrome ball. Below, we explain how to perform both
attenuation and camera-light extrinsic parameter calibration
with a checkerboard, as a and |OP| are known®.

Attenuation coefficients in Equation (4) can be assumed
to be constant throughout the general area and depth. At
each depth, one can optimize the attenuation B8P, BB,
veiling light B°°, and camera exposure k& by minimizing the
difference between the observed pixels in I and the estimated
pixels in I’,

Nx
arg min (I, — I (awo, BY, BB, B>, k))?  (7)
BP,BE B>k =
where Nx are all pixels in the image I used for calibration,
corresponding to surface points with white W or black B
albedo properties ayw o p. For white pixels use ay = 1 and
for black pixel use ap = ﬁ (to avoid using 0).

Calibrating camera-light extrinsic parameters prior to de-
ployment helps minimize the overall number of unknowns in
the PS objective function, later explained in Section IV. Let
all light parameters — consisting of all light poses (.5;), light
center directions (isi), original intensity Ly, and 50% power
angle ¢§0% — be jointly denoted as S. Exposure k is optional
if it changes over time. As ambient light might be present in
image I;, let A; be the corresponding pixel intensity of the
image taken a few moments earlier with no artificial light.
Therefore, after completing Equation (7), the parameters in
S are optimized according to:

Ny
arg min Z(Il — (A; + Il(awos, S, k)))? ®)
Sk

3Contrarily, the distant-lighting model assumes that the distances between
scene points and camera/lights are very large. While it sacrifices model
accuracy, it decreases the complexity of the number of unknowns in the
framework.

“4Easier performed with no artificial lights on if ambient light is present.

Calibration is jointly performed with Ny (3 or more) images,
each with different camera-and-light pairings. The symmetry
of the robot’s lighting setup can be included as a constraint’.

IV. NON-STATIONARY PHOTOMETRIC STEREO

The traditional PS problem consists of taking multiple
N7 images with a stationary camera under different lighting
conditions. The aim is to estimate the unknown parameters of
each interested surface point in view, specifically its albedo a,
surface normal n, and depth Z. This is achieved with the im-
age formation model by minimizing the difference between
the predicted pixel and the observed pixel intensities:

Ny

o(a,n, Z) = Z(Ii —I/(a,n, 2))? )

i=1

Given frame i, known camera pose O; = (XP2,Y,Z9)
and light source S; = (X7,Y,Z7), other unknowns
include: |O;P|, |PS;|, and Ips, = (S; — P)/|PS,|. Here,
P= (%, %, Z), where f is the camera’s focal length, and
(u,v) is an image pixel coordinate. These unknowns can be
estimated while solving for Z.

A. Camera Motion and Surface Point Correspondences

Unlike the conventional PS model, our proposed frame-
work is applied to non-stationary robots. Specifically, while
a robot is suspended underwater, it will not stay in place even
in loiter mode; it will slightly move due to external water
forces or motor usage. This breaks the main PS assumption
that the camera is static at all times. Thus, O can be assumed
to be at the origin, and images ¢ > 1 need to account for the
relative pose changes in camera and light.

A monocular Simultaneous Localization and Mapping
(SLAM) system, or a Structure-from-Motion (SfM) solver,
can help detect small robot movements between image
frames. Some methods include LSD-SLAM [36], DSO [37],
monocular ORB-SLAM [13], and monocular SVO [38].
From an underwater domain study [39], it was concluded
that DSO (direct method) and ORB-SLAM (indirect method)
produced the most stable results for purely monocular setups.
We chose to integrate monocular ORB-SLAM, as DSO was
shown to have challenges in low gradient scenes and it
requires more computation power.

However, ORB-SLAM provides a sparse depth/feature
map, consisting of mostly edges and corners. To mitigate
the sparsity, ORB-SLAM’s map points and corresponding
pixel coordinates are interpolated within the masked region
of the target object in image I; to obtain an approximate,
piecewise planar depth map. Then, the set of pixel/point
correspondences across images I, I3 and I, (with different
lighting conditions) are matched by using the provided ORB-
SLAM camera transformations.

Scale inconsistency is a known issue in monocular SLAM.
Therefore, we assume that the pixel/point matches across
the set of images are correct, but the camera poses (and, in

SE.g., with the BlueROV2, the top lights are symmetrical to one another
in pose and direction, as is with the bottom lights.
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Fig. 3: Proposed pipeline for non-stationary MVPS.

Algorithm 1 Non-Stationary Photometric Stereo Solver

Input: Images with lights on/off and corresponding mask I, A;, M; Vi € Nr;
image formation model parameters and camera-light relative pose; and SLAM camera
poses O; Vi € Ny and set of map points X tracked from ORB-SLAM from I
Output: Denser set of scene points P € X’ with albedo a, depth Z, and surface
normal n, and camera pose translation corrections AO

/* samples of 3D Points visible across all images and within object mask */
1: X « sampled from tracked SLAM points X corresponding to image pixels in
Io within mask My and linearly interpolated
2: X" < points X projected in the subsequent images I; and A; that fall within the
corresponding masks M;
/* Initialization; assignment of guessed values to unknown parameters */
:S; Vi € Nj < camera poses with Iy as origin, based on O; and calibrated
collocated setup
cap <« I; VP € X
corresponding pixel
:np <+ [0,0,—1] VP € X’ // initialization of normals pointing to the camera
. Zp < Zop VP € X'/ initialization of depth values from the image
corresponding to the first light or from single-beam echosounder
7: AO; + [0,0,0] Vi € Ny // initialization of translation correction

/* Solve non-stationary MVPS objective function: Equation (10) */
8: argmin, , 7 Ao Z:\;Il(li — I}(a,n, Z, AO;))?
/* with */
P (£, %F,Z) update VP € X’
0; + O; + AO; Vi€ N;
S; +— S; + AO; Vie NI,.
Calculate |O; P|, |PS;| and Ips;, Vi € N1, VP € X'
I + via Equation (4) Vi € Ny
9: return ap, np, and Zp VP € X' and AO; Vi € N;

S W

/I albedo initialization with current intensity at

(o 3%

parallel, the world coordinates of the associated scene points)
are scaled incorrectly. We do assume that the rotation part of
the camera transformations is correct. Hence, the additional
translation correction AQO of camera poses must also be
optimized in the MVPS framework:

Ny
o(a,n, Z,A0;) = > (I — I}(a,n, Z, AO;))?

i=1

(10)

B. Algorithm and Pipeline

Fig. 3 illustrates the proposed pipeline that uses an AUV
with four independently-controlled lights and a monocular
camera, and Algorithm (1) overviews the MVPS framework.
Lines 1-2 interpolate the tracked SLAM points and ensures
that they are located within the masks of all images. Here,
we manually segment the object, but as future work we will
apply automated semantic segmentation to obtain segmenta-
tion masks. Lines 3-7 initialize the unknown parameters with
approximate guess values. Line 8 provides detail on how to
solve the optimization function described in Equation (10).

V. RESULTS

We performed experiments using data collected in a
swimming pool and conducted our framework offline. Our

Light 4 Intensity Error: Observed -
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Fig. 4: Attenuation and light parameter calibration were performed with a
black-and-white checkerboard. Left: Checkerboard illuminated by Light 4.
Right: Plot on estimated intensity error for [inner] checkerboard with Light
4 on after calibration. Most of the error was due to ambient light and the
caustic effect of the AUV’s light reflecting from the above water surface.

software and plot visualizations are publicly available®.

We used the BlueROV2, equipped with the Sony IMX
322L.QJ-C camera [40] with a 5 MP resolution, a horizontal
field of view (FOV) of 80°, and a vertical FOV of 64°. Four
lights [41] were installed, two on top and two on bottom.
During the runs, one light would turn on for 5s, then all
lights would be off for 5, and the process would be repeated
with a different light. For relative depth measurement, a
forward-facing single-beam echosounder [42] (SBES) was
installed. Also, an Intel RealSense Depth Camera D455 [43]
was used separately to produce ground truth 3-D models,
which can only be performed above-water.

A. Remarks on Photometric Stereo Tests

Our experiments were conducted following unorthodox PS
standards, as they occurred in more challenging scenarios
with uncontrollable factors and with larger target structures.

First, all runs were done in daylight with prevalent ambient
light. Past PS works tested in very deep waters or at night-
time [31]; however outdoor nighttime tests are burdensome
to arrange due to boat and diver availability. In clear waters,
at depths of 30m or below, ambient light might not be
prevalent, but it is still present — thus one needs to account
for ambient light in most cases.

The target objects that we used are substantially larger than
what are typically used in underwater PS (e.g., hand-held
barrel, seashell [30]). We have a black-and-white checker-
board (checkered area: L:1 m x W:0.4 m), two white-painted
rocks (a rectangular column Rock A — H:0.94m x L:0.51 m
x W:0.49m and a more irregular sloped Rock B — H:0.76 m
x L:0.74m x W:0.5m) — which will mimic real-world reef
structures — and a brown planter (Diam.:0.56 m x H:0.43 m).
These larger objects will inherently cause an increase in the
error of different camera-to-point and light-to-point measure-
ments in the MVPS framework, but will replicate the larger
coverage of object-in-view that we might encounter when
exploring shipwrecks and other large scenes. While white
objects are not expected in the real-world, here they provided
helpful validation comparison (a = 1).

B. Model and Light Calibration

Image formation model and light parameters were cali-
brated with the checkerboard, see Fig. 4 left.

G:ths ://github.com/dartmouthrobotics/psuw



Image formation model parameters (32, 8P, B>, and
k) were calibrated first under ambient light. Following [33],
BB, P, and B> were bounded by [0,5], [0,5], and [0,1],
respectively. All pixel intensities are in the [0,1] range.
After calibration (using Nelder-Mead method [44] for bound-
constrained minimization based on the observation that it
outperformed other methods like Powell), the pixel intensity
error was 0.013 MAE (0.016 RMSE).

Light parameters (S, isi, L;,, and gbgo% ) and camera ex-
posure k were calibrated jointly with all 4 different camera-
light pairings and their associated images. After calibration
(using the Nelder-Mead method [44]), we calculated an
intensity MAE of 0.012 with std. dev. of 0.004 (RMSE of
0.015 with std. dev. of 0.005).

With the calibrated parameters, we projected back the
estimated checkerboard intensity values and noticed that
scene ambient light and caustic effects from the AUV’s lights
reflected by the above water surface led to the most deviation.
The right plot in Fig. 4 shows the estimated intensity error
for Light 4 (0.018 MAE), which is notably due to the errors
where the ambient light anomalies occurred in the captured
image on the left. It is important to note that the following
3-D model reconstruction experiments were also affected by
the ambient light anomalies that changed quickly over time
and space.

C. Checkerboard Reconstruction

For quantitative validation, we conducted checkerboard
reconstruction tests, see Table I, under cases where all pa-
rameters are known (even camera poses), albedo is unknown
but assumed to be uniform across, albedo is unknown for
each point, and lastly, albedo and the camera poses are
unknown. As depth is unknown for all cases, we tested the
framework with different initial depth guesses — x0.5, x1,
and x 1.5 scaling of ground truth depth values, corresponding
to ORB-SLAM scale inconsistency. We utilized SciPy min-
imization [45], stopped after 10 calls, with no convergence
guarantee [46], and took the best results. As expected, large

TABLE I: Checkerboard reconstruction error in MAE (std. dev.) for cases
where all parameters are known but depth, albedo is unknown but uniform
across (~ a), albedo is unknown for each point, and lastly, albedo and
camera poses are unknown.

Initial Guess a known ~ a unknown a unknown a unknown

Depth Scale O; known O; known O; known O; unknown

x0.5 0.028 (0.04) 0.451 (0.03) 0.062 (0.04) | 0.116 (0.05)

x1 0.029 (0.04) 0.029 (0.04) 0.051 (0.03) | 0.042 (0.04)

x1.5 0.029 (0.04) 0.030 (0.04) 0.031 (0.04) | 0.032 (0.05)
Ours

Ground Truth

(
|
L
L
|

Fig. 5: Checkerboard reconstruction results, under Light 1 (left) viewpoint,
from our MVPS framework with albedo a and camera pose O; unknown.
Black dots represent the sampling points. The plots on right are linearly
interpolated.

initialization errors lead to larger reconstruction errors.

All cases produced models of similar characteristics, as
seen in Fig. 5. Where the lights had more direct alignment
with the surface normal, the depths were overestimated,
though the error was low. This could indicate that the lighting
model is too simple — as the AUV lights are circular, one
might need to model them using cones of strongest intensity,
not as lines.

D. Rock and Planter Reconstruction

To test our full proposed MVPS framework, we conducted
two runs where the robot circled an object, Rocks A and B.
Fig. 6 shows the results of a few views during these runs.
Model reconstructions were performed with the provided
map point values from monocular ORB-SLAM, our proposed
MYVPS framework with albedo known (a = 1), and our full
MYVPS framework with albedo unknown (—a). The numbers
of samples used in the models are provided in Table II, where
outliers whose depths were 2 std. dev. greater or less than
the average were rejected. The SBES measurements are also
provided in the table.

Overall, ORB-SLAM based reconstruction results were
consistently flat, even in corner views (A-2 and B-2), and
provided small (closer to camera) depth values. Both of our
MVPS frameworks were able to reconstruct the rocks well,
capturing the shape, vertical slope, and corners. The image
depths also show the relative correct depth gradients.

We also calculated the error in albedo estimation, as shown
in the right column of Fig. 6 and in Table II. Generally, areas
that are flat and parallel to the image frame or are close to the
camera’s immediate direction corresponded to lower albedo
error. Despite the slight error, the shape of the reconstructions
are very similar to cases when albedo was known.

Another reason for error could be due to self-shadow. In
the case of B-2, Light 1 and 2 (left of the AUV) never
reached the right side of the rock, causing self-shadow in
those images. If the AUV continued its trajectory to the
right and collected further images, such reconstruction errors
could be mitigated — an idea for future work.

In addition, we conducted two runs with a large non-white
planter. Fig. 7 shows the results. While we do not know the
albedo of the object, we can compare the results where the
albedo is assumed to be uniform across. Here as well, our
MVPS framework reconstructed the structure well compared
to ORB-SLAM. We also tested the case where the AUV was
stationary. The results indicated that there is still room for
improving the non-stationarity issue when correctly matching
points across all images under different lighting conditions.

TABLE II: Top: Number of sample points used in the reconstruction and
number of rejected outliers (points whose depth is 2 std. dev. greater or less
than the average). Middle: SBES depth measurement at Light 1 viewpoint.
Bottom: Albedo ([0,1]) error for each view of the plastic rocks.

A-1 A-2 B-1 B-2
Total Points (Outliers) 206 (1) 215 (5) 196 (2) 214 (7)
SBES Measurements 1.20m 1.14m 1.07m 0.83m
Mean a Error (std. dev.) | 0.291 (0.06) | 0.367 (0.08) | 0.192 (0.12) | 0.369 (0.09)
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Fig. 6: Reef rocks A and B reconstruction results provided from the RealSense camera (In-Air Model), monocular ORB-SLAM [13], our MVPS framework
with albedo known (¢ = 1), and our MVPS framework with albedo unknown (—a). The green crosses in the images are the sampled points used in
optimization. The colorbar on left applies to all graphs in that row. Projected image depth and albedo error are provided for —a case. Note, black tape was
placed on the rocks to help ORB-SLAM detect features, considering that the rocks are completely white. Further visualizations are available in our code.
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Fig. 7: Planter reconstruction results during Non-Stationary (top) and
Stationary (bottom) cases, including models from the RealSense camera
(In-Air Model), monocular ORB-SLAM [13], our MVPS framework with
one uniform albedo unknown (~ a), our MVPS framework with all albedo
unknown (—a), and the image depth for Stationary (—a) case. SBES depth
measurements: Non-Stationary 1.03 m and Stationary 0.91 m.

VI. CONCLUSION AND FUTURE WORK

We presented a Multi-View Photometric Stereo (MVPS)
framework for non-stationary underwater robots — a common
case when the robot is neutrally/positively buoyant, avoiding
environmental impact, or exploring large structures — which
to our knowledge is a novel and unsolved problem. By
expanding the traditional PS framework to include monocular
SLAM for extracting camera poses and feature/map points,

our MVPS framework is able to calculate a reliable 3-
D model of the target object while also correcting the
scale inaccuracy afflicting monocular SLAM. Moreover, we
presented an easy attenuation and camera-light extrinsic
parameter calibration method for non-stationary robots.

Our next step is to design an online framework that builds
a 3-D model of a target object as the AUV journeys around
it. As the AUV is non-stationary even during the few seconds
with one light on, an estimated model could be initially built
with this one-light arrangement. Then, the model can be im-
proved and further refined with the other light arrangements.
In addition, our MVPS framework produces scene model
and camera pose corrections which can be fed back into the
SLAM system for AUV trajectory improvement, mitigating
the drift and depth scale inconsistency.

Ultimately, an MVPS approach for non-stationary under-
water robots has significant impacts — it allows for inexpen-
sive AUVs to accomplish scene reconstruction tasks with
results on the same level as using high-end sonars.
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