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Abstract— This paper proposes a novel underwater Multi-
View Photometric Stereo (MVPS) framework for reconstructing
scenes in 3-D with a non-stationary low-cost robot equipped
with a monocular camera and fixed lights. The underwater
realm is the primary focus of study here, due to the challenges
in utilizing underwater camera imagery and lack of low-cost re-
liable localization systems. Previous underwater PS approaches
provided accurate scene reconstruction results, but assumed
that the robot was stationary at the bottom. This assumption
is limiting, as many artifacts, reefs, and man-made structures
are large and meters above the bottom. Our proposed MVPS
framework relaxes the stationarity assumption by utilizing a
monocular SLAM system to estimate small robot motions and
extract an initial sparse feature map. To compensate for the
scale inconsistency in monocular SLAM output, our MVPS
optimization scheme collectively estimates a high-quality, dense
3-D reconstruction and corrects the camera pose estimates.
We also present an attenuation and camera-light extrinsic pa-
rameter calibration method for non-stationary robots. Finally,
validation experiments with a BlueROV2 demonstrated the low-
cost capability of producing high-quality scene reconstructions.
Overall, this work is the foundation of an active perception
pipeline for robots (i.e., underwater, ground, and aerial) to
explore and map complex structures in high accuracy and
resolution with an inexpensive sensor-light configuration.

I. INTRODUCTION

We present novel work for solving the Multi-View Photo-

metric Stereo (MVPS) problem in the case of non-stationary

underwater robots (see Fig. 1 for the main long-term vi-

sion). PS is a well-known computer vision technique for

reconstructing high resolution scenes, considering stationary

cameras and various lighting sources [1], [2]. While we pri-

marily focus on the underwater domain due to its increased

challenges, our MVPS framework can be easily generalized

to above-water domains.

Scene reconstruction is an important aspect in many under-

water robotic applications, particularly for inspecting man-

made structures (e.g., oil rigs, ship hulls) [3], monitoring

target biological locations [4], and exploring reefs [5] and

archaeological sites [6]. Autonomous Underwater Vehicles

(AUVs) are becoming more commonly dispatched to tackle

these various tasks [7]. Not only can AUVs stay longer

underwater than a diver, but they are also typically set up

with a modular sensory suite – at the very least with an IMU,

monocular camera, single-beam echosounder, and lights [8],
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Fig. 1: How multi-view photometric stereo framework is applied to non-
stationary robots (i.e., BlueROV2) for exploring shipwrecks and producing
high-quality scene reconstruction models.

and more extensively (and at higher cost) with a multibeam

sonar, side scan sonar, and guidance-based equipment (i.e.,

fiber-optic gyroscope (FOG) IMU, acoustic Doppler Velocity

Log (DVL)) [9], [10].

Multibeam and other sonars were shown to be extremely

useful for accurate underwater scene reconstruction [3],

[11]. However, sonars lack visual (e.g., color, texture) and

resolution characteristics that cameras provide, which can be

enriched by fusing sonar and camera data. Stereo vision setup

is possible; however, not only does it require higher compu-

tation, but in scenes with significant uniformity (less varied

or repeating textures – common in underwater environment),

the left-right camera pixel correspondences can be erroneous

or impossible [12]. On its own, monocular camera imagery

input cannot provide accurate scene depth information [13].

IMU or DVL data can be integrated [14]–[16], as in Visual

Inertial Odometry systems. However, these methods produce

camera poses in a sparsely reconstructed scene, and we are

interested in dense reconstruction.

PS relies only on camera imagery and light sources

(artificial or natural). It is originally based [1] on the ob-

servation that an object’s surface normals can be estimated

by observing changes in the surface points’ reflected light

intensities among different images, where light source(s)

change position, but the camera’s position always stays in

place. For a review of different PS methods, we refer readers

to surveys [2], [17]. Lighting variations from moving light

sources have been utilized to infer shape from shadows [18],

while the interaction of video-lights with the walls of un-

derwater caves produced 3D reconstructions of the cave

passage [19].

MVPS for non-stationary underwater robots is to the

best of our knowledge a novel, unsolved problem. Early

approaches on MVPS in general environments [20]–[22]

required silhouettes to initialize shape. (We assume that the

object can be segmented for simplicity, but we do not use

the silhouettes for shape estimation.) There is also work



benefiting from the complementary strengths of PS and

MVPS [23]–[28].

Previous PS works [29]–[31] that tested with underwater

robots required that the robots stay settled on the bottom to

ensure that the camera does not move. This is undesirable

as target objects (e.g., corals, parts of shipwrecks) may be

located meters above the bottom, most underwater robots are

setup to be neutrally or positively buoyant, thus requiring

motor usage to stay at the bottom and that may cause

sediment stirring and image hazing, and, lastly, it is common

underwater practice to not touch the habitat in order to avoid

accidental interference with sensitive organisms and artifacts.

Furthermore, these prior PS works tested with small objects

(i.e., seashells, plastic containers), whose sizes are small

enough for short-range image capture, but different to the

task of reconstructing shipwrecks and reefs.

The main contributions of this paper are: (1) a novel

MVPS framework for computing 3-D scene models, con-

sidering camera non-stationarity, near-lighting model, and

initial knowledge from a monocular SLAM system, (2) non-

stationary calibration methods for underwater attenuation

and camera-light extrinsic parameters, and (3) real-world

experiments with a moving underwater robot integrated with

four independently controlled lights. From our proposed

framework, experiments, and qualitative/quantitative results,

we show the capability of a non-stationary robot to re-

construct underwater 3-D objects, using only a monocular

camera and lights.

This work represents the foundation for allowing inexpen-

sive robots to explore unknown scenes and produce high-

resolution models that are on par with what can be achieved

with high-end sensors and robots.

II. IMAGE FORMATION MODEL

Underwater scenarios are challenging for any image-based

method. Light attenuates (reduces in intensity) more exten-

sively in-water than in-air; as light travels in water, it is

scattered and absorbed by colliding particles, see Fig. 2

(left). Many methods attempt to estimate the attenuation

values [32]–[34], especially through a physics-based image

formation model [35]. In the image formation model, an

image I is captured by the camera’s image sensor1 and is

described as a composition of direct signal D and backscatter

B:

I = D +B (1)

A. Direct Signal

Direct signal D corresponds to the amount of light that

has traveled from the light source, reflected from the visible

scene, and reached the camera’s image sensor. During the

light’s travel, it is attenuated by βD, based on the water

medium’s characteristics:

D =
1

z2i
aLR e−β

Dzi (2)

1We assume the pinhole model. We will also refer to grayscale images for
simplicity; color images require additional unknowns that will be considered
in future work. Explanations will also be simplified to a single pixel x,
corresponding to a unique surface point, such as I = Ix.

Fig. 2: Left: Visualization of how direct signal and backscatter are gener-
ated and attenuated. Right: Under the near-lighting model, all parameters
correlated to surface points cannot be assumed to be the same.

where a is the surface point’s albedo (or color), LR is the

light reflected from the surface point, and zi = |PSi|+|OP |,
such that |PSi| is the distance from the light source Si to the

surface point P and |OP | is the distance from the surface

point to the camera O. Simply, D is the distorted image of

aLR, attenuated by βD zi. The inverse-square law ( 1
z2

i

) is

applied, as light loses intensity over distance.

B. Backscatter

Backscatter B corresponds to the amount of light that

never reached the visible scene surfaces, but was reflected

by particles in the water and arrived at the camera’s image

sensor. Similar to D, it is attenuated by certain water

medium’s attenuation properties, denoted here as βB :

B =
1

z2i
B∞(1− e−β

Bzi) (3)

Note, βD and βB are not assumed to be the same, as studied

in [35]. The veiling light B∞ is also a characteristic of the

water medium, but it can be approximated as the color in

the image’s background (the far ‘infinite’ distance).

C. Complete Image Formation Model

The complete underwater image formation model for a

light source i is as follows:

Ii =
1

k z2i
( aLRi

e−β
Dzi +B∞(1− e−β

Bzi)) (4)

where scalar k corresponds to image exposure.

D. Scene Reflection

The underwater scene is commonly assumed to be com-

posed of Lambertian surfaces [5], [30], [31]. Thus, given

a surface normal and light direction, the same amount of

reflected light will be observed in any viewing direction:

LRi
= Liφ ni l̂PSi

= Liφ cos(θi) (5)

where θi is the angle between the surface normal ni and any

incident (incoming) light direction l̂PSi
, and Liφ is the light

intensity.

E. Light Models

In daylight, ambient light is a significant source of illu-

mination for the first 20-30 m deep in the water column2.

If it is present, then one can capture an image of the scene

2With increasing depth, ambient light’s intensity diminishes due to
attenuation and the inverse-square law [35].



with only ambient light present and use that to subtract the

following images that include artificial light sources.

Each artificial light source is represented as a point light

with an original intensity Li0 and modeled with a Gaussian

diffuse filter. Following the model in [5], intensity is brightest

along its center directional line l̂Si
, but decreases with angle

φ from this line:

Liφ = L0e
− 1

2

φ2

σ2 , σ =

�

φ2
50%

−2 log 0.5
(6)

where φ50% is the angle where the light’s power is at 50%.

We applied the near-lighting model, see Fig. 2 (right),

which is used in cases when the viewing/lighting distances

are small [31], or in our case, when the target object is as

large or larger than the viewing/lighting distances3.

III. ATTENUATION AND CAMERA-LIGHT CALIBRATION

Attenuation coefficients and camera-light extrinsic param-

eters can be calibrated prior to main deployment, preferably

in the same marine environment. Calibration techniques

traditionally use ground truth targets, such as a white Lam-

bertian board [31], a black-and-white checkerboard [32], or

a chrome ball. Below, we explain how to perform both

attenuation and camera-light extrinsic parameter calibration

with a checkerboard, as a and |OP | are known4.

Attenuation coefficients in Equation (4) can be assumed

to be constant throughout the general area and depth. At

each depth, one can optimize the attenuation (βD, βB),

veiling light B∞, and camera exposure k by minimizing the

difference between the observed pixels in I and the estimated

pixels in I ′,

argmin
βD,βB ,B∞,k

NX
�

x=1

(Ix − I ′x(aW orB , β
D, βB , B∞, k))2 (7)

where NX are all pixels in the image I used for calibration,

corresponding to surface points with white W or black B
albedo properties aW orB . For white pixels use aW = 1 and

for black pixel use aB = 1
255 (to avoid using 0).

Calibrating camera-light extrinsic parameters prior to de-

ployment helps minimize the overall number of unknowns in

the PS objective function, later explained in Section IV. Let

all light parameters – consisting of all light poses (Si), light

center directions (̂lSi
), original intensity L0, and 50% power

angle φ2
50% – be jointly denoted as S. Exposure k is optional

if it changes over time. As ambient light might be present in

image Ii, let Ai be the corresponding pixel intensity of the

image taken a few moments earlier with no artificial light.

Therefore, after completing Equation (7), the parameters in

S are optimized according to:

argmin
S,k

NI
�

i=1

(Ii − (Ai + I ′i(aW orB ,S, k)))
2 (8)

3Contrarily, the distant-lighting model assumes that the distances between
scene points and camera/lights are very large. While it sacrifices model
accuracy, it decreases the complexity of the number of unknowns in the
framework.

4Easier performed with no artificial lights on if ambient light is present.

Calibration is jointly performed with NI (3 or more) images,

each with different camera-and-light pairings. The symmetry

of the robot’s lighting setup can be included as a constraint5.

IV. NON-STATIONARY PHOTOMETRIC STEREO

The traditional PS problem consists of taking multiple

NI images with a stationary camera under different lighting

conditions. The aim is to estimate the unknown parameters of

each interested surface point in view, specifically its albedo a,

surface normal n, and depth Z. This is achieved with the im-

age formation model by minimizing the difference between

the predicted pixel and the observed pixel intensities:

o(a, n, Z) =

NI
�

i=1

(Ii − I ′i(a, n, Z))2 (9)

Given frame i, known camera pose Oi = (XO
i , Y O

i , ZO
i )

and light source Si = (XS
i , Y

S
i , ZS

i ), other unknowns

include: |OiP |, |PSi|, and l̂PSi
= (Si − P )/|PSi|. Here,

P = (uZ
f
, vZ

f
, Z), where f is the camera’s focal length, and

(u, v) is an image pixel coordinate. These unknowns can be

estimated while solving for Z.

A. Camera Motion and Surface Point Correspondences

Unlike the conventional PS model, our proposed frame-

work is applied to non-stationary robots. Specifically, while

a robot is suspended underwater, it will not stay in place even

in loiter mode; it will slightly move due to external water

forces or motor usage. This breaks the main PS assumption

that the camera is static at all times. Thus, O1 can be assumed

to be at the origin, and images i > 1 need to account for the

relative pose changes in camera and light.

A monocular Simultaneous Localization and Mapping

(SLAM) system, or a Structure-from-Motion (SfM) solver,

can help detect small robot movements between image

frames. Some methods include LSD-SLAM [36], DSO [37],

monocular ORB-SLAM [13], and monocular SVO [38].

From an underwater domain study [39], it was concluded

that DSO (direct method) and ORB-SLAM (indirect method)

produced the most stable results for purely monocular setups.

We chose to integrate monocular ORB-SLAM, as DSO was

shown to have challenges in low gradient scenes and it

requires more computation power.

However, ORB-SLAM provides a sparse depth/feature

map, consisting of mostly edges and corners. To mitigate

the sparsity, ORB-SLAM’s map points and corresponding

pixel coordinates are interpolated within the masked region

of the target object in image I1 to obtain an approximate,

piecewise planar depth map. Then, the set of pixel/point

correspondences across images I2, I3 and I4 (with different

lighting conditions) are matched by using the provided ORB-

SLAM camera transformations.

Scale inconsistency is a known issue in monocular SLAM.

Therefore, we assume that the pixel/point matches across

the set of images are correct, but the camera poses (and, in

5E.g., with the BlueROV2, the top lights are symmetrical to one another
in pose and direction, as is with the bottom lights.
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Fig. 3: Proposed pipeline for non-stationary MVPS.

Algorithm 1 Non-Stationary Photometric Stereo Solver

Input: Images with lights on/off and corresponding mask Ii, Ai,Mi ∀i ∈ NI ;

image formation model parameters and camera-light relative pose; and SLAM camera

poses Ôi ∀i ∈ NI and set of map points X0 tracked from ORB-SLAM from I1
Output: Denser set of scene points P ∈ X

′ with albedo a, depth Z, and surface

normal n, and camera pose translation corrections ∆O

/* samples of 3D Points visible across all images and within object mask */

1: X ← sampled from tracked SLAM points X0 corresponding to image pixels in

I0 within mask M0 and linearly interpolated

2: X
′ ← points X projected in the subsequent images Ii and Ai that fall within the

corresponding masks Mi

/* Initialization; assignment of guessed values to unknown parameters */

3: Ŝi ∀i ∈ NI ← camera poses with I1 as origin, based on Ôi and calibrated

collocated setup

4: aP ← I1 ∀P ∈ X
′ // albedo initialization with current intensity at

corresponding pixel

5: nP ← [0, 0,−1] ∀P ∈ X
′ // initialization of normals pointing to the camera

6: ZP ← Z0P ∀P ∈ X
′ // initialization of depth values from the image

corresponding to the first light or from single-beam echosounder

7: ∆Oi ← [0, 0, 0] ∀i ∈ NI // initialization of translation correction

/* Solve non-stationary MVPS objective function: Equation (10) */

8: argmina,n,Z,∆O

�NI
i=1

(Ii − I′

i(a, n, Z,∆Oi))
2

/* with */

P ← (uZ
f

, vZ
f

, Z) update ∀P ∈ X
′

Oi ← Ôi + ∆Oi ∀i ∈ NI

Si ← Ŝi + ∆Oi ∀i ∈ NI

Calculate |OiP |, |PSi| and l̂PSi
, ∀i ∈ NI , ∀P ∈ X

′

I′

i ← via Equation (4) ∀i ∈ NI

9: return aP , nP , and ZP ∀P ∈ X
′ and ∆Oi ∀i ∈ NI

parallel, the world coordinates of the associated scene points)

are scaled incorrectly. We do assume that the rotation part of

the camera transformations is correct. Hence, the additional

translation correction ∆O of camera poses must also be

optimized in the MVPS framework:

o(a, n, Z,∆Oi) =

NI
�

i=1

(Ii − I ′i(a, n, Z,∆Oi))
2 (10)

B. Algorithm and Pipeline

Fig. 3 illustrates the proposed pipeline that uses an AUV

with four independently-controlled lights and a monocular

camera, and Algorithm (1) overviews the MVPS framework.

Lines 1-2 interpolate the tracked SLAM points and ensures

that they are located within the masks of all images. Here,

we manually segment the object, but as future work we will

apply automated semantic segmentation to obtain segmenta-

tion masks. Lines 3-7 initialize the unknown parameters with

approximate guess values. Line 8 provides detail on how to

solve the optimization function described in Equation (10).

V. RESULTS

We performed experiments using data collected in a

swimming pool and conducted our framework offline. Our

Fig. 4: Attenuation and light parameter calibration were performed with a
black-and-white checkerboard. Left: Checkerboard illuminated by Light 4.
Right: Plot on estimated intensity error for [inner] checkerboard with Light
4 on after calibration. Most of the error was due to ambient light and the
caustic effect of the AUV’s light reflecting from the above water surface.

software and plot visualizations are publicly available6.

We used the BlueROV2, equipped with the Sony IMX

322LQJ-C camera [40] with a 5 MP resolution, a horizontal

field of view (FOV) of 80°, and a vertical FOV of 64°. Four

lights [41] were installed, two on top and two on bottom.

During the runs, one light would turn on for 5 s, then all

lights would be off for 5 s, and the process would be repeated

with a different light. For relative depth measurement, a

forward-facing single-beam echosounder [42] (SBES) was

installed. Also, an Intel RealSense Depth Camera D455 [43]

was used separately to produce ground truth 3-D models,

which can only be performed above-water.

A. Remarks on Photometric Stereo Tests

Our experiments were conducted following unorthodox PS

standards, as they occurred in more challenging scenarios

with uncontrollable factors and with larger target structures.

First, all runs were done in daylight with prevalent ambient

light. Past PS works tested in very deep waters or at night-

time [31]; however outdoor nighttime tests are burdensome

to arrange due to boat and diver availability. In clear waters,

at depths of 30m or below, ambient light might not be

prevalent, but it is still present – thus one needs to account

for ambient light in most cases.

The target objects that we used are substantially larger than

what are typically used in underwater PS (e.g., hand-held

barrel, seashell [30]). We have a black-and-white checker-

board (checkered area: L:1m x W:0.4m), two white-painted

rocks (a rectangular column Rock A – H:0.94m x L:0.51m
x W:0.49m and a more irregular sloped Rock B – H:0.76m
x L:0.74m x W:0.5m) – which will mimic real-world reef

structures – and a brown planter (Diam.:0.56m x H:0.43m).

These larger objects will inherently cause an increase in the

error of different camera-to-point and light-to-point measure-

ments in the MVPS framework, but will replicate the larger

coverage of object-in-view that we might encounter when

exploring shipwrecks and other large scenes. While white

objects are not expected in the real-world, here they provided

helpful validation comparison (a = 1).

B. Model and Light Calibration

Image formation model and light parameters were cali-

brated with the checkerboard, see Fig. 4 left.

6https://github.com/dartmouthrobotics/psuw



Image formation model parameters (βB , βD, B∞, and

k) were calibrated first under ambient light. Following [33],

βB , βD, and B∞ were bounded by [0,5], [0,5], and [0,1],

respectively. All pixel intensities are in the [0,1] range.

After calibration (using Nelder-Mead method [44] for bound-

constrained minimization based on the observation that it

outperformed other methods like Powell), the pixel intensity

error was 0.013MAE (0.016RMSE).

Light parameters (Si, l̂Si
, Li0 , and φ2

50%) and camera ex-

posure k were calibrated jointly with all 4 different camera-

light pairings and their associated images. After calibration

(using the Nelder-Mead method [44]), we calculated an

intensity MAE of 0.012with std. dev. of 0.004 (RMSE of

0.015with std. dev. of 0.005 ).
With the calibrated parameters, we projected back the

estimated checkerboard intensity values and noticed that

scene ambient light and caustic effects from the AUV’s lights

reflected by the above water surface led to the most deviation.

The right plot in Fig. 4 shows the estimated intensity error

for Light 4 (0.018MAE), which is notably due to the errors

where the ambient light anomalies occurred in the captured

image on the left. It is important to note that the following

3-D model reconstruction experiments were also affected by

the ambient light anomalies that changed quickly over time

and space.

C. Checkerboard Reconstruction

For quantitative validation, we conducted checkerboard

reconstruction tests, see Table I, under cases where all pa-

rameters are known (even camera poses), albedo is unknown

but assumed to be uniform across, albedo is unknown for

each point, and lastly, albedo and the camera poses are

unknown. As depth is unknown for all cases, we tested the

framework with different initial depth guesses – ×0.5, ×1,

and ×1.5 scaling of ground truth depth values, corresponding

to ORB-SLAM scale inconsistency. We utilized SciPy min-

imization [45], stopped after 10 calls, with no convergence

guarantee [46], and took the best results. As expected, large

TABLE I: Checkerboard reconstruction error in MAE (std. dev.) for cases
where all parameters are known but depth, albedo is unknown but uniform
across (∼ a), albedo is unknown for each point, and lastly, albedo and
camera poses are unknown.

Initial Guess a known ∼ a unknown a unknown a unknown

Depth Scale Oi known Oi known Oi known Oi unknown

×0.5 0.028 (0.04) 0.451 (0.03) 0.062 (0.04) 0.116 (0.05)

×1 0.029 (0.04) 0.029 (0.04) 0.051 (0.03) 0.042 (0.04)

×1.5 0.029 (0.04) 0.030 (0.04) 0.031 (0.04) 0.032 (0.05)

Light 1 Ground Truth Ours

Fig. 5: Checkerboard reconstruction results, under Light 1 (left) viewpoint,
from our MVPS framework with albedo a and camera pose Oi unknown.
Black dots represent the sampling points. The plots on right are linearly
interpolated.

initialization errors lead to larger reconstruction errors.

All cases produced models of similar characteristics, as

seen in Fig. 5. Where the lights had more direct alignment

with the surface normal, the depths were overestimated,

though the error was low. This could indicate that the lighting

model is too simple – as the AUV lights are circular, one

might need to model them using cones of strongest intensity,

not as lines.

D. Rock and Planter Reconstruction

To test our full proposed MVPS framework, we conducted

two runs where the robot circled an object, Rocks A and B.

Fig. 6 shows the results of a few views during these runs.

Model reconstructions were performed with the provided

map point values from monocular ORB-SLAM, our proposed

MVPS framework with albedo known (a = 1), and our full

MVPS framework with albedo unknown (¬a). The numbers

of samples used in the models are provided in Table II, where

outliers whose depths were 2 std. dev. greater or less than

the average were rejected. The SBES measurements are also

provided in the table.

Overall, ORB-SLAM based reconstruction results were

consistently flat, even in corner views (A-2 and B-2), and

provided small (closer to camera) depth values. Both of our

MVPS frameworks were able to reconstruct the rocks well,

capturing the shape, vertical slope, and corners. The image

depths also show the relative correct depth gradients.

We also calculated the error in albedo estimation, as shown

in the right column of Fig. 6 and in Table II. Generally, areas

that are flat and parallel to the image frame or are close to the

camera’s immediate direction corresponded to lower albedo

error. Despite the slight error, the shape of the reconstructions

are very similar to cases when albedo was known.

Another reason for error could be due to self-shadow. In

the case of B-2, Light 1 and 2 (left of the AUV) never

reached the right side of the rock, causing self-shadow in

those images. If the AUV continued its trajectory to the

right and collected further images, such reconstruction errors

could be mitigated – an idea for future work.

In addition, we conducted two runs with a large non-white

planter. Fig. 7 shows the results. While we do not know the

albedo of the object, we can compare the results where the

albedo is assumed to be uniform across. Here as well, our

MVPS framework reconstructed the structure well compared

to ORB-SLAM. We also tested the case where the AUV was

stationary. The results indicated that there is still room for

improving the non-stationarity issue when correctly matching

points across all images under different lighting conditions.

TABLE II: Top: Number of sample points used in the reconstruction and
number of rejected outliers (points whose depth is 2 std. dev. greater or less
than the average). Middle: SBES depth measurement at Light 1 viewpoint.
Bottom: Albedo ([0,1]) error for each view of the plastic rocks.

A-1 A-2 B-1 B-2

Total Points (Outliers) 206 (1) 215 (5) 196 (2) 214 (7)

SBES Measurements 1.20m 1.14m 1.07m 0.83m

Mean a Error (std. dev.) 0.291 (0.06) 0.367 (0.08) 0.192 (0.12) 0.369 (0.09)
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Fig. 6: Reef rocks A and B reconstruction results provided from the RealSense camera (In-Air Model), monocular ORB-SLAM [13], our MVPS framework
with albedo known (a = 1), and our MVPS framework with albedo unknown (¬a). The green crosses in the images are the sampled points used in
optimization. The colorbar on left applies to all graphs in that row. Projected image depth and albedo error are provided for ¬a case. Note, black tape was
placed on the rocks to help ORB-SLAM detect features, considering that the rocks are completely white. Further visualizations are available in our code.
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Fig. 7: Planter reconstruction results during Non-Stationary (top) and
Stationary (bottom) cases, including models from the RealSense camera
(In-Air Model), monocular ORB-SLAM [13], our MVPS framework with
one uniform albedo unknown (∼ a), our MVPS framework with all albedo
unknown (¬a), and the image depth for Stationary (¬a) case. SBES depth
measurements: Non-Stationary 1.03m and Stationary 0.91m.

VI. CONCLUSION AND FUTURE WORK

We presented a Multi-View Photometric Stereo (MVPS)

framework for non-stationary underwater robots – a common

case when the robot is neutrally/positively buoyant, avoiding

environmental impact, or exploring large structures – which

to our knowledge is a novel and unsolved problem. By

expanding the traditional PS framework to include monocular

SLAM for extracting camera poses and feature/map points,

our MVPS framework is able to calculate a reliable 3-

D model of the target object while also correcting the

scale inaccuracy afflicting monocular SLAM. Moreover, we

presented an easy attenuation and camera-light extrinsic

parameter calibration method for non-stationary robots.

Our next step is to design an online framework that builds

a 3-D model of a target object as the AUV journeys around

it. As the AUV is non-stationary even during the few seconds

with one light on, an estimated model could be initially built

with this one-light arrangement. Then, the model can be im-

proved and further refined with the other light arrangements.

In addition, our MVPS framework produces scene model

and camera pose corrections which can be fed back into the

SLAM system for AUV trajectory improvement, mitigating

the drift and depth scale inconsistency.

Ultimately, an MVPS approach for non-stationary under-

water robots has significant impacts – it allows for inexpen-

sive AUVs to accomplish scene reconstruction tasks with

results on the same level as using high-end sonars.
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