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Abstract— This paper presents a systematic approach for the
3-D mapping of underwater caves. Exploration of underwater
caves is very important for furthering our understanding
of hydrogeology, managing efficiently water resources, and
advancing our knowledge in marine archaeology. Underwater
cave exploration by human divers however, is a tedious, labor
intensive, extremely dangerous operation, and requires highly
skilled people. As such, it is an excellent fit for robotic
technology, which has never before been addressed. In addition
to the underwater vision constraints, cave mapping presents
extra challenges in the form of lack of natural illumination
and harsh contrasts, resulting in failure for most of the state-of-
the-art visual based state estimation packages. A new approach
employing a stereo camera and a video-light is presented. Our
approach utilizes the intersection of the cone of the video-light
with the cave boundaries: walls, floor, and ceiling, resulting in
the construction of a wire frame outline of the cave. Successive
frames are combined using a state of the art visual odometry
algorithm while simultaneously inferring scale through the
stereo reconstruction. Results from experiments at a cave, part
of the Sistema Camilo, Quintana Roo, Mexico, validate our
approach. The cave wall reconstruction presented provides an
immersive experience in 3-D.

I. INTRODUCTION

The importance of underwater cave mapping spans sev-
eral fields. First, it is crucial in monitoring and tracking
groundwater flows in karstic aquifers. According to Ford and
Williams [1] 25% of the world’s population relies on karst
water resources. Our work is motivated by the Woodville
Karst Plain (WKP) which is a geomorphic region that
extends from Central Leon County around the “Big Bend” of
Florida [2]. Due to the significance of WKP, the Woodville
Karst Plain Project (WKPP) has explored more than 34 miles
of cave systems in Florida since 1987 [3], proving the cave
system to be the longest in USA [4]. This region is an
important source of drinking water and is also a sensitive and
vulnerable ecosystem. There is much to learn from studying
the dynamics of the water flowing through these caves.
Volumetric modeling of these caves will give researchers a
better perspective about their size, structure, and connectivity.
These models have even greater importance than simply
enhancing the mapping. Understanding the volume of the
conduits and how that volume increases and decreases over
space is a critical component to characterizing the volume of
flow through the conduit system. Current measurements are
limited to point-flow velocities of the cave metering system
and a cross-sectional volume at that particular point. This
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Fig. 1. Typical scene from an underwater cave.

paper presents a first step towards robotic mapping of an
underwater cave. Fig. 1 shows an underwater cave environ-
ment. The proposed approach results in 3-D reconstructions
which will give researchers the above described capabilities.
Furthermore, volumetric models, will be incredibly helpful
for those involved with environmental and agricultural stud-
ies throughout the area, and once perfected this technology
could help map other subterranean water systems, as well as
any 3-D environment that is difficult to map. The Woodville
Karst Plain area is sensitive to seawater intrusions which
threaten the agriculture and the availability of drinking water;
for more details see the recent work by Zexuan et al. [5].
Second, detailed 3-D representations of underwater caves
will provide insights to the hydrogeological processes that
formed the caves. Finally, because several cave systems
contain historical records dating to the prehistoric times,
producing accurate maps will be valuable to underwater
archaeologists.

Operations in underwater caves can be grouped under
three categories: motion inside the known part of the cave;
exploration of new territory; and surveying of newly explored
areas. Most transportation in the explored part of caves
is performed using diver propulsion vehicles (DPVs). All
explored areas are marked by permanently attached cave line,
which provides a direct route to the exit; see Fig. 2 where a
diver is inspecting the line. When divers explore uncharted
territory, they proceed without the DPVs, laying out line
and tying it to protrusions on the floor, walls, or ceiling.
The third phase, surveying, consists of two divers measuring
distances, using a cave-line with knots every 3 m between
attachment points. Simultaneously, the divers also measure
the water depth at each attachment point, as well as the
azimuth of the line leading to the next attachment point. All
the information is recorded on a slate or waterproof paper.
Estimates of the height and width of the passage can also
be recorded, if time permits. The above described process is



Fig. 2. A cave diver attaching a branch line to the main line of the cave.

error-prone and time consuming, and at greater depths results
in significant decompression times, where total dive time can
reach between 15 to 28 hours per dive. This paper presents
a first step of utilizing robotic technology to assist in cave
exploration via the use of a stereo camera and a video-light.
In many cases, during DPV rides, the divers attach cameras
to their DPV and/or to themselves in order to document
the exploration. Consequently, introducing a stereo camera,
with a GoPro form-factor, does not complicate the standard
operating procedures and does not increase the cognitive load
of the divers.

The presented approach utilizes the presence of the ar-
tificial lighting to produce a rough model of the traversed
area. In particular, the video-light cone is used to identify
the walls of the cave from a single stereo pair. Furthermore,
motion between consecutive stereo pairs is estimated and
the 3-D reconstruction is utilized to produce an approximate
volumetric map of the cave.

The next section discusses related work. Section III illus-
trates the challenges present in the underwater cave domain
and presents an overview of the proposed approach. Experi-
mental results from an underwater cave, part of the Sistema
Camilo, Quintana Roo, Mexico, are presented in Section IV.
The paper finishes with a discussion of lessons learned and
an outline of future work.

II. RELATED WORK

The majority of underwater mapping up to now consists
of fly-overs with downward pointing sensors mapping the
floor surface. The resulting representation consists of 2.5
dimensional mesh-maps or image mosaics with minimal
structure in the third dimension. In addition to underwater
caves, several other underwater environments exhibit promi-
nent three dimensional structure. Shipwrecks, are significant
historical sites. Producing accurate photorealistic 3-D models
of these wrecks will assist in historical studies and also
monitor their deterioration over time. Finally, underwater
infrastructure inspection [6] is another dangerous and tedious
task that is required to be performed at regular intervals. Such
infrastructure includes bridges, hydroelectric dams [7], water
supply systems [8], and oil rigs. For more information please
refer to the Massot-Campos and Oliver-Codina survey [9] for
an overview of 3-D sensing underwater.

Most of the underwater navigation algorithms [10]-[13]
are based on acoustic sensors such as Doppler Velocity

Log (DVL), ultra-short baseline (USBL) and sonar. Gary et.
al. [14] presented a 3D model of a cenote using LIDAR and
sonar data collected by DEPTHX (DEep Phreatic THermal
eXplorer) vehicle having DVL, IMU and depth sensor for
underwater navigation. Corke et. al. [15] compared acoustic
and visual methods for underwater localization. However,
collecting data using DVL, sonar, and USBL while diving is
expensive and sometimes not suitable in cave environments.

Using stereo vision underwater has been proposed by
several groups, however, most of the work has focused
on open areas with natural lighting, or artificial light that
completely illuminates the field of view. Small area dense re-
construction of a lit area was proposed by Brandou et al. [16].
Mabhon et. al. [17] proposed a SLAM algorithm based on the
viewpoint augmented navigation (VAN) using stereo vision
and DVL in underwater environment. A framework proposed
by Leone et al. [18] operated over mainly flat surfaces.
Several research groups have investigated the mapping and/or
inspection of a ship’s hull using different techniques [19]-
[22], the most famous shipwreck visual survey being that
of the Titanic [23]. Error analysis was performed recently
by Sedlazeck and Koch [24]. The problem of varying il-
lumination was addressed by Nalpantidis et al. [25] for
above-ground scenes in stereo reconstruction. More recently,
Servos, Smart and Waslander [26] presented a stereo SLAM
algorithm with refraction correction in order to address the
transitions between water, plastic, and air that exist in the
underwater domain.

III. 3-D RECONSTRUCTION USING STEREO VIDEO
A. Challenges

As can be seen in Fig. 3, the complete absence of
natural illumination in combination with the presence of
several sources of artificial illumination, such as: each diver’s
primary light and also one or more video-lights, results
in huge lighting variations in the scene. In particular each
diver’s primary light generates a tightly focused beam which
is constantly moving with the motion of the diver. In Fig. 4a,
there are three divers present: one holding the video light,
his tanks visible at the bottom of the image; one traveling
with the camera, not visible; and a third one whose DPV
is visible at the top of the image. The primary light of the
third diver can be seen as a blue beam pointing downwards,
starting at the left of the DPV.

The lighting variations make the success of traditional
visual odometry [27] algorithms near impossible. The main
assumption of Brightness Constancy Constraint underlying
most visual odometry algorithms is violated by the constantly
moving light-sources. Table I presents tests of five open
source packages of vision based SLAM on underwater cave
vision datasets; as expected most of them failed on the longer
sequence and the rest were not able to extract the scale of the
environment. It is worth noting that several of the packages
are expecting specific motions in order to initialize [28].
Complete results are not presented due to space constraints;
interested readers should refer to the work of Quattrini
Li et al. [29] for a detailed analysis of more packages



Fig. 3.

Left camera images of an underwater cave with different illuminations. Illumination in the cave is provided by the lights individual divers have

and also from a strong video-light. (a) Diver in front holds a strong video-light; see how the cone of light outlines the boundaries of the cave. (b) Diver
with video-light follows behind the camera. (c) The diver with the camera also holds the light.

and a variety of datasets. The selection of the algorithms
presented here was motivated of testing a variety of methods;
feature based [30], [31], semi-direct [32], direct [33], and
global [34]. The main challenge these algorithms face is
the constant change of the field of view and the dramatic
lighting variations resulting from occlusions and from light
absorption over distance. Among the most successful was the
ORB-SLAM [30] with its latest incarnation as ORB-SLAM
2, still in beta version, working with stereo images. While
some of these packages, produced an acceptable trajectory,
their shape reconstruction from the detected 3-D features was
plagued by noise.

B. Wireframe reconstruction

Using light variations to infer shape has been used exten-
sively in the past [35]-[37]. The 3-D reconstruction consists
of several steps. First the images have to be rectified; a
process achieved through a process called camera calibration.

Camera Calibration: While calibrating a camera is a
well studied problem, the camera used (stereo Dual GoPro
Hero') presented us with a major challenge. By default the
camera is utilizing a SuperView mode which stretches the
wide angle image even further. Above water traditional Cam-
era Calibrations packages such as the ones in MATLAB 2
and OpenCV? were unable to calibrate the camera. For
underwater footage, the refraction of light through the water,
the port, and finally the lens, resulted in partial elimination of
the artificially introduced distortion of the SuperView mode.
The image though was still distorted enough that OpenCV
was unable to perform satisfactory calibration; several pixel
calibration error. MATLAB in contrast, by selecting images
through the complete viewing sphere, and rejecting images
from the areas where images were already used, avoided
overfitting and produced Camera Calibration with an error
of 0.8 pixels. Utilizing the MATLAB produced internal
parameters, the left (see Fig. 4(a)) and right images are
rectified in order to remove the strong distortions from the
wide angle lens of the GoPro camera; see Fig. 4(b) for the
rectified image.

Contour Tracking: Adaptive thresholding is used in
order to identify the areas with different illumination; see

"http://gopro.com/
2http://www.mathworks.com/products/matlab/
3http://opencv.org/

Fig. 5. Select features matched at the boundary between left and right
image of a stereo pair.

Fig. 4(c) for the thresholded image where the cone of the
video-light meets the cave walls. Selecting the right value
for thresholding the image required some domain knowledge,
and currently was perform per video sequence, by a human.
Current experiments consider adjusting the threshold based
on keeping a balance between the amount of light and dark
areas, but that work is outside the scope of this paper.

During the next step, edge detection marks the boundaries
between light and dark areas; see Fig. 4(d) for the boundaries
of Fig. 4(b). The OpenCV Canny edge detector [38] is used
to identify the edges marking the lighter area boundaries. As
can be seen, the edge map is very noisy and thus not suitable
for estimating the walls of the cave. A filter is applied to the
contour list, eliminating short contours. More specifically,
for every contour, its bounding box is calculated and then
only the highest fifth percentile is kept. While this method
can eliminate elongated contours, experiments with the actual
underwater cave video footage proved to not affect the main
boundaries. The filtered contours can be seen in Fig. 4(e).
Figure 4(f) superimposes the filtered contours on the rectified
image; the areas where the cone of light meets the cave walls
are clearly identifiable. In addition, the area with acceptable
lighting is extracted for use at the motion estimation. The
edge map of the boundaries is used then as input to a stereo
reconstruction algorithm.

Sparse Stereo Reconstruction: The 3-D structure of
the cave boundaries is estimated for each stereo pair. For
every point on the contour of the left image a SURF feature
descriptor [39] is calculated using the left rectified image.
Consequently, the same descriptor is matched on the right
rectified image. Outlier rejection is facilitated by searching
only locations at the same row and to the right of the left-
image feature’s coordinates. As the camera calibration error
is 0.8 pixels, it justifies the assumption above. Previous
work on feature quality [40]-[42] for underwater images
indicated SURF [39] to be the most appropriate feature



Fig. 4.

(a) Left camera image of an underwater cave. (b) The rectified image. (c) The rectified image thresholded based on light intensity. (d) An edge

map of the boundaries of the thresholded image. (¢) The boundaries filtered to eliminate small contours. (f) The longer contours superimposed on the

rectified image.

TABLE I

PERFORMANCE OF DIFFERENT OPEN SOURCE VISION BASED SLAM PACKAGES ON UNDERWATER DATA; FOR A DETAILED ANALYSIS PLEASE REFER
TO QUATTRINI LI ET AL. [29]

[30] [31] [33] [34]
ORB-SLAM PTAM SVO LSD-SLAM Colmap
10 sec noisy no initialization | partial trajectories/no scale | loss of track | partial trajectories/no scale
448 sec noisy no initialization | partial trajectories/no scale | loss of track | partial trajectories/no scale

descriptor. Furthermore, the OpenCV Canny edge detector
groups the edges in a list of continuous contours, as such
consecutive points belonging to the same contour can be
filtered for consistency. Figure 5 presents select feature
matches corresponding to the contours between the left and
right image of a stereo pair.

Figure 6 presents a comparison of the performance of
dense stereo reconstruction using OpenCV’s semi-global
block matching (SGBM) stereo algorithm [43] and the
contour calculation. The standard output of dense stereo
algorithms is a depth map, a normalized image where depth
is quantified between 0 and 255; as such the values are dis-
cretized; see Figs. 6(a),6(d) for the 3-D reconstruction using
the SGBM stereo algorithm on Fig. 4(b). The noise is quite
noticeable, Figs. 6(b),6(e) present the same reconstruction
using only the lighted areas. Finally, Figs. 6(c), 6(f) present
only the contours of high intensity variation extracted from
Fig. 4(b) projected in 3-D using SURF feature matching
between left and right image. The noise is largely reduced,
and the cave boundaries are clearly identifiable. While the
first row of Fig. 6 presents a frontal view, and the error is
not noticeable, the second row, presents a side view and the
outliers are obvious.

C. Visual Odometry

Brute force application of VO algorithms [44], [45] is
quite challenging in the underwater cave domain, due to
the lighting variations and the sharp contrasts existing in
the image, as discussed earlier. However, by thresholding

Fig. 7. ORB features tracked by ORB-SLAM 2.

the image, the areas of adequate illumination in the left and
right camera feed can be used to apply one of the latest VO
algorithms, ORB-SLAM 24 a variant of ORB-SLAM [30],
[46] for stereo vision. Figure 7 presents tracked features in
the areas with higher illumination. It is worth noting that
during some segments of the video the third diver swimming
below the camera exhaled sending a cloud of bubbles in the
field of view, however, the VO algorithm was robust enough
to handle these dynamic features. This event highlighted one
of the challenges of underwater vision.

Figure 8 presents the trajectory of the stereo camera and
the 3-D position of stable features as extracted from ORB-
SLAM 2 from a trajectory of seven minutes, twenty eight
seconds. While there was no ground truth, observing the
video one gets a qualitative verification for the estimated

“https://github.com/raulmur/ORB_SLAM2
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Three different reconstructions from two different angles are presented. (a-c) Present a frontal view; (d-f) present a side view. (a), (d) Disparity

map of the Fig. 4(b) using the the OpenCV’s semi-global block matching (SGBM) stereo algorithm. (b), () Applying the SGBM algorithm only to the
lighted part. (c), (f) The contour in 3-D using feature matches; see Fig. 5. It is worth noting elimination of outliers makes the contours much more distinct.

(@)

Fig. 8.

®)

(a) The trajectory calculated by ORB-SLAM 2 of a 7 min 28 sec traversal and the 3-D points estimated from ORB features. (b) The wireframe

reconstructed from the proposed stereo algorithm. Please note, the reduced number of outliers compared to (a).

trajectory. The estimated trajectory is then used as an input
to produce a volumetric map by transforming the boundaries
calculated above through space using the estimated pose of
the stereo camera at each instant. It is clear that the contour
based reconstruction; see Fig. 8(a), has eliminated several
outliers which were present in the ORB-SLAM reconstruc-
tion; see Fig. 8(b). The next section presents results from an
actual cave.

IV. EXPERIMENTAL RESULTS
A. Experimental setup

In January 2015, the authors requested from a cave explo-
ration team in Mexico to acquire sample footage using a Dual
Hero stereo camera from GoPro during a dive at an already
explored cave. The selected cave is part of the Sistema
Camilo, the 11th longest submerged cave system in the
world, located at Quintana Roo, Yucatan peninsula, Mexico.



The camera was mounted on a DPV and the video-light was
carried in different configurations in order to demonstrate
alternative lighting schemes.

B. Camera Calibration

As mentioned above, the stereo camera used utilizes a
recording mode termed superview, which stretches the image
in order to produce more aesthetically pleasing videos. Post-
processing all the calibration footage collected, error analysis
showed, as expected, the error to slightly increase with
distance; see Fig. 9.
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Fig. 9. (a) Average error of the inter-point distance of the target; (b)
Average error of the reconstructed points from the best plane fitting 3-D
points of the checkerboard. The results were from 4,000 images of the
calibration target presented to the stereo camera underwater.

C. Stereo reconstruction

Figure 8(b) presents the 3-D reconstruction of a long video
of 7 min 28 sec. The structure corresponds with the cave
morphology, however it is difficult to discern in the still
image. The accompanying video presents a fly-through the
cave. Figure 10 presents the 3-D reconstruction of a cave
segment from a short ten seconds traversal. The left and right
walls are clearly identifiable, while the floor and ceiling are
occluded from the two divers that swam in the field of view.

V. CONCLUSIONS

This paper presented first ever reconstruction results from
an underwater cave using a novel approach utilizing the artifi-
cial lighting of the scene as a tool to map the boundaries. The
proposed technique was applied on real stereo video footage
from a cave in Mexico, where an exploration team collected
visual data using a light in different configurations. Central to
our approach was the strategy of minimum interference with
the standard procedures of the dive team. As cave diving is
considered one of the most extreme activities, increasing the
cognitive load, or hampering the functionality of the teams
equipment was out of the question.

We are currently working on developing a stereo cam-
era/light configuration that will produce the best reconstruc-
tion results without interfering with the operations of the
divers. It is worth noting that in the presented experiments
the video-light and the camera were carried by different
divers thus constantly changing their relative pose. Selecting
appropriate lighting and fixing it to the camera has proven
to be a challenging task. We will continue to experimentally
test different VO algorithms on the stereo footage and adapt

the most promising ones to operate inside the segmented part
of the image with adequate illumination, ensuring accurate
pose estimation for consecutive stereo image pairs. Future
work will consider the characterization of shadows, other
divers, and dark areas due to light absorption which will be
eliminated from the shape calculations.

The final result of the discussed work will be an algorith-
mic solution producing a volumetric map of the cave and an
estimate of the camera’s trajectory. The proposed approach
will advance the state of the art for Visual SLAM [47], [48]
in extreme conditions.
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