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Abstract

In this paper we present our approach to 3D sur-

face reconstruction from large sparse range data sets. In

space robotics constructing an accurate model of the en-

vironment is very important for a variety of reasons. In

particular, the constructed model can be used for: safe

tele-operation, path planning, planetary exploration and

mapping of points of interest. Our approach is based on

acquiring range scans from different view-points with

overlapping regions, merge them together into a single

data set, and fit a triangular mesh on the merged data

points. We demonstrate the effectiveness of our approach

in a path planning scenario and also by creating the ac-

cessibility map for a portion of the Mars Yard located in

the Canadian Space Agency.
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struction, Scene Reconstruction, Tele-operation, Path
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1. Introduction

In this paper we consider the problem of construct-
ing a 3D environment model for a variety of space
robotics applications. In general, creating a model of
the environment is a very important task in robotics.
In space robotics in particular, such a model becomes
indispensable. The motivation of this work comes from
a variety of problems in space exploration and oper-
ation. We propose an improvement for tele-operation
approaches like the ones presented in Dupuis et. al.

[14], Borst and Volz [6] , Kim and Bejczy [21] and
Lipsett et. al. [24]. The main problem of tele-operating
remotely located equipment in space is delays. Such de-
lays can vary from a few seconds, i.e. when communi-
cating with the International Space Station (ISS), to
a few minutes when communicating with a rover lo-
cated on Mars. To overcome this problem, we can in-
corporate the delays in the planning process, but when
delays grow larger than a few seconds the risk of an ac-

Figure 1. The mobile robot used for navigation

tasks at the Mars yard.

cident increases to unacceptable levels. The latency be-
tween operator and robot precludes in many cases real
time tele-operation. The alternative is to send a se-
quence of (more complex) commands which the robot
executes and then reports back upon completion. In
such a scenario, the commands used need to be veri-
fied for effectiveness and safety before send. One ap-
proach to achieve that is to create a model of the re-
mote environment and use it to simulate the commands
on the ground. Once a command is validated, it is up-
loaded to the remote location to be executed. This way,
the delays are no longer a problem. The main draw-
back of this method is that most of the time the model
used on the ground it is not up-to-date. For example,
if the Space Station Remote Manipulator System (SS-
RMS) on the ISS is tele-operated, the model used is
most likely the one that originates from the latest up-
date of the ISS. That model is most likely outdated by
the time we wish to use it, as more modules are added
constantly, resulting in serious risks for safety, since a
collision in space can have tragic consequences. For this
reason, a system for 3D reconstruction of environments



would be very useful on the ISS, to rebuild the envi-
ronment where the arm will operate. Once the model
is rebuilt, the model is downloaded to the ground to
be used for simulation purposes before sending the real
command.

Planetary exploration is another application where
3D reconstruction is crucial. A similar system to the
one proposed here was used to control Sojourner dur-
ing the Mars Pathfinder mission. In our approach the
3D reconstruction system is used for a dual purpose.
First, on-site, the rover uses the range data for obsta-
cle avoidance and to replan more efficient trajectories.
Second, on earth, updated models of the Martian ter-
rain are used for asserting the feasibility/safety of the
commands to be uploaded to the rover, and also for
identifying areas of interest (in conjunction with visual
data) for the rover to investigate.

Currently, the data is acquired using a LIDAR de-
vice from Optech (see Figure 2), a laser scanner that
offers great performances in terms of the quality of the
acquired data. The challenge is to deal with large data
sets, as each view has about 500K 3D points, and the
combination of multiple views is required. Therefore,
the data sets can easily grow to millions of points. Any
approach used has to be robust for high volume of data.

Figure 2. The LIDAR sensor from Optech.

Another challenge in this application is the sparsity
of the point cloud, and the fact that the density is not
constant. The non-uniform density is due to the per-
spective nature of the data acquisition as can be seen
in Figure 3. The further the points are, the sparser
they get. Moreover, when the angle between the ter-
rain and a scanline of the LIDAR is small, the distance
between two consecutive points increases rapidly. Fig-
ure 5 further illustrates that effect giving a topograph-

ical map impression. As such, an algorithm that is ro-
bust in the face of irregular sampling was chosen.

LIDAR
 .

Figure 3. Illustration of the cause of the under-

sampling

The process of reconstruction involves multi-
ple views. The assembly of different views has to
be made in an automatic way in order to esti-
mate the rigid transformation between the views.
Once the first estimate is computed, an Iterative Clos-
est Point (ICP) algorithm is used for the final reg-
istration since this algorithm has proven to be very
good with rigid transformations. The next section
presents related work. Section 3 contains the descrip-
tion of our approach. Experimental results and dis-
cussion of various issues are in section 4. Finally,
section 5 contains our conclusions and discussion of fu-
ture work.

2. Background

During the construction of 3D models of the envi-
ronment, multiple views have to be combined in order
to compensate for the limitations of the field of view of
the sensor and for self occlusions. Besl and McKay [5]
and Zhang [31] from INRIA introduced the ICP (Itera-
tive Closest Point) algorithm for the registration of 3D
shapes. ICP is widely used and many variations have
been developed over the years; some of them can be
found in Rusinkiewicz and Levoy [28], Greenspan and
Godin [16] and Langis et. al. [22]. In general, for these
algorithms to perform satisfactorily a good estimate of
the two views that are be registered (merged) needs to
be established. In other words, a preliminary step of es-
timating the rigid transformation (tx, ty, tz, θx, θy, θz)
between two views has to be performed. This step con-
sists of identifying common points in the two cloud of
points. From these common points, a good estimate of
the rigid transformation can be determined and used as
a starting point for the ICP algorithm. For a compre-
hensive survey of those methods please refer to Camp-
bell and Flynn [8].

The main idea of the automatic registration meth-
ods is the detection of common features in two views.
Many methods reduce the 3D shape into 2D in order
to do the matching, like the spin image approach pre-



sented in Johnson and Hebert [20], the points finger
print work presented in Sun et. al. [29] or other types
of 2D signatures like the ones presented in Burtnyk and
Greenspan [7]. Huber and Hebert [19] present a fully
automatic method that assembles multiple views com-
ing from 3D sensors. Another very interesting way of
solving the problem of automatic surface matching is
to formulate the problem as an optimization question
and to use a genetic algorithm to search for the best
match, as in Chow et. al. [10]. The problem with us-
ing genetic algorithms is that the optimality of the so-
lution can never be proven.

It is worth noting that, when registering two views
that do not have a big difference in their pose, ICP
works without any need for prior pose estimation, as
observed in the Great Buddha project by Nishino and
Ikeuchi [27].

The field of 3D scene reconstruction from a set of
points has a long history and can now be considered
fairly mature. The main objective is to reconstruct a
surface from a set of points in such a way that dis-
crepancies between the points and the surface are min-
imized. Of particular interest are free-form surfaces [4]
which have well defined normals everywhere (with a
few exceptions). Planar and quadratic surfaces are of
particular interest [8]. A common approach is using
NURBS (Non-Uniform Rational B-Spline), but some-
times NURBS-surfaces are impossible to accurately fit
on point clouds [4]. Polygonal meshes continue today
to be the most popular choices; for a more extensive re-
view please refer to Campbell and Flynn [8].

Hoppe et. al. [18] proposed an algorithm that is ro-
bust to undersampling and can handle large volumes
of data. Their marching cube approach is an extension
of the Lorenson and Cline [26] work. The main idea is
to divide the space into cubes and retrieve the crossing
points of the surface (that is, at this stage, still repre-
sented with points) with the cubes. By collecting these
intersection points we can rebuild the mesh. Following
that, a mesh simplification is applied. Finally, a sub-
division surface is generated. A variant of this method
was used in the Michelangelo project by Levoy et. al.

[23] that also had to deal with very large data sets.

Another approach to free-form surface generation is
based on the Delaunay triangulation, see Amenta et. al.

[2, 1]. The original approach was appropriate for small
data sets and uniform sampling. Dey and Giesen [11]
have extended the previous method to deal with un-
dersampling – an important consideration when deal-
ing with range sensors. Further variations of these algo-
rithms has been developed in order to address the prob-
lem of large data set using a Delaunay based method;
e.g. SUPERCOCONE by Dey et. al. [12]. Torres and

Dudek [30] combine information from intensity and
range images in order to compensate for sparse data,
and fill in any gaps.

By adding many views together another problems
occurs: the addition of registration error which know
as Multi-viewoptimization or GlobalRegistration. Many
methods have been developed to overcome this prob-
lem, Campbell and Flynn [8] give a review of those
methods. Chen and Medioni [9] proposed to register a
new view according to not only the view’s neighbors
that are already registered but to all the merged data,
this way, the error accumulation is somehow avoided.
Eggert et. al. [15] proposed a force-based optimization
to that problem. In this approach, the connection be-
tween the views are modeled using a springs.

3. Environment Reconstruction

The reconstruction of the environment is performed
in two steps. The first step consists of the assembly
of the different views by estimating the rigid transfor-
mation between the poses from where each view was
taken. The second step is the surface reconstruction,
achieved by fitting a triangular mesh on the point cloud
that combines the data from all views. Next, we dis-
cuss the choice algorithms depending on the nature of
the data: undersampled and large data sets.

3.1. Assembly of the different views

Complete 3D reconstruction of a free-form surface
requires acquisition of data from multiple viewpoints
in order to compensate for the limitations of the field
of view and for self occlusion. In this paper, we used
a LIDAR for scanning views of a 3D surface to obtain
2 1

2D images in the form of a cloud of points. These
views are then registered in a common coordinate sys-
tem. Since the coordinates of the viewpoint may not be
available or may be inaccurate, the original ICP in Besl
and McKay [5] may not converge to the global mini-
mum. Thus, to assemble all views in the same coordi-
nate frame, we used a variant of ICP, which differs from
the original ICP by searching for the closest point un-
der a constraint of similarity in geometric primitives.
The geometric primitives used in this paper are the nor-
mal vector and the change of geometric curvature. The
change of geometric curvature is a parameter of how
much the surface formed by a point and its neighbors
deviates from the tangential plane [3], and is invari-
ant to the 3D rigid motion. Hence, in our algorithm,
surface points are represented in <7. Coordinates of a
point P on the surface are (x, y, z, nx, ny, nz, k) where
[x, y, z] are the Cartesian coordinates of P , [nx, ny, nz]



are the coordinates of the normal vector and k is the
change in curvature.

Geometric primitives are used in matching by incor-
porating them in a 7D distance metric Dα of the form:

D2
α(p, q) =

7
∑

i=1

αi(λpi − λqi)
2

where the λi are coordinates of a 7D point and the
αi are the weights of each coordinate. Using this dis-
tance metric for finding the closest point is a combi-
nation of the 3D distance, the difference of the orien-
tation of the normal vectors, and the difference of the
change of curvature.

Our ICP algorithm can be summarize as follow: Let
P = {p1, p2, . . . , pn} and Q = {q1, q2, . . . , qm} be two
sets of points in <7. The goal is to find a rigid trans-
formation T = (R, t) composed of a rotation matrix R
and a translation vector t that best aligns P to match
Q. An informal description of the algorithm follows:

1. Compute the normal vector and the change of cur-
vature at each point of each cloud of points P,Q.
Build a k-D tree representation of the cloud of
points Q .

2. Initialize the matching process.

3. Repeat until the termination criterion is reached:

• Compute the closest points Y k
i =

ClosestPoint(P k
i , Q). Where i = 1, 2, . . . , n,

Y k
i ∈ Q/Dα(P k

i , Y k
i ) = min(Dα(P k

i , Q)) . A
k-D tree is used to speed up this search.

• Discard undesired matches through statisti-
cal analysis of the distances, as described in
Zhang [31].

• Compute the rigid transformation T = (R, t)
from the remaining matches, as in Zhang [31]
and Besl and McKay [5].

• Apply the rigid transformation to all points
in P : P k+1

i = RP 0
i + t and rotate accord-

ingly the normal vectors.

• If the mean square error drops below a
threshold, TERMINATE.

To illustrate the performance of different view as-
semblies, several views of the Mars Yard (figure 7)
were taken from different viewpoints. Figure 4 illus-
trates three different views and figure 5 gives the re-
sult of the assembled views using the above ICP algo-
rithm.
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Figure 4. The three scans to be assembled

3.2. Surface Reconstruction

Our approach to surface reconstruction has to be ro-
bust in the face of data discontinuities and efficient in
order to deal with large data sets. Our current imple-
mentation of surface reconstruction uses a variant of
the method described by Hoppe et. al. [18].

Figure 5. The combined results in a single data

set. Note the non-constant sampling.

The method can be classified as a marching cube.
To achieve the goal of retrieving the surface, a division



of space into cubes is performed. Hoppe [17] suggests
to set the cube size equal to the sampling size; exper-
imental results have shown finer reconstruction with a
cube size of 80% of the sampling size. However, as men-
tioned earlier, the data points are not uniformly sam-
pled from the environment, therefore a global maxi-
mum value of sampling has to be determined. This is
done by taking different samples on the cloud of points;
each sample contains a center point and its k closest
neighbors. From those neighbors, an average distance
between the points is computed. By taking a random
selection of these samples, a good estimate of the suit-
able sampling distance of the cloud of points can be
calculated.

Once the set of cubes is generated, a signed distance
from the surface to every vertex of each cube has to be
estimated. That signed distance is defined as:

d̃U (p) = (p− oi) · n̂i

where p is the point for which the signed distance has
to be computed, in this case a vertex of a cube. U is
the surface, and oi is the center of the closest tangent
plane from p. Finally, n̂i is the normal of that closest
tangent plane.

By estimating the signed distance, the points where
the surface is crossing the cubes can be determined. For
example, if, for a cube edge, one vertex has a signed
distance less than zero and the other has a signed dis-
tance greater than zero, the surface crosses that edge.
Then, by collecting all the crossing points, a triangula-
tion is generated.

The accuracy of the crossing point estimation di-
rectly affects the estimation accuracy of the surface.
For an edge that satisfies the condition mentioned
above, let vi be the vertex that has a positive signed dis-
tance from the surface and let vj be the vertex that has
a negative signed distance from the surface. The cross-
ing point is located at a distance d̃U (vi) from vertex vi

on the line defined by vi, vj .

To calculate the crossing point, we used a parametric
representation of the line vi, vj using a Hermite poly-
nomial that is defined as follows:

~P (u) = [H1, H2, H3, H4]











~P (0)
~P (1)
~P ′(0)
~P ′(1)











H1 = 2u3 − 3u2 + 1
H2 = −2u3 + 3u2

H3 = u3 − 2u2 + u
H4 = u3 − u2

where ~P (0) and ~P (1) are the starting and ending points

of the curve (in this case vi and vj). ~P ′(0) and ~P ′(1) are
the starting and ending tangent values; since a straight
line is represented, those values are set to zero.

The polynomial u = d̃U (vi)/d(vi, vj) is evaluated,
where d(·, ·) is the Euclidean distance between vi and
vj . Thus, the crossing point p becomes:

p = vi(2u
3 − 3u2 + 1) + vj(−2u3 + 3u2)

In order to compute the signed distance, the tan-
gent plane associated with every point of the cloud of
points is computed. Note that, the normals of the tan-
gent planes need to have consistent direction (all point
to the same side).

Computing the tangent plane at point xi in the point
cloud is performed as follows:

1. Find the neighbors of xi within the sampling dis-
tance α: Nbhd(xi).

2. Compute the center of Nbhd(xi): oi, which be-
comes the center of the tangent plane.

3. Find the normal of the tangent plane. First, com-
pute the covariance matrix as follows:

CVi =
∑

y∈Nbhd(xi)

(y − oi)⊗ (y − oi)

where ⊗ is the outer product. Then the normal
can be found by using the Singular Value Decom-
position (SVD) of CVi.

The above procedure is performed for every point in
the cloud of points. Once this procedure is completed,
the normals are known but their direction is not con-
sistent, therefore, they all have to be processed in order
to have consistent direction and thus provide a signed
distance. To achieve this task, an undirected, weighted
graph of all the vertices is built. An edge is created be-
tween two points if they are closer than a sampling dis-
tance α from each other. The weight of an edge con-
necting two points pi, pj is 1−|n̂i · n̂j |. This means that
the weight will be less if two points are on a similar part
of the surface. To orient the normals, we find the min-
imum path to cover the graph. We used a breadth-first

algorithm to perform this task. While going through
the minimum path, the normals should be pointing in
a similar direction due to the weight that has been de-
fined for an edge. Following that idea, if, for two nor-
mals n̂i, n̂j , n̂i · n̂j < 0, then n̂j ← −n̂j .

We dealt with the non-uniform sampling effect, in
our implementation of [18], by specifying a larger sam-
pling distance, which results in using larger cubes in
the marching cubes process. As suggested in [17], we
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Figure 6. Mesh reconstruction

then apply a decimation filter to simplify the mesh, fi-
nally, a Loop subdivision [25] is applied to converge to
the initial surface.

A Loop subdivision is a refinement scheme that
transforms a coarse mesh to a more refined one us-
ing a set of rules. Those rules are applied while adding
new vertices to a triangular mesh; different rules apply
when border vertices and inside vertices are used. One
interesting property of subdivision surfaces is that they
converge to a limit surface. In our case, the decimation
creates the initial control mesh used by the Loop sub-
division. By subdividing, the control mesh converges to
the limit surface, in our case, the limit surface is very
close to the initial cloud of points.

Figure 6 shows the final result of the three regis-
tered views of the reconstructed mesh which provide
pretty accurate estimate of the terrain.

4. Experimental Results

We have tested our approach in the terrain of the
Mars Yard constructed outside the Canadian Space
Agency (CSA). Figure 7 offers a view of the yard with
the CSA building in the background. Three scans were
taken from the same approximate location where the
photograph in Figure 7 was taken. At the bottom part
of the center and right scan in Figure 4, the crater vis-
ible in Figure 7 is easily detected. Figure 5 presents all
the range points merged in a single data set and Fig-
ure 6 presents the resulting surface. Next we are go-
ing to discuss the use of the reconstructed surface in
two applications: path planning and mapping the ter-
rain traversability.

Figure 7. A view of the Mars Yard located at CSA

Headquarters in St. Hubert, Quebec Canada.

4.1. Path Planning

As mentioned earlier, 3D terrain/scene reconstruc-
tion is important in planetary exploration tasks in or-
der to plan trajectories safely before the remotely lo-
cated rover is instructed to execute them. In Figure
8 we present a trajectory generated using the recon-
structed surface, starting at a location near the view-
point from where the first scan was taken.
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Figure 8.Pathplanningon the reconstructed sur-

face

The triangulation data structure selected for the ter-
rain representation provides valuable information in
the form of the connectivity graph that allows for ef-
ficient retrieval of the adjacent triangles from the cur-
rent triangle. See [13] for details.



4.2. Traversability Map

Closely associated with path planning is the concept
of traversability maps. Such a map indicates how suit-
able is an area for the rover to pass through. Moreover,
flat/accessible areas surrounded by steep/inaccessible
sections can be also eliminated. Path planning on a pre-
processed traversability map increases the efficiency
by eliminating paths that lead to dead ends. Figure
9 present a shade coded accessibility map based on the
terrain seen on Figure 6.

5 10 15 20 25 30

−6

−4

−2

0

2

4

6

8

10

12

X

Y

Figure 9. Top view of the traversability map.

Light gray colored trianglesmeans accessible ter-

rain, dark gray is accessible with difficulty, black

is inaccessible, and white means no data. The

mesh is drawn also with slightly darker color.

A narrow corridor is visible in the middle right of
the terrain in Figure 9 and it is this corridor the path
planner used in Figure 8. The two white regions at the
left of the terrain signify no-data zones where the view
was obstructed by crater elevation in front of them.

5. Conclusions

In this paper we presented a methodology for the 3D
terrain reconstruction from a set of clouds of points.
The first step was to establish the coordinate transfor-
mation among the different viewpoints and to merge
all the clouds of point into a single coherent data set.
Then we presented an extension to a well known algo-
rithm for constructing a surface from that data set.

Experimental results from the Mars Yard (located at
CSA) were used to validate our approach. Furthermore,
the resulted surface was used for planning a safe path

and for constructing a map of the terrain traversabil-
ity.

In the immediate future we are planing to take a
complete scan of the Mars Yard (located at CSA) and
build a precise terrain model. The resulting terrain
then is going to be incorporated in existing mobile
robot simulation packages (such as the Player/Gazebo
package) in order to perform experiments during the
winter months when the Mars Yard is inaccessible. Fur-
thermore, in future work we plan to combine range data
with intensity information in order to create more re-
alistic scene models.
Acknowledgements: We would like to thank the peo-
ple at the Robotics group in Space Tech. at CSA for
their valuable contributions in numerous discussions.
Special note goes to P. Allard for his help with path
planning and T. Lamarche for help with the terrain re-
construction. E. Dupuis provided valuable insights dur-
ing the duration of this project.
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