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Abstract In this paper we present the approach for au-
tonomous planetary exploration developed at the Canadian
Space Agency. The goal of this work is to enable au-
tonomous navigation to remote locations, well beyond the
sensing horizon of the rover, with minimal interaction with
a human operator. We employ LIDAR range sensors due to
their accuracy, long range and robustness in the harsh light-
ing conditions of space. Irregular Triangular Meshes (ITMs)
are used for representing the environment, providing an ac-
curate, yet compact, spatial representation. In this paper a
novel path-planning technique through the ITM is intro-
duced, which guides the rover through flat terrain and safely
away from obstacles. Experiments performed in CSA’s Mars
emulation terrain, validating our approach, are also pre-
sented.
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1 Introduction

Mobile robotics have enabled scientific breakthroughs in
planetary exploration (Maimone et al. 2006). Recent ac-
complishments have demonstrated beyond doubt the neces-
sity and feasibility of semi-autonomous rovers for conduct-
ing scientific exploration on other planets. Both Mars Ex-
ploration Rovers (MERs) “Spirit” and “Opportunity” have
the ability to detect and avoid obstacles, picking a path that
takes them along a safe trajectory. MER’s have traveled up
to 300 m/sol. On occasion, the rovers have had to travel to
locations that were at the fringe of the horizon of their sen-
sors or even slightly beyond.

The next rover missions to Mars are the “Mars Science
Laboratory” (MSL) (Hayati et al. 2004; Volpe 2006) and
ESA’s ExoMars (Vago 2004). Both of these missions have
set target traverse distances on the order of one kilometer
per day. Both the MSL and ExoMars rovers are therefore
expected to drive regularly a significant distance beyond the
horizon of their environment sensors. Earth-based operators
will therefore not know a-priori the detailed geometry of
the environment and will thus not be able to select way-
points for the rovers throughout their traverses. One of the
key technologies that will be required is the ability to sense
and model the 3D environment in which the rover has to
navigate. To address the above mentioned issues, the Cana-
dian Space Agency is developing a suite of technologies for
long-range rover navigation. For the purposes of this paper,
“long-range” is defined as a traverse that takes the rover be-
yond the horizon of the rover’s environment sensors.

The main contribution of this paper is the use of ITMs for
constructing accurate models of the environment and also
for facilitating the efficient planing of trajectories that are
optimal for a set combination of constraints, such as dis-
tance traveled, terrain accessibility, and ruggedness. LIDAR
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Fig. 1 The Mars emulation terrain (MET) with our modified P2AT
robot

sensing as proposed in the presented work is also a depar-
ture from the traditional vision-based planetary exploration.
Extensive experimental results from autonomous navigation
at the CSA’s Mars emulation terrain (MET) validate the pro-
posed framework.

In the next section we discuss the state-of-the-art in
robotic planetary exploration. Section 3 presents the overall
process for planetary exploration together with a short de-
scription of our test-bed. Section 4 provides a summary of
our approach on terrain modeling using LIDAR data. Sec-
tion 5 presents the algorithm used for planning an optimal
path for the rover using the Irregular Triangular Mesh (ITM)
while keeping it a safe distance away from the detected ob-
stacles. Global path planning and a brief overview of the
navigation procedure are discussed next. Section 8 outlines
CSA’s approach to data management. Subsequently, experi-
mental validation performed at MET is presented in Sect. 9.
The paper concludes with lessons learned and a description
of future work.

2 Related work

Work on planetary exploration can be divided according to
the sensing modality used and also according to the en-
vironment representation used. Both vision (Matthies and
Shafer 1987) and LIDAR (Hebert et al. 1989) technologies
have been proposed, each one having different advantages
and disadvantages. Early work on planetary exploration us-
ing LIDAR (Hebert et al. 1989), though promising, was not
compatible with the space-flight weight-constraints. Sim-
mons et al. (1995) proposed a stereo-vision based percep-
tion and navigation scheme which was tested on trajecto-
ries over a kilometer long; the sensing used provided a lim-
ited field of view and a modeling accuracy of 10 cm. The
Mars Exploration Rovers are currently performing long tra-
verses using stereo vision (Goldberg et al. 2002; Johnson
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et al. 2008). This approach, although lightweight, requires
more computing power and has limited range and accuracy.
Currently, LIDAR based systems' have been successfully
used in space missions on-Earth-orbit and thus have become
space qualified, enabling their future use in planetary ex-
ploration missions. The major advantage of LIDAR systems
over vision-based systems is their superior accuracy, resolu-
tion, and range.

Planetary exploration with a mobile robot was discussed
as early as the late eighties. Among the earliest sensing
modalities used was a laser based sensor (Hebert et al. 1989;
Bares et al. 1989) for use with a walking robot. The ter-
rain model used was an elevation map and the experiments
where limited to a 25 m? terrain and a single leg. Terrain
mapping was proposed to assist a walking robot as early as
1994 (Krotkov and Hoffman 1994), including classification
based on the safety of traversal (Kubota et al. 2006). Plan-
ning over an elevation map was very time consuming but
necessary for analyzing foot placement. More recently, the
Morphin planner (Singh et al. 2000) uses stereo vision data
with a resolution of 10 cm and selects the best of a num-
ber of alternative paths based on the terrain characterization
as it is mapped on a grid representation. In contrast the A*
based algorithm proposed in this paper returns a single path
that is optimal in terms of the constrains specified. Vision in
the form of stereo was also used by several different research
groups (Matthies and Shafer 1987; Giralt and Boissier 1992;
Kunii et al. 2003; Goldberg et al. 2002). Early work by
Chatila et al. (1993, 1995) and Alami et al. (1998) proposed
different path-planners depending on the condition of the
environment. An early approach that has strong similarities
to our approach was the work by Liegeois and Moignard
(1993) where they used a Delaunay triangulation (Preparata
and Shamos 1985) as the underlying structure for path plan-
ning. The main input for the triangulation algorithm was a
topographical map and not any type of sensor data. As such,
none of the challenges of long shadows and variable resolu-
tion were addressed. In addition the use of a topographical
map does not reflect current conditions on an ever-changing
terrain. More recent work using a triangular mesh was pre-
sented by Wettergreen et al. (2009) during field tests of a
lunar rover prototype. The focus of their work was to inves-
tigate the mobility capabilities of the rover in lunar analog
terrains. Grid representations in general are quite popular,
both in 2D and in 3D, in the form of digital elevation maps
(DEM). The accuracy of the model is directly linked to the
resolution of the grid which is inversely proportional to stor-
age requirements. In contrast irregular triangulation meshes
(ITMs) maintain the same order of accuracy as the sensor
while maintaining low storage requirements.

Uhttp://www.neptec.com; http://www.optech.ca/;
http://sm.mdacorporation.com/.
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Furthermore, different research groups have proposed
a variety of schemes for planetary exploration addressing
different problems (Giralt and Boissier 1992). One impor-
tant aspect is the control architecture used. JPL for exam-
ple introduced two software architectures: CLARAty (Nes-
nas et al. 2003) which has focused on module reusability
and CAMPOUT (Huntsberger et al. 2003) with a focus on
multi-rover applications. Regardless of the sensing modality
sensor data preprocessing, terrain modeling, and path plan-
ning (global and local) are major building blocks in most
approaches, sometimes formulated as behaviors (Gat et al.
1994).

More recently, Mora et al. (2008, 2009) proposed a simi-
lar functionality to the one proposed in this paper, using dig-
ital elevation maps (DEM) for lunar rovers. Global and local
DEM’s were proposed, to be constructed from on-orbit im-
agery, and from LIDAR scans from the rover. In addition a
Dijkstra based algorithm was presented taking into account
ruggedness, slope, and distance. In this paper we present
an A* based planning algorithm which is much more effi-
cient than the Dijkstra based one, because the search is bi-
ased towards the goal and no calculations are consumed for
cells in irrelevant directions. Further work (Ishigami et al.
2011) used the previous approach to calculate and evaluate
several alternative paths off-line considering different cost
functions.

Currently, the most advanced exploration robots that have
been deployed for planetary exploration are the Mars Ex-
ploration Rovers (MERSs) “Spirit” and “Opportunity”. These
rovers have successfully demonstrated concepts such as vi-
sual odometry and autonomous path selection from a terrain
model acquired from sensor data (Biesiadecki et al. 2005).
The main sensor suite used for terrain assessment for the
MERs has been passive stereo vision (Wright et al. 2005).
The models obtained through stereo imagery are used for
both automatic terrain assessment and visual odometry. Path
planning is based on a variant of D* (Carsten et al. 2008)
that facilitates efficient replanning. Due to high computation
load visual odometry is rarely used on the MERs; a more ef-
ficient algorithm was proposed for the Mars Science Labo-
ratory mission that launched on November of 2011 (Johnson
et al. 2008).

In the case of automatic terrain assessment, the raw data
in the form of a cloud of 3D points is used to evaluate the
traversability of the terrain immediately in front of the rover,
defined as a regular grid of square patches. In the case of
visual odometry, the model is used to identify and track fea-
tures of the terrain to mitigate the effect of slip (Howard and
Tunstel 2006).

Field trials on a Mars analog site were presented by Bar-
foot et al. (2011) comparing different guidance, navigation,
and control (GN&C) approaches for a ground ice prospect-
ing mission to Mars. The main sensing modality was again

stereo vision, and a teach and repeat path planning strategy
was applied.

The problem of autonomous long range navigation is
also very important in terrestrial settings. The DARPA grand
challenge in 2005 resulted in several vehicles traveling 132
miles over desert terrain (Montemerlo et al. 2006). The ma-
jority of the contestants used a combination of multiple
LIDAR, vision, and RADAR sensors. Similar work involved
traverses on the order to 30 km in the Atacama desert (Wet-
tergreen et al. 2005) using vision. More recently the “Leav-
ing Flatland” project (Rusu et al. 2009) presented a vision
based scheme for a hexapod walking robot. LIDAR sensors
have also been used successfully for 3D mapping of under-
ground mines (Silver et al. 2006). In addition to digital ele-
vation maps, semantic labels were attached to the different
areas which facilitated gait selection. Terrestrial navigation
has vast literature which is beyond the scope of this paper;
please refer to (Kelly et al. 2006) for a discussion of the
many challenges and additional related work.

For our work, we have been using a laser range sensor
(LIDAR) as the main sensing modality for many reasons:
among others, our mobility platform has very low ground
clearance. A LIDAR sensor is capable of providing range
data to build terrain models with 1-2 cm accuracy. Such ac-
curacy would be difficult to attain with most stereo vision
systems over the full range of measurement. Such accuracy
is also very important for the scientific return of the mission
i.e. identifying rock formations. In addition, LIDAR sensors
return accurate geometric information in three dimensions
in the form of a 3D point cloud without requiring additional
processing. Finally, since they do not rely on ambient light-
ing, we do not have to address the problems arising from
adverse lighting conditions.

3 Overview

The goal of our work is to navigate autonomously from the
current position to an operator-specified location which lies

Global Global Acquire
Localization Path Plan Scan
Follow Local Process
Path Path Plan Scan
Segment .
Global Path Localize

Fig.2 The main components of the autonomous over-the-horizon nav-
igation framework

@ Springer



Auton Robot

(a)

Fig. 3 (a) The ILRIS 3D sensor on top of the modified P2-AT robot. (b) The SICK sensor on a pan-unit mounted on the same robot

beyond the sensing horizon of the rover. In order to achieve
this goal several components need to be developed, tested
and integrated. Figure 2 presents a schematic diagram of
the different components. We operate under the assumption
that a global map is available from satellite imagery, pre-
vious missions, or from data collected during entry descent
and landing (Mourikis et al. 2007). For all the experiments a
global map with one meter resolution was used. At top level,
the rover uses the global map to plan a path from its current
position to an operator-specified location. The rover collects
the first local scan using its LIDAR sensor, then the global
path is segmented successively using the locally collected
scans; each time an optimal trajectory is planned through the
ITM representation of the local scan. Finally, the rover uses
the local path to navigate to the next way-point. At the cur-
rent state, the pose estimation from the IMU and the odome-
ter, combined with the trajectory length in the order of ten
meters allows to safely navigate in open loop without relo-
calizing between successive scans.

3.1 Experimental setup

Two different LIDAR sensors have been used for our exper-
iments. Initially, we used an ILRIS 3D unit from OPTECH?
with a range of over 1 km but with a field of view (fov)
limited to 40°; see Fig. 3a. Afterwards, a new sensor de-
veloped in-house was used. The new sensor of the robotic
platform is a LIDAR system based on the popular SICK?
LMS-200/291. Our implementation has the SICK sensor in-
stalled sideways (scanning vertically, 180° from bottom to
top) on a rotary table panning horizontally over the full 360°

Zhttp://www.optech.ca/.

3http://www.sick.com.
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range (Lamarche 2009). A particular feature of the imple-
mented architecture is its modularity. A Rabbit Semicon-
ductor micro-controller is used to coordinate the low level
control of the SICK sensor and the rotary table via their re-
spective serial ports. An Ethernet port from the same micro-
controller is then used as interface to the rover’s on-board
network/computer. Such interface makes the sensor integra-
tion to any system using a standard Ethernet network fairly
straightforward. The range of the new sensor is maximum
30 m. Figure 3b shows the new sensor mounted on our mo-
bile platform during an experiment.

At the time the experiments described in this paper were
executed, CSA’s MET was a 60 m by 30 m testing area de-
signed to emulate a broad variety of Martian topographies.
The terrain includes plains, a hill, a canyon and rock fields
of varying density. Figures 1 and 3 show the robot in differ-
ent locations on the terrain, while Fig. 6 presents a complete
model of the terrain. The terrain is covered with sand and
rocks. It emulates the topography of some areas on Mars but
not the geotechnical properties of the soil.

The mobile robot base used to conduct the experiments is
a P2-AT mobile robot from Adept MobileRobots;* the robot
is shown in Fig. 1. The P2-AT is a skid-steered four-wheeled
robot. The robot comes equipped with motor encoders for
odometry. It is also equipped with a 6-axis Inertial Measure-
ment Unit (IMU) from Crossbow.? The IMU provides angu-
lar velocity readings through three solid-state gyroscopes,
and linear acceleration readings through three accelerome-
ters. The gyroscopes are used to correct the odometry read-
ings, which are very sensitive to slip during rotations. The
accelerometers are used to reset the roll and pitch compo-
nents of the robot’s attitude by measuring the components

“http://www.mobilerobots.com.

Shttp://www.xbow.com/.
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Fig. 4 Sample sensor data from the 360° LIDAR sensor: (a) The raw point cloud. (b) Delaunay triangulation in polar coordinates. (¢) The

decimated irregular triangular mesh (ITM)

of the gravitational acceleration vector. The robot is also
equipped with a digital compass (TCM2 from PNI Corpo-
ration®). The compass is used to reset the yaw component of
the robot’s attitude. The TCM2 is only used at rest since the
motors induce magnetic fields that corrupt the sensor’s read-
ings while running. On Mars the compass would be replaced
with a different orientation sensor, such as a Sun-sensor be-
cause there is no planet wide magnetic field. The data from
the wheel odometry, the IMU and the digital compass are
fused together to provide a six degrees of freedom (DOF)
state estimate.

4 Terrain modeling

With both LIDAR sensors, the scans are acquired at con-
stant angular steps. Therefore, the sensor’s raw data output
is structured as a triplet (9, ¢, p), representing azimuth, ele-
vation and range respectively. Figure 4 shows a point cloud
resulting from a single scan at CSA’s MET, converted to
Cartesian coordinates for visualization. Because the scans
are taken at constant angular resolutions, the resulting point
clouds, once viewed in their Cartesian projection, have a
very uneven point density distribution. As seen in Fig. 4, the
point density is high near the sensor and decreases rapidly
along the radius distance from the sensor.

In order to perform path planning, the terrain surface
must be reconstructed from the acquired point clouds. Rep-
resenting the surfaces as irregular triangular meshes (ITM)
(Fowler and Little 1979) is a natural choice since data are
collected from unstructured outdoor scenes. Irregular trian-
gular mesh representation inherently supports concave geo-
logical structures like overhangs and caverns, unlike the well
known digital elevation map representation. While many ap-
proaches were developed over the years, one fact remains:
correctly meshing arbitrary 3D point clouds is never trivial.
There does not seem to exist a generic meshing technique

Ohttp://www.pnicorp.com/.

that will properly work for any arbitrary 3D data set. One of
the main problems typically resides in identifying the proper
neighboring relationships among the points. Failure to do so
typically results in triangles intersecting each other in the
mesh, therefore not corresponding to a “real” surface. When
the point density is not constant, as in our case, this issue
becomes even more difficult since many meshing algorithms
make assumptions about the point distribution at some level,
in order to determine these neighboring relations.

While the acquired laser points are in three dimensions,
the raw data from a single scan is, in reality, a 2.5D data
source. That is, for any angular position set (6, ¢), there can
only be a single range (p) measurement. This is a key fea-
ture used to generate meshes that properly implement the
3D point neighboring relationships. It turns out that in the
raw data, points that are neighbors in the (6, ¢) plane are
inevitably neighbors in the “real world” when the scan is
taken. We can therefore mesh the raw data by simply ap-
plying a 2D Delaunay triangulation algorithm to the (6, ¢)
coordinates, initially ignoring the range readings. Convert-
ing the points of the resulting mesh to Cartesian coordinates
gives us a proper 3D mesh with accurate neighboring rela-
tionships. That is, a mesh free from any intersecting trian-
gles.

However, we now have a mesh that does not contain any
holes, even though the real surface sensed by the LIDAR
usually has some discontinuities due to the sensor’s low an-
gle of incidence; see Fig. 5a. These shadow regions exist
whenever there is an object in front of another. Triangles in-
side these shadow regions must be identified and removed
from the mesh because they do not model an existing sur-
face. A second type of undesired triangles is also created
by the Delaunay triangulation algorithm producing a con-
vex mesh when the acquired point cloud has concave sec-
tions in its (@, ¢) planar projection; the meshing algorithm
will fill these areas. This happens for example when there
are two contiguous hills at the horizon. The concave portion
between the hills is filled, resulting in oversized triangles
linking both summits. These visual artifacts, referred to as
frontier triangles, must also be removed.

@ Springer
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In order to deal with the above mentioned artifacts, three
filters were implemented. Experiments showed that while all
filters are relatively efficient, none of them is sufficient by
itself to remove all the undesired triangles from any given
mesh. Combining the three filters provides the best perfor-
mance, each filter picking up where the others fail. For ev-
ery triangle in the mesh, the first filter applies a threshold
on the ratio between its closest and farthest vertices, relative
to the sensor’s origin. Since raw data directly provide the
distance (range) for every point, this is quickly computed.
This filter mainly removes the typically elongated shadow
triangles. The second filter applies a threshold on the trian-
gle’s perimeter, targeting the frontier triangles, which have
huge perimeters in most cases. Finally, the last filter removes
any triangle having an incident angle, relative to the sensor’s
line of sight, smaller than a specified threshold. This targets
some problematic shadow triangles that might escape the
first filter. Finally, in order to decrease the large number of
triangles, in the order of 150,000 triangles, a mesh decima-

Discontinuity

L Shadowed region N

(a)
raw LIDAR 2D Delaunay | raw___|Remove shadowed
scan Triangulation | ITTM triangles
Reconstructed Decimate
terrain mesh

(b)

Fig. 5 (a) Side view of a LIDAR scan and its neighboring relation-
ships presenting a discontinuity. (b) Flow diagram of surface recon-
struction process

tion algorithm is applied on the reconstructed surface. Fig-
ure 5b outlines the meshing algorithm. Figure 4a presents
the 2.5D point cloud, it is clear that even small obstacles
create long shadows with no measurements inside. The De-
launay triangulation in polar coordinates is used which pre-
serves the shadows; see Fig. 4b. As a result there are no sur-
face representations in the areas for which there are no mea-
surements. Finally the full ITM is decimated by removing
triangles that are nearly co-planar, while ensuring that the
distance from the original points to the resulting mesh never
exceeds a selected threshold; see Fig. 4c. The implementa-
tion of the terrain modeling and decimation using a trian-
gular mesh is done using the Visualisation Toolkit (Kitware
inc 2005) libraries. Two different LIDAR sensors have been
used by CSA, with different range, field-of-view, and accu-
racy characteristics. More than two hundred scans from the
two LIDARS have been collected during our experiments.
Each scan contains 111,000 (SICK based LIDAR) or 31,200
(ILRIS 3D) points on average depending on the sensor. The
employment of ITMs for terrain modeling maintained the
high levels of accuracy while at the same time reducing the
data volume by 90-95 % (Rekleitis et al. 2008b).

During testing using the ILRIS sensor, 96 scans were col-
lected from many different locations; see Fig. 6a. Due to
the limited field-of-view fov of the sensor, often, from the
same position several scans in different orientations were
collected. Later on 105 scans were collected using the SICK-
based sensor, shown in Fig. 6b. Even though the two sets of
scans were collected from different LIDAR sensors, the dec-
imation ratios achieved were comparable. Table 1 presents
the cumulative results for decimation ratios of 80 %, 90 %,
and 95 %. With acceptable error as low as 1.5 cm, deci-
mation ratios of up to 94.9 % were achieved on average. It
is worth noting that the SICK-based scans had a 360° fov,
as such there were on average 111,000 data-points per scan
compared to 31,200 points, on average per scan, for the 40°
fov scans collected with the ILRIS 3D LIDAR. High deci-
mation ratios for fixed error translate to great savings in on-
board storage and bandwidth usage.
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Fig. 6 (a) The locations from where 96 scans with a 40° fov were collected. (b) The location of the 105 scans collected using the 360° fov sensor
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Table 1 Properties of decimated terrain scans for the testing using the ILRIS and the SICK based LIDARs. Acceptable error 1.5 cm

Original Target decimation ratio
scans 80 % 90 % 95 %
Number Real % Number Real % Number Real %
ILRIS Points (mean) 31200 6530 79.00 % 3440 88.86 % 2090 93.09 %
ILRIS Points (std) 7840 0.74 % 1.16 % 2.31 %
ILRIS Triangles (mean) 61700 12300 80.00 % 6190 89.91 % 3590 94.01 %
ILRIS Triangles (std) 15800 0.00 % 0.75 % 1.90 %
SICK Points (mean) 111000 23400 78.91 % 12500 88.72 % 6700 93.69 %
SICK Points (std) 10300 0.23 % 0.27 % 0.28 %
SICK Triangles (mean) 216000 43300 80.00 % 21600 90.00 % 10900 94.98 %
SICK Triangles (std) 20100 0.00 % 0.00 % 0.14 %
YT * Out of range

The ITM preserves the science content from the topo-
graphical data, while capable of modeling concave geolog-
ical structures like overhangs and caverns. Please refer to
Rekleitis et al. (2007), Gingras et al. (2010) for a discussion
of various LIDAR modeling methods. It is worth mentioning
though the recent approach which combines digital elevation
maps with multiple layers (Triebel et al. 2006) as it models
concave structures. However, it does not lead easily to path-
planning. More recent approaches use techniques from ma-
chine learning (Vasudevan et al. 2010) or from fuzzy logic
(Mandow et al. 2011) for terrain modeling in order to deal
with contradictory readings.

4.1 Comparing ITMs to grid-based representations

A popular approach to terrain modeling and path planning
is grid-based representation, due to its simplicity. However,
grid-based approaches suffer from either low accuracy or ex-
cessive memory requirements. Next we present a qualitative
comparison between the ITM approach and the basic grid-
based approach.

Let us consider a scan like the one presented in Fig. 4,
with a sensor range of 15 m; a rectangular grid generated
from this scan would cover a square of 30 m x 30 m. Using
the average number of points for the 360° sensor as in Ta-
ble 1, with 95 % decimation ratio (6700 points), the resulting
grid cell size would be 0.36 m. When mapping terrain fea-
tures of varying slope, between 30° to 85°, a grid-cell size of
0.36 m would result in a discretization error between 0.1 m
and 1 m, compared to the 0.015 m reported in Table 1. More
formally, for an obstacle with slope 6 and grid cell size d,
the elevation /2 can be calculated as follows: & = d tan(f);
the discretization error is h /2.

In addition, it is worth noting that any regular grid would
generate fictitious data points inside shadow areas, where no
real information is available, as well as at the corners of the
grid square which are out of sensing range; see Fig. 7. In
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Fig. 7 Grid representation for a single scan, with out-of-range and
shadow data points marked

an application domain such as planetary exploration, where
resources are scarce and accurate models of the environment
are scientifically valuable, grid-based approaches are worse
choices than ITMs.

5 Path planning on ITM

One of the advantages of the ITM representation is that it is
well suited to path planning. ITM contrary to grid like struc-
tures contain all the geometric information available from
the sensor in a single data structure; extracting distance and
slope information in an as-needed basis, is trivial. In contrast
the same information can be encoded in a grid like structure,
but it will have to be precomputed for the whole grid regard-
less if it would be needed. In particular, the triangles in the
mesh form individual cells. While traversing the terrain, the
robot moves from one cell to another by crossing their com-
mon edge. The ITM representation can therefore easily be
transformed into a graph structure where the cells are the
graph nodes and the common edges between cells are the
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Fig. 8 (a) Example of path
planned through an irregular
triangular mesh. (b) Example of
trajectory simplification on an
irregular triangular mesh

edges between the nodes of the graph. The path-planning
problem is then formulated as a graph search problem.

The results described in this paper were obtained initially
using Dijkstra’s graph search algorithm (Dijkstra 1959) with
several different cost functions taking into account distance
traveled, terrain slope, and terrain roughness. With the tran-
sition to the 360° fov scans the breadth first nature of the
Dijkstra’s algorithm resulted in excessive computations, and
an A* based search algorithm was used. One of the main ad-
vantages of graph search techniques is that they do not get
stuck in local minima: if a feasible path exists between any
two locations, graph search algorithms will find it. In ad-
dition, given any cost function, Dijkstra’s algorithm always
returns the lowest cost solution between any two locations.

It should be noted that the output of the graph search al-
gorithm is a series of cell identifiers. When traversed in the
given order, the cells will lead the robot from start to destina-
tion along a path that is deemed safe and optimal according
to the given cost function. The robot’s guidance and motion
control algorithms, however, require a trajectory composed
of a series of points in 3D space. The easiest way to con-
vert cell ID’s to 3D points is to use the geometric centers of
the cells as trajectory points. The trajectory is then the list of
the center points of all cells in the list generated by the graph
search algorithm. This results in a trajectory that zigzags un-
necessarily between cell centers; see Fig. 8a. It is therefore
necessary to smooth out the resulting trajectory by removing
superfluous way-points in the trajectory. The trajectory sim-
plification algorithm first defines a safety corridor as the set
of all cells in the path generated by the graph search algo-
rithm. Each of these cells has been identified by the planner
as a safe area on which the robot can tread. The trajectory
generation algorithm then assigns a way-point to the geo-
metric center of every cell in the path. The simplification
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algorithm removes intermediate points in the trajectory and
verifies whether the straight-line segment joining the two
points on either side of the removed way-point stays on the
safety corridor. This procedure is applied iteratively starting
from the initial location of the robot. Points are removed as
long as the safety corridor constraint is not violated. At this
point, the algorithm is re-started from the location of the
way-point that could not be removed and stops when reach-
ing the final destination. Figure 8b shows an example of the
trajectory simplification algorithm. The light grey cells are
the safety corridor, the thick black line is the raw path join-
ing the geometric centers of all cells in the path. The green
lines show the successive steps in the simplification of the
trajectory by the elimination of superfluous way-points. The
red line is a case of a simplification that would lead to the
violation of the safety corridor constraint.

In this context, the usage of ITM introduces additional
challenges. First, on flat terrain, the cells are relatively large,
as can be observed by comparing Figs. 8a and 8b. There-
fore, although large cells are preferable for safety reasons,
a cost function taking only distance traveled into account
would unduly penalize traversal through large cells because
the raw path zigzags between cell centers. On the other hand,
on rough terrain, the cells are much smaller and the resulting
safety corridor can be very narrow, hence more difficult to
navigate.

In addition, the trajectory simplification algorithm, by de-
sign, simplifies the trajectory until it skims the boundaries
of the safety corridor: the resulting trajectory can therefore
skim obstacles. If the width of the robot is not considered,
the planned trajectory will result in a collision between the
robot and obstacles in the environment.

Figure 9 shows a path that was planned in a typical terrain
scan obtained using a LIDAR range scanner in CSA’s MET.
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Fig. 9 Results of path planner on typical irregular triangular mesh

The scan was acquired from the start point located at the left
end of the planned trajectory (the red multi-segmented line).
The figure clearly shows that the trajectory remains within
the bounds of a safety corridor without going through the
center points of every cell in the path.

These results were obtained using Dijkstra’s graph search
algorithm with the following cost function to compute the
cost of traveling from cell i to cell j:

IIxj =x;

0= x; —x;llaBye "t ey
where x; and x; are the geometric centers, and A; and A;
are the areas of cells i and j respectively. The exponential
term is used to encourage the path to cross wide cells instead
of long thin cells. The parameters « and § are penalty mul-
tipliers to take into account the slope of the terrain, and y is
a penalty multiplier for the terrain roughness. These param-
eters are computed taking into account the footprint of the
robot.

The footprint of the robot is defined as C = {cy, c3,
...,Cm}, the set of all cells with at least one vertex within
a distance r from x;; where r is a safety parameter. The av-
erage normal of the terrain within the footprint is defined
as:

2=t Akmg
ka=1 Ak
where Ay and ny are the area and the unit normal of cell k.

The cross-track vector and along-track vector are then com-
puted as:

ﬁ:

@

c=nx (Xj —X;) 3)
and
a=c¢xn 4

Fig. 10 The model of the Mars terrain and several global paths
planned using different cost functions

The cross-track slope angle and the along track slope angles
are then computed as:

¢ = |atan2(c;, \/¢2 + &) Q)

and

6 = atan2(a,, /a2 + ﬁ%) (6)

The values of ¢ and 6 are then used to compute the slope
penalty parameters in (1) as follows:

kq OL if Omin < 0 < Omax
o= 'max 7)
00 if 0 < Bpin Or 0 > Opmax
1 if ¢ < Pmax
= . 8
p { 00 if ¢ > Pmax ®

where k, is a scaling parameter and O, fmax, and Pmax are
platform specific threshold values.

The roughness penalty factor y is computed by evaluat-
ing the distance between every vertex of the /TM contained
in the rover footprint and the plane defined by the average
normal n and x;, the center point of cell j. The maximum
distance between the vertices in the footprint and the plane
is computed as:

§ = max(| - (px — %)) Yk/lIpk — %1l <7 ©)

where pi is any vertex of cell k. The roughness penalty fac-
tor y is then computed from the maximum deviation from
the average plane. Experimentation using realistic terrain
models acquired using the 3D sensor in the CSA’s MET
has shown that it is sufficient to compute y in the follow-
ing manner:

1 ifs<é
y _ . — Ymax (10)
00 if § > Smax

Figure 10 demonstrates the effect of different cost func-
tions on the planned path. The paths were planned using
the coarse model of the Mars terrain. The dashed (red) line
shows the direct path from start to end without any concern

@ Springer



Auton Robot

about the slope or the roughness of the terrain. For the rest
of the paths only acceptable triangles were considered, that
is, triangles with an absolute slope of less than 35 degrees.
The (green) line labeled “Rover footprint” plans a path tak-
ing into account the rover footprint avoiding high-slope ar-
eas and showing a slight preference for flatter terrain. Fi-
nally, three paths are planned without taking into account
the rover’s footprint. The shortest acceptable path planned
(black line) is close to the direct path while avoiding the
cliff due to the infinite cost of high slope triangles. The sec-
ond path (blue line) is planned with low slope-cost for ac-
ceptable slopes, and the third path (red line) weights flat
terrain much higher than distance traveled, thus traveling
around the terrain over the most flat areas. While parame-
ters selected by an expert operator have been used in most
rough-terrain navigation approaches, newer research shows
promising results using parameters learned by demonstra-
tion (Silver et al. 2010). We expect future work to evolve
towards automatic cost function learning.

As mentioned earlier, one of the issues encountered dur-
ing our field-testing was due to the fact that the environ-
ment sensor has a 360° fov and the Dijkstra’s graph search
algorithm is a breadth-first algorithm: it grows the search
space from the start location irrespective of the target des-
tination. The planner ends up spending much precious time
searching in the direction away from the destination. The
A* graph search algorithm was used in an attempt to reduce
the computation time. Experimental results indicate that, us-
ing typical terrain models, the computation time can be ac-
celerated by a factor of three up to six times on the same
computer. The path-planner using A* was also tested off-
line using the collected scans from the SICK based sensor.
Random destination points were selected at five and ten me-
ters from the location the scan was originated for all 107
scans. The computation time was on average 14 seconds for
the destinations at five meters, and 25 seconds for ten me-
ters. The proposed planning method was very efficient, the
paths were computed in seconds using ITMs with several
thousand triangles, and the computed paths were on average
25 % longer than a straight line between start and destination
(Rekleitis et al. 2008b). As noted earlier, a path was always
found if a feasible path, for a given cost function, existed.
For an in-depth discussion of the CSA’s path-planning ap-
proach, including the implementation of different cost func-
tions, please refer to Rekleitis et al. (2008a).

6 Path-segmentation
The path planning approach described above can be used
in several different circumstances. In the proposed frame-

work, the fast distance-and-slope cost function is used for
global path planning over the low resolution global map; see
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Fig. 11 Global path planned using the low resolution map of the
Mars-like terrain at CSA

Fig. 11. The generated path while avoiding large slopes and
big obstacles leads over smaller obstacles, not discernible at
that resolution. This global path provides a general guide-
line for traveling from the starting position to the operator-
selected destination, beyond the robots sensing horizon. The
global path is then divided into smaller segments by select-
ing a series of way-points. These way-points act as inter-
mediate destinations, each of them inside sensing distance
from the previous one. The more accurate rover-footprint
cost function in conjunction with the A* cost function is
used to plan a path between way-points, using the high-
resolution map constructed using a local scan obtained from
the LIDAR.

The first step in segmenting the global path is to consider
what is the appropriate effective range of the local scan.’
In the current setup, the effective range of our sensor is be-
tween ten to fifteen meters; further than that the angular res-
olution is too coarse for safe operations. When the sensed
terrain is flat and sparsely populated with obstacles a range
of ten meters is used. When a large number of obstacles sur-
rounds the rover, the sensed scan is full of shadows, areas
with no data located behind obstacles. In such cases, the ef-
fective range is usually set to four meters; see Fig. 12a for
such a terrain where the four meter range is indicated by a
yellow circle. The intersection point between the global path
and a sphere centered at the current position of the rover with
a radius of four meters is calculated; see Fig. 12b. The inter-
section point is used as a starting point in search of a suit-
able triangle in the area, at most one meter from the starting
point; see blue circle in Fig. 12b. All triangles that have at
least one corner less than a meter away from the intersection
point are considered and the bigger one that has an accept-
able slope is selected; highlighted in dark red in Fig. 12b.
When the destination way-point is selected, the A* and the
rover-footprint cost function are used to plan a local path,

7When the local scan spans 360°, as with the current sensor, only range
is considered. When the scan has a limited field of view, see Rekleitis
et al. (2007), then the global path has to be segmented against the field
of view of the sensor.
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Fig. 12 (a) The global path (green), the local scan, the trajectory up
to this point (red), the current position, and the four meter range the
local path planner would use (yellow circle). (b) The intersection point

through the decimated ITM, between the current pose and
the destination way-point; Fig. 12c.

7 Navigation

The algorithm presented in the previous section produces
a set of straight-line segments representing the path. The
piecewise linear path is then interpolated using a Catmull-
Rom spline curve,® with one way-point every half a meter,
in order to produce a locally smooth trajectory. The resulting
trajectory is given as input to a low-level motion controller
based on a discontinuous state feedback control law, initially
proposed by Astolfi (1999). There were a few improvements
introduced in order to increase the capabilities of our plat-
form. When the IMU detects that the rover is moving uphill,
the guidance controller increases the speed in order to gain
momentum. Furthermore, the guidance controller was tuned
to reduce the turning in favor of forward motions.

8 Data management

During planetary exploration, an autonomous rover is re-
quired to store and handle huge amounts of sensor data, re-
sults from scientific experiments and other relevant informa-
tion. This information is typically geo-referenced to maps
describing the world. As the number of maps increases, sim-
ple planning operations become more complex because dif-
ferent map combinations can be used to plan the path to
the goal. Data from different sensors, such as LIDAR range

8See http://www.mvps.org/directx/articles/catmull/.

between the global path and the four meter range; the local area from
where the destination triangle (red) is selected (blue circle). (¢) The
local path planned (blue)

finders, thermal cameras, images from monocular and stereo
cameras, etc., produce different maps. Moreover, data from
the same sensor collected at different times and from dif-
ferent locations produce maps of varying resolution and fi-
delity. Effective management of the different maps is ad-
dressed by CSA by the introduction of an Atlas framework.

The implemented Atlas framework supports typical map-
ping, localization and planning operations performed by a
mobile robot. Central to the development is the ability to
provide a generic infrastructure to manage maps from mul-
tiple sources. Changes in the map processing algorithms are
transparent to the Atlas implementation. In the same way,
using maps from different sensor sources or types becomes
transparent to the planning algorithm.

The main features of the Atlas management system are
the capability to dynamically manage a variety of data for-
mats, the handling of uncertainty in the spatial relation-
ship between the maps, the capability to provide series of
maps linking two locations in planning operations, and the
functionality to correlate maps in localization operations
(Nsasi Bakambu et al. 2006). Figure 13 presents representa-
tive data sets stored in the Atlas used at CSA for the exper-
iments leading to the Avatar Explore mission (Martin et al.
2008). Figure 13a contains a single infrared image which is
used to detect geologically interesting locations for closer
inspection by the rover. For this experiment, a heat source
was buried in the terrain to provide a clearly identifiable tar-
get. A 360° LIDAR scan from a single location is displayed
in Fig. 13b; such scans are used for safe path-planning by
the rover. Finally, Fig. 13c shows a uniform mesh represen-
tation of the testing terrain. This representation is the result
of an off-line integration process that combines several data
sets and can be uploaded on the rover by remote operators.
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(a) Thermal image.

(b) 3D LIDAR scan.

(c) Topographical map.

Fig. 13 Maps from different sensors are stored in the Atlas framework: (a) Image from a thermal camera. (b) A single scan from a 360° LIDAR
sensor. (¢) Topographical map of fixed resolution containing information of a larger region
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(b) Second position scan.
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(c) Merged scans.

Fig. 14 (a, b) Two LIDAR scans of an area with several obstacles. (¢) The Irregular Triangular Mesh resulting from localizing with Kd-ICP and

merging the two scans, eliminating most of the shadows

This data management tool opens new opportunities in
the development of autonomous navigation schemes. For in-
stance, maps are never fused by the system, thus permitting
registration of the maps at any time. The system makes it
possible for two given maps to have multiple mutual spa-
tial relationships such as an estimation of their relative pose
from the wheel odometry and visual registration. The Atlas
system provides the mechanism to select/merge these mul-
tiple estimation relations in order to get the best estimation
possible. The system being modular, it is possible to pro-
vide different cost functions in order to obtain more accu-
rate use of these multiple relations. Finally, by using rela-
tive relations instead of global relations, the Atlas system
automatically propagates to neighboring maps any improve-
ments/changes deriving from the updated relation between
two maps. One of the important uses of the Atlas framework
is to provide all available information of a specific area of
interest. In particular, in presence of obstacles, most LIDAR
scans are plagued by long shadows that make path planning
challenging; see Figs. 14a, b. By requesting one or more ad-
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ditional data sets from the Atlas for the vicinity of the area of
interest, the rover is capable of merging the retrieved scans
and obtaining a new mesh more suitable for path-planning,
see Fig. 14c, where most of the shadows are eliminated. The
search query of scans covering a specific point is utilized for
retrieving relevant scans.

9 Experimental results

The experiments were run at the CSA’s Mars emulation ter-
rain (MET). A large number of experiments were conducted
using the ILRIS 3D LIDAR sensor with limited fov sen-
sor. Subsequently, the 360° fov sensor enabled us to perform
several experiments validating CSA’s approach to fully au-
tonomous over-the-horizon navigation. The first set of tests
conducted was for validating the accuracy of the 3D odome-
try state estimation algorithm. A large number of closed tra-
jectories was executed varying in size and in location. Con-
sequently, we were able to quantify the error exhibited in
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Table 2 Path planning results

using all the scans collected Time Path E}lclidean # Qf path T(.>ta1 # of Max Weighted
using the SICK-based LIDAR. (sec) length distance points triangles slope slope (WS)
Destinations selected randomly
at 5 m and 10 m from the origin 5 m (mean) 13.8 6.3 m 5.0m 10 7744 27.2° 1.8°
of the scan 5 m (std) 17.8 1.06 m 0.1m 5.5 2330 22.8° 2.0°

10 m (mean) 254 12.70 m 10.0 m 14.5 7550 34.8° 1.3°

10 m (std) 29.8 223 m 0.0m 6.5 1598 22.8° 3.2°

terms of both the length of the traveled trajectory as well as
the morphology of the terrain.

A statistical error analysis has revealed that the actual er-
ror on position for the closed loop trajectories is on the or-
der of 2.19 % with a standard deviation of 2.25 %, of which
approximately 0.5 % is due to the 3D odometry. The high
value of the standard deviation is due to the fact that three
experimental runs (out of 29) resulted in errors on the order
of 7-8 % due to excessive wheel slip.

9.1 Path planning verification

The scans collected during the two testing seasons were
also used to verify the quality of our path-planning algo-
rithm by off-line batch testing. For these experiments of
path-planning on a single scan, the start position was al-
ways assumed to be the position from which the scan was
acquired. The end-location was randomly selected to be at
five or ten meters from the origin, and inside the boundaries
of CSA’s MET. If the destination point was unreachable, that
is in an area of forbidding slope or with no data, then an-
other point was selected randomly, up to three times. Out of
94 scans with recorded origin, acceptable destinations were
found randomly for 82 scans at a distance of five meters, and
68 destinations at a distance of ten meters. Please note, that
for every scan only 3 attempts were made to find a desti-
nation point randomly. The results are an indication of the
challenging terrain where obstacles created shadows with
no data and several areas had non-traversable slopes. Every
time a destination point was inside the mesh and at a navi-
gable slope, the path planner found a smooth path. Table 2
presents average results for the computed paths for desti-
nations at five and ten meters, respectively. The computa-
tion time was on average 14 seconds for the destinations at
five meters, and 25 seconds for ten meters. The proposed
planning method was very efficient, the paths were com-
puted in seconds using ITMs with several thousand trian-
gles; see Table 2. Furthermore, the ITMs used were created
from LIDAR scans of more than a hundred thousand points
each; see Table 1 for the decimation rates. The computed
path was on average 25 % longer than a straight line between
start and destination. It is worth noting that the estimated
paths had to negotiate maximum slopes of 30° on average,
but the triangles with high slope were always very small.

Fig. 15 A model of the CSA’s MET together with the recorded trajec-
tories for all the different experiments performed using the SICK-based
sensor and the proposed framework

A weighted average slope (WS) was calculated by multiply-
ing the slope of each triangle on the path with the area that
triangle and then normalized by dividing by the sum of all
the areas:

2 SiAi
DA
where S; and A; is the slope and the area of triangle i re-
spectively. As can be seen by the last column in Table 2, the
average slope (W) is in the order of two degrees, as the path

planner favored the more level ground.

WS = (11

9.2 Over-the-horizon navigation

The next, and final, phase of testing was comprised by a
series of over-the-horizon autonomous navigation traverses
that tested the integrated system. Figure 15 presents the tra-
jectories of several experiments of autonomous over-the-
horizon navigation over a model of the CSA’s MET. As can
be seen, the experiments covered all the terrain types rep-
resented in MET. In particular long trajectories over flatter
terrain with sparse obstacles were traversed first, while the
climbing abilities of the mobile platform were tested dur-
ing the trajectories that appear in the middle of the terrain,
where two small hills are located. Finally, the robot was able
to navigate autonomously through an area littered with ob-
stacles depicted in the right side of Fig. 15.

Figure 16 presents the results from a representative fully
autonomous navigation experiment. First the model of the
CSA’s MET was used as the global map and the operator en-
tered the global destination, then a simple planner was used
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Fig. 16 A sequence of consecutive scans together with the trajectory
of the robot. A global model of the Mars emulation terrain (MET) is set
as background for reference purposes. (a) The global path is displayed
(green line) together with a single scan, (b)—(g) the consecutive scans

to calculate the global path. Figure 16h shows all the paths;
the global path is presented as a (green) line, and the planned
local paths together with the odometric estimates are drawn
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(h)

can be seen together with the planned path. (h) The global path (green),
the traversed path (red) and the odometry (black) are displayed on the
CSA’s MET

as red and black lines respectively. Figure 16a presents the
first scan and the first local path. The scan was used to de-
termine the last point in the global path that resides inside it
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and is accessible from the start position; the selected point is
then designated as the first way-point. It is worth noting that
due to the shadows, a point in the global path could reside in-
side an isolated triangle in which case it would not be reach-
able when used as a destination for the local-path-planner.
The rover planned and executed a successful traversal and
reached the first way point, at which step it took the second
scan; see Fig. 16b. The global path was used again to deter-
mine the next local destination, second way point, and the
local path planner was used to plan the second collision free
path. Finally when the robot reached the second way point
the final destination from the global path plan was reachable
and the robot planned and executed the next trajectories; see
Fig. 16¢c—g.

10 Conclusions and future work

In this paper we presented successful autonomous over-the-
horizon navigation experiments in a Mars-like terrain. The
operator selected a destination way beyond the sensing hori-
zon of our rover and then monitored as the robot selected
intermediate destinations, planned a safe path and traversed
to the next way-point. The Irregular Triangular Mesh repre-
sentation was used which enabled us to have a compact yet
accurate model of the environment. Path planning is con-
ducted in the ITM terrain model using the A* graph search
algorithm using a cost function that takes into account the
physical dimensions of the rover and its limitations to tra-
verse rough terrain. A new factor was introduced in the cost
function to handle the conditions of ITM where safe terrain
cells are typically large in size. Experimental results demon-
strating the feasibility of our approach are presented.

Upcoming work includes further research on localization
and scan matching. This will enable the rover to re-localize
by matching features in successive environment scans. Such
an approach has the potential to be computationally less ex-
pensive than on-line visual odometry based on stereo camera
views. Current work includes a re-formulation of the ITM
terrain models to render them more amenable to scan match-
ing algorithms such as the Iterative Closest Point algorithm
(Rusinkiewicz and Levoy 2001).

The realization of autonomous navigation on a Mars-
like environment, led to the recent mission Avatar-2. In the
Avatar-2 mission (Martin et al. 2008; Dupuis et al. 2010),
that completed successfully recently, a Canadian astronaut
on-orbit in the International Space Station (ISS) communi-
cates and sends high level commands to a rover operating at
CSA’s MET. The rover collects data from different sensors
and sends them back to ISS. This scenario emulates the situ-
ation of a human operator on orbit around Mars, controlling
a rover on the Martian surface.
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