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Abstract During several applications, such as search and
rescue, robots must discover new information about the envi-
ronment and, at the same time, share operational knowledge
with a base station through an ad hoc network. In this paper,
we design exploration strategies that allow robots to coor-
dinate with teammates to form such a network in order to
satisfy recurrent connectivity constraints—that is, data must
be shared with the base station when making new observa-
tions at the assigned locations. Current approaches lack in
flexibility due to the assumptions made about the commu-
nication model. Furthermore, they are sometimes inefficient
because of the synchronous way they work: new plans are
issued only once all robots have reached their goals. This
paper introduces two novel asynchronous strategies that
work with arbitrary communication models. In this paper,
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‘asynchronous’ means that it is possible to issue new plans
to subgroups of robots, when they are ready to receive them.
First, we propose a single-stage strategy based on Integer
Linear Programming for selecting and assigning robots to
locations. Second, we design a two-stage strategy to improve
computational efficiency, by separating the problem of loca-
tions’ selection from that of robot-location assignments.
Extensive testing both in simulation and with real robots
show that the proposed strategies provide good situation
awareness at the base station while efficiently exploring the
environment.

Keywords Multirobot systems · Exploration ·
Communication constraints · Recurrent connectivity

1 Introduction

Exploration of unknown environments through the deploy-
ment of multirobot systems is a task required in many
applications, including map building (Thrun 2002) and
search and rescue (Tadokoro 2010). In such scenarios, the
process of discovering unknown features of the environment
can be generally modeled with the following operations iter-
atively undertaken by each robot:

(a) perceive the surrounding environment,
(b) integrate perceived data in a map representing the envi-

ronment known so far,
(c) decide the next locations to reach, and
(d) move to the selected locations.

In the basic and most common formulation, the choice of
where to sense next (Step (c)) is guided by the selected explo-
ration strategy. Moreover, it is often assumed that robots can
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Fig. 1 Six robots with a supervising base station, with the task to
explore an environment

always communicate with each other with high-bandwidth,
e.g., (Yamauchi 1998; Quattrini Li et al. 2016).

However, such a strong assumption is not necessarily
satisfied in real-life applications and has an impact on the
performance of the system, as it has been shown by Tuna
et al. (2013). This holds true especially when exploration is
performed in disaster mitigation domains (Ochoa and San-
tos 2015), where centralized situational awareness at a base
station (BS) is often required for the effective supervision
of the mission; see Fig. 1 for an experimental setup where
the BS overlooks six exploring robots. One important con-
sequence is that robots not only have to efficiently explore,
but also need to report and share the data they gather by
communicating with each other and with the BS. Different
types of connectivity constraints are assumed in literature,
as reported in the short taxonomy provided in (Banfi et al.
2015). Loose connectivity constraints allow robots to explore
the environment more efficiently, but reduce the situational
awareness at the BS. On the other hand, strict connectivity
constraints — e.g., requiring the whole team to be always
globally connected — restrict the explored area but increase
mission awareness at the BS. The literature proposes multi-
robot exploration strategies that take into account different
types of connectivity constraints (Rooker and Birk 2007;
Stump et al. 2011; Spirin et al. 2013; Pei et al. 2013). Among
them, recurrent connectivity constraints can provide a good
trade-off between situation awareness and exploration effi-
ciency. With recurrent connectivity, robots have to connect
with each other and with the BS each time they gather new
information. This entails an online constraint scheme, where
robots can disconnect for arbitrarily long periods, but they
must be able to coordinate in order to report to the base station
as soon as new information is acquired.

This paper addresses the problem of multirobot explo-
ration under recurrent connectivity in a novel asynchronous

way: new plans can be computed for arbitrary groups of
θ robots (where θ is a parameter) as soon as they become
ready. Readiness can be defined as the statewhen robots have
reached their goal locations and transmitted all the informa-
tion acquired therein. The exploration strategy we propose
is fundamentally centralized: new plans are computed at the
BS, which can monitor the readiness status of each robot.
Once a sufficient number of robots becomes ready, the BS
issues a new plan.

Within this framework, we formulate the problem of
computing the optimal set of locations robots should reach
during the exploration of an environment. The solution
should achieve efficient exploration, while accounting for
recurrent connectivity constraints. We propose two strate-
gies for solving this problem. In the first strategy, robots’
locations are selected with an exact method based on integer
linear programming (ILP). In the second strategy, plan-
ning is decomposed in two stages. First, an optimal set
of connected locations is computed abstracting away from
the robot-location assignments. Then, the most efficient
assignment of robots to the locations found in the first
stage is computed. For this second approach, we propose
an exact (ILP-based) method and an approximation algo-
rithm.

Experimental results, obtained both in simulation andwith
a real team of TurtleBot 2 robots, show that the first approach
can provide better deployments, but with limited scalability
in highly asynchronous settings (with low θ). As the number
of ready robots increases, the two-stage approach turns out
to be the preferred choice. In general, results show that this
latter approach is able to achieve a good trade-off in terms of
explored area, traveled distance, and situation awareness at
the BS. The proposed approach is also competitive compared
to a state-of-the-art exploration strategy (Spirin et al. 2013)
not imposing any strict connectivity constraint, with which
robots can acquire an arbitrary amount of information before
sharing it with the BS.

The contributions of this paper significantly extend the
preliminary results from (Banfi et al. 2016), adding the design
of the single-stage approach and a richer experimental anal-
ysis both in simulation and with real robots.

This paper is structured as follows. The next section
reviews communication-constrained multirobot exploration.
Section 3 formalizes the multirobot exploration framework
considered in this paper. Section 4 introduces the proposed
one-stage solution for finding optimal connected robots’
locations, while Sect. 5 describes the two-stages approach.
Section 6 discusses robot readiness in the proposed con-
text of asynchronous planning. Sections 7 and 8 present
the experimental results in simulation and with real robots,
respectively. Section 9 discusses the experimental results
more in depth, trying to draw some conclusions of general
validity. Finally, Sect. 10 concludes the paper.
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2 Related work

The problem of online multirobot exploration in presence of
a fixed BS to which the gathered information is transmit-
ted has been investigated in different variants. Most of the
works are built upon the seminal paper of Yamauchi (1998)
on multirobot frontier-based exploration, where the idea is
to have robots moving towards the boundaries (frontiers) of
the known free space without any communication constraint.
A multitude of approaches have been proposed during the
years, not explicitly considering communication constraints,
e.g., (Wurm et al. 2008; Quattrini Li et al. 2016; Simmons
et al. 2000; Basilico and Amigoni 2011; Rekleitis 2013). The
survey by Julia et al. (2012) provides an overview of explo-
ration strategies.

More recently, research has also been focusing on how
robots should coordinate to satisfy some communication
constraints. An experimental analysis on the effects of com-
munication constraints on the exploration has been presented
in (Banfi et al. 2015). In the following, we group relevant
works according to the enforced connectivity requirements.

2.1 Continous connectivity

A first way to address communication constraints is to main-
tain continuous connectivity between all the robots and the
BS, either directly or in a multi-hop fashion. This could
be useful, for instance, in situations where real-time image
streaming is important (e.g., in search and rescue). The
algorithmproposed byMukhija et al. (2010) constructs a con-
nected exploration tree in which the robots are organized as
explorers and link stations: explorers are placed at the leaves
of the tree, while the link stations are at the inner nodes and
ensure the connectivity of the BS (the root) with the explor-
ers. Rooker and Birk (2007) devise a local search method
where the utility of a team configuration is computed in terms
of distances from the closest frontiers: a configuration that
does not satisfy full connectivity is highly penalized and is
never chosen by the algorithm. Reich et al. (2012) propose
a distributed protocol so that the physical layer connectivity
of a mobile wireless network is maintained. Clearly, guaran-
teeing continuous connectivity can introduce non-negligible
costs for the exploration performance. Therefore, if such a
requirement is not strictly needed, other approaches are usu-
ally preferred.

2.2 Periodic connectivity

Several exploration strategies allow robots to explore regions
in autonomy, but force them to communicate their discoveries
to the BS under a more or less strict periodic regime. There-
fore, we can say that such approaches enforce a periodic
reconnection scheme. Hollinger and Singh (2012) consider a

generalmission scenario inwhich robotsmust synchronously
regain global connectivitywith theBS after a fixed time inter-
val. The authors prove the inapproximability of the problem
and propose a heuristic algorithm based on planning robots’
paths in turns. The best path is chosen from a pool of sam-
ples according to a utility function which, in an exploration
context, is typically related to the information gain of the
path.

Some works also consider periodic connectivity as an
asynchronous condition that, althoughdesired, is not enforced
as a hard constraint. In some cases, connections are estab-
lished as the result of an emergent behavior of the algorithms.
For example, Visser and Slamet (2008) include a criterion in
the exploration strategy that takes the communication prob-
ability into account in order to favor locations in which it is
high. de Hoog et al. (2009) propose the so-called Role-Based
exploration, a distributed strategy inwhich robots are allowed
to explore without considering communication limits. Ren-
dezvous points, namely selected locations where exploring
robots can communicate to the BS (possibly through relays),
allow asynchronous updates of the environment map at the
BS. In (Spirin et al. 2013), the robots’ behavior is regu-
lated by a utility function, which considers the amount of
information not delivered yet by a robot to the BS and the
predicted amount of information known by the BS. Tuning
a parameter, the mission planner is able to specify strate-
gies ranging from a completely greedy exploration, with no
returns to the BS, to an exploration ensuring the maximum
update frequency at the BS. Stronger forms of asynchronous
connectivity are investigated by the works of Arkin and Diaz
(2002) and Jensen et al. (2016). The former focuses on
line-of-sight connectivity. A behavior-based architecture is
proposed and tested in exploration scenarios with increasing
prior information about the environment. The latter, although
not explicitly considering a fixed BS, is able to fully explore
an unknown environment in a distributed way. The proposed
architecture relies on a small set of behaviors and messages
exchanged between robots and dropped beacons. In both
these last works, lost connectivity triggers an appropriate
recovery behavior.

2.3 Recurrent connectivity

A third way in which the communication constraints can
be defined is to ensure global connectivity only at the
deployment locations of the robots, thus enforcing recurrent
connectivity each time a robot collects new data. Such com-
munication constraints constitute themain focus of ourwork.
This is motivated by the fact that, typically, new informa-
tion is gathered at the robots’ goal locations, and robots can
get disconnected for arbitrarily long periods of time while
traveling to them. Howard et al. (2002) study the problem of
mobile sensors placement for maximizing the coverage of an
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unknown areawhile keeping each node connected to aBS via
a multi-hop mutual-visibility constraint. The algorithm pro-
ceeds by sequentially deploying nodes after selecting the best
goal locations. More recent work related to communication
nodes deployment has been presented by Stump et al. (2011).
Here, a set of agents is assumed to be already present in an
environment (e.g., exploring), and two problems are tack-
led: (i) finding a deployment of relay nodes, which ensures
global connectivity between each agent and the BS (again
stated in terms of mutual visibility), and (ii) given the current
deployment and new locations agents should reach, finding
the redeployment that minimizes robots’ traveling time. The
former problem is reduced to the computation of a mini-
mum Steiner tree with the agents’ locations as terminal set,
while the latter is solved by using a (generally sub-optimal)
dynamic programming algorithm. Finally, the problem set-
ting addressed in (Pei et al. 2013) shares some basic features
with the one considered in this paper. That work proposes
an approach that takes into account bandwidth constraints
over the robots relay chain under the “disk” communication
model—i.e., two robots can communicate if they are within
a given maximum distance. New plans are computed once
the whole network has been formed. The general optimiza-
tion problem is split into sub-problems: explorers placement,
relays placement, and robot path generation. In particular,
given a set of candidate locations to be connected, relays
placement is achieved by solving variations of the Steiner
minimum tree problem with minimum number of Steiner
points and bounded edge length (Cheng et al. 2008). How-
ever, this choice is intimately related to the adoption of the
disk communication model under a synchronous planning
setting. The contributions of our paper lie on a comple-
mentary direction: our proposed methods do not depend on
a specific communication model and do not require syn-
chronous coordination among robots.

3 Problem definition

In this section, we formalize the problem considered in
this paper, which has the same setup as the one considered
in (Banfi et al. 2016). Table 1 summarizes the notation used
in the paper.

3.1 Assumptions

An initially-unknown, two-dimensional, continuous, and
bounded environment Env ⊂ R

2 is considered. The inte-
rior points of the environment can belong to obstacles of
arbitrary shape, whose set is denoted by Envo, or can belong
to the free space, denoted by Env f = Env \ Envo. A super-
vising control center called base station (BS) is deployed in
Env at a fixed location, along with a team ofm mobile robots

R = {r1, r2, . . . , rm}. Each mobile robot is equipped with
a finite-range sensors able to perceive the surrounding free
space and outer boundaries of obstacles (e.g., laser range
scanners or RGB-D sensors) and is capable of exchanging
data with other robots or with the BS over an ad hoc net-
work. The BS and the robots maintain and update a map
representing the portion of environment discovered so far,
represented as an occupancy grid. Note that the BS can also
receive other types of data from the robots, such as a video
feed in a search and rescue scenario. In particular, each robot
is endowedwith its ownSimultaneousLocalization andMap-
ping (SLAM) system (Thrun et al. 2005), so that temporary
disconnections from the rest of the team do not result in loss
of autonomy. The BS updates the map of the explored area
each time new information is sent by the robots. Note that the
choice of adopting a particular SLAM algorithm is orthogo-
nal to the exploration strategy we present in this paper.

For simplicity, we assume that time evolves in discrete
steps t ∈ {1, 2, . . . , T }, where T denotes the last step of the
exploration mission. Upon the grid-based map known at a
generic time step t , the BS is able to construct a graph-based
representation of the environmentGt = (V t ,Ct ), where ver-
tices in V t encode some discretization of the portion of Env f

known so far. Such a discretization should represent a reason-
able trade-off between the ability to represent themost salient
communication features of the environment and the size of
the graph. Each vertex v ∈ V t is associated with a candidate
robots’ goal location, except for the vertex b which denotes
the fixed position of BS. A set Ft ⊆ V t \ {b} denotes the
exploration frontiers, that is, vertices corresponding to loca-
tions of Env f lying on the boundary between explored and
unexplored portions of Env. As customarily done in robotic
exploration, each vertex v ∈ V t is associated with a numeri-
cal value g(v) representing the (expected) information gain
obtainable by taking a perception from v. Typically, the infor-
mation gain is 0 when v /∈ Ft , and proportional to the new
area expected to be seen from v, otherwise. Each pair of
vertices i, j ∈ V t is associated with a value d(i, j), rep-
resenting the distance between them as known by the BS
and the robots. The edge set Ct encodes the communica-
tion features of the environment. In particular, this set is
determined by link-detection mechanisms in charge of rec-
ognizing the availability of a communication link between
any two known vertices. Link-detection methods range from
simple visibility-based criteria — that is, two vertices can
communicate if in direct line of sight within a maximum
range— to more sophisticated approaches considering mod-
els of signal decay through distance and obstacles. As in
(Stump et al. 2011; Pei et al. 2013; Hollinger and Singh
2012), we make three assumptions. First, edges in Ct are
static. Second, the link-detection mechanism is not affected
by false positives. Third, if the BS and one or more robots
form a connected component in Ct , then any of such robots
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Table 1 Summary of the notation used in the paper

t ∈ {1, 2, . . . , T } � Generic mission time step

R = {r1, r2, . . . , rm} � Team of robots

Gt = (V t ,Ct ) � Planning graph at time t (V t = locations, Ct = links)

b ∈ V t � BS vertex (fixed)

Ft ⊆ V t \ {b} � Frontier vertices at time t

g(v) � Information gain of vertex v ∈ V t

d(i, j) � Distance between vertices i and j (i, j ∈ V t )

Rt
e � Ready robots at time t

Rt
c � Robots connected with the BS at time t

π t = 〈pt1, pt2, . . . , ptm〉 � Robots deployment computed at time t (ptr ∈ V t \ {b} is the goal vertex of r )

Qt = {qt1, . . . , qtm} � Configuration (occupied vertices) computed at time t , Qt ⊆ V t \ {b}
wd , wg � Weights of the objective function (one-stage approach)

α � Parameter used to express wd and wg

C+, C−(v) � Arcs leaving (+) or entering (-) vertex v in the directed version of Gt

δ+(S), δ−(S) � Directed cuts induced by S ⊆ V t \ {b} in the directed version of Gt

U ( f ),U (S) � Utility of frontier f and vertices S ⊆ V t \ {b} (two-stage approach)
δ � Parameter of the approximation algorithm (two-stage approach)

Pf � The first forming path connecting frontier f and the BS in a new deployment

θ � Parameter representing the number of ready robots required to compute a new plan

can exchange data with the BS using some protocol. The
bandwidth is assumed to be large enough to allow data trans-
fer between robots. Such assumptions are validated in Sect. 8
through experiments with real robots.

3.2 Exploration process

Within the framework described above, the exploration mis-
sion under recurrent connectivity constraints evolves as
follows. New robots’ deployments in the known portion of
space are dictated by the BS and issued at selected time steps.
In particular, at any t ∈ {1, 2, . . . , T }, a new deployment

π t = 〈pt1, pt2, . . . , ptm〉,

where ptr ∈ V t \ {b}, can be computed. This means that
planning is performed at selected time steps in {1, 2, . . . , T }.
The new deployment specifies the goal vertices each robot
r is headed to. Each deployment π t implicitly defines also
a configuration Qt = {qt1, . . . , qtm}, Qt ⊆ V t \ {b}, con-
taining the m vertices that will be occupied by the robots
and abstracting away from the robot-location assignment.
Thus, a deployment π t can be thought as an assignment of
robots to goal locations taken from a configuration Qt , that
is π t (r) = ptr ∈ Qt . Note that multiple deployments π t can
be obtained from the same configuration Qt .

Each robot follows the directives coming from the BS. In
particular, once a deployment π t is computed, the robot r

travels to the corresponding goal vertex ptr . Once there, if
ptr ∈ Ft , then r must take a new range scan — e.g., execute
a complete rotation tomaximize the explored area, and trans-
mit the newly gathered data (and/or forward data received by
others) towards the BS. Instead, if ptr /∈ Ft , then r just acts
as a relay to convey information back to the BS. Notice that
all the robots transmit to the BS also the sensing data they
have acquired while going to the assigned locations.

A robot r is marked ready if (a) it has reached its previous
goal vertex and completed its sensor measurements in case
of frontier vertex and (b) it has transmitted to the BS its
perceived data and no other robot still requires it as a relay.
Rt
e denotes the set of ready robots at step t . Note that, to

declare a robot to have completed its service as relay, several
specific conditions could be defined, either offline or online
i.e., jointly specified with new deployments and fixed, or
changeable according to suitable policies. Section6discusses
a possible implementation of the readiness condition. Finally,
let Rt

c ⊇ Rt
e be the set of robots connected with the BS at

time t .
The following constraints are posed for a deployment π t :

(I) Qt ∪ {b} must form a single connected component in
Gt ;

(II) if Ft 	= ∅, then Qt ∩Ft 	= ∅, that is at least one frontier
must be reached by a robot;

(III) for each robot r /∈ Rt
e it must hold that pt̄r ∈ Qt , where

t̄ < t denotes the time step of the last issued deploy-
ment;
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(IV) π t must not change the robot-goal assignments for each
robot r /∈ Rt

c (i.e., non-connected robots).

Constraint I imposes recurrent connectivity, by forcing
robots to be able to exchange data with the BS when they
occupy their goal vertices. Constraint II requires a minimum
exploration progress rate: if no frontier can be further visited,
then no additional space can be explored and the mission
ends. (Note that, in this case, exploration can progress only by
relaxing the connectivity constraint.) Constraints III and IV
define feasible asynchronous re-deployments. Specifically,
Constraint III allows the BS to accommodate a number of
new goals equal to that of ready robots. That is, preemption at
configuration level for unreached goals is forbidden. Instead,
robots’ preemption is allowed in favor of a new deployment.
This might be preferred in the presence of new goals. Finally,
by Constraint IV, a robot’s deployment can be changed only
if it is able to receive data from the BS (so, a non-ready
robot’s assignment could be modified if more convenient).
To guarantee the correct reception of a new plan, a temporary
halt of all the non-ready, connected robots can be enforced.

The above constraints do not model the feasibility of the
transition between one configuration to another. For instance,
it might be possible that the path planning module of a robot
fails to produce a plan allowing to reach the assigned goal
due to, e.g., interference with paths of other robots, or noise
in the map. If this happens, a suitable procedure must be
in charge of detecting the problem and computing a new
plan. We think that such an approach is much simpler than
trying to incorporate into the above constraints a multirobot
path planning subproblem, which is very difficult per se; see,
e.g., (Yu 2016).

In principle, the computation of new deployments can
be triggered by different conditions. This generalizes the
approach adopted in (Pei et al. 2013), where new plans are
issued only when all robots have reached their goal locations.
While performing a deployment, some robots could become
ready before others, hence becoming able to receive a new
location to reach. As it will be shown in the next sections,
new deployments involving only part of the robot team can
exploit communication links that will be made available by
robots currently not ready to establish communication links
with the BS. Figure 2 shows a snapshot of an exploration
process with ready and not ready robots.

3.3 Method overview

Given the setting described above, the objective is to compute
robots’ deployments π t (·) allowing the multirobot system to
incrementally achieve efficient exploration of the environ-
ment in terms of explored area and traveled distance. At the
same time, such a deployment should comply to recurrent

Fig. 2 Exploration snapshot. Blue and red not ready and ready robots,
respectively.Black-edged squaresvertices ofGt .Green current commu-
nication links.Purple frontiers of the last issued plan. Image from (Banfi
et al. 2016) (Color figure online)

connectivity constraints. In the following, we present two
approaches for computing a new deployment.

The first is described in Sect. 4. The optimal deployment
under Constraints I-IV is computed by solving a single bi-
objective Integer Linear Program (ILP). The proposed ILP
maximizes the information gain g(v) collected from the ver-
tices to be visited while, at the same time, minimizes the
distance traveled by the robots.

In Sect. 5, we present our second approach. In general,
it is less computationally demanding and, as a consequence,
could be more suitable for real online settings. The main
idea is to solve the planning problem in two stages. The first
stage computes an optimal configuration Qt under a given
utility function defined on the information gain of the fron-
tier vertices. The second stage finds an optimal deployment
πt (·) that minimizes the traveled distance, given the optimal
configuration Qt .

4 Optimal one-stage approach

The first approach we propose finds the optimal robots’
deployment π t (·) for a set of ready robots Rt

e by solving
a single Integer Linear Program (ILP). For this reason, we
refer to it as an optimal one-stage approach. Our ILP is such
that its optimal solution encodes a deployment that maxi-
mizes a weighted combination of the information gains and
traveling costs.

Our ILP is inspired by (Álvarez-Miranda et al. 2013),
where a related problem, called Rooted Maximum Node-
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Weight Connected Subgraph with Budget Constraint (B-
RMWCS), is solved. The formulation works on a directed
version of Gt obtained as follows: each undirected commu-
nication edge is replaced by two symmetric arcs except for
the edges incident to the BS vertex b, which are replaced by
outgoing arcs. With a slight overload of notation, we call Ct

the set of arcs obtained after such replacements.
Each ILP solution is a robot deployment π t (·) that is

encoded by the following decision variables:

– zrv , taking value 1 if and only if robot r is associated with
vertex v ∈ V t \ {b} (number of variables: |R|(|V t |−1));

– yv , taking value 1 if and only if vertex v ∈ V t \ {b} is
selected in the solution (number of variables: |V t |);

– xi j , taking value 1 if and only the directed arc (i, j) is
selected in the solution (number of variables: |Ct |).

In any feasible solution, variables zrv and yv encode a well-
formed deployment π t and the associated configuration Qt ,
respectively. Variables xi j , instead, encode an arborescence
rooted at the BS and spanning the vertices of Qt (those
selected with variables yv). By definition, an arborescence
guarantees the existence of a unique directed path (a con-
nected sequenceof selected arcs) from theBS to each selected
vertex. The existence of such paths implies that, in the orig-
inal undirected graph, the deployment encoded by variables
zrv is connected.

Let us call, with a slight overload of notation, d(r, v) the
distance between the current pose of robot r ∈ Rt

c and vertex
v ∈ V t estimated at the time the ILP is instantiated to be
solved. (Notice that d(r, v) can be accurately computed at
the BS, since r ∈ Rt

c is in communication by definition.) The
objective function we optimize reads as follows:

maximize
∑

r∈Rt
c

∑

v∈V t

[wgg(v) − wdd(r, v)]zrv (1)

This function balances the cumulative information gain
g(·) robots can get from a joint perception and the cost as the
total traveled distance d(·). The trade-off between the two is
given by the parameters wd , wg . In particular,

wd = α

maxr∈Rt
cv∈V t d(r, v)

and wg = 1 − α

maxv∈V t g(v)
,

withα ∈ [0, 1], so that the contribution given by each robot in
the deployment is a number varying between 1 and−1. Note
that the contributions given by the robots currently not in
communication with the BS are excluded from the objective
function, as they will be equal in all the candidate solutions.

Now, to introduce the set of constraints, we denote with
C+(v) and C−(v) the arcs leaving (+) or entering (-) vertex

Fig. 3 An example of Gt and its directed version. Directed cuts
induced by a set of vertices S are shown too

v ∈ V t , respectively. The directed cuts induced by the set
of vertices S ⊆ V t are defined as δ+(S) = {(i, j) ∈ Ct |
i ∈ S, j /∈ S} and δ−(S) = {(i, j) ∈ Ct | i /∈ S, j ∈ S}. In
Fig. 3 we report a simple example of a graphGt and the asso-
ciated directed version where an example of directed cuts is
depicted. Also, letπ t̄ = 〈pt̄1, pt̄2, . . . , pt̄m〉 be the deployment
associated to the last issued plan (or to the starting position of
the robots if exploration is just starting). The maximization
of Eq. 1 is subject to the following set of constraints:

∑

(i, j)∈C−(v)

xi j = yv ∀v ∈ V t \ {b} (2)

∑

(i, j)∈δ−(S)

xi j ≥ yv ∀S ⊆ V t \ {b},∀v ∈ S (3)

∑

r∈R

zrv = yv ∀v ∈ V t \ {b} (4)

∑

v∈V t\{b}
zrv = 1 ∀r ∈ R (5)

∑

f ∈Ft

y f ≥ 1 (6)

ypt̄r = 1 ∀r ∈ R \ Rt
e (7)

zrpt̄r = 1 ∀r ∈ R \ Rt
c (8)

Constraints 2 and 3, whose number is |V t | − 1 and
(|V t | − 1)2|V t |−2, respectively, force the new deployment
to be connected in the form of an arborescence rooted at the
BS, formalizing Constraint I of Sect. 3. Constraints 4, whose
number is |V t | − 1, impose that each vertex belonging to Qt

must be occupied by exactly one robot. Constraints 5, whose
number is |R|, imposes the allocation of each robot to exactly
one vertex in the new deployment. Constraint 6 imposes the
inclusion in the newdeployment of at least one frontier vertex
(Constraint II of Sect. 3). Constraints 7,which are atmost |R|,
force to include in the new configuration those vertices rep-
resenting goal locations of non-ready robots (Constraint III
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of Sect. 3). Finally, Constraints 8, again at most |R|, enforce
not to change vertex allocation for robots currently not in
communication with the BS (Constraint IV of Sect. 3).

We complete the description of the ILP we solve to find
an optimal deployment with the following observations:
– Our problem formulation is such that, in presence of non-
ready and/or non-connected robots, the new deployment
of ready robots can exploit communication links that
are made available by the former, due to the constraints
imposed on the yv variables.

– ILPs are NP-hard, thus modern solvers have exponen-
tial worst-case running times; however, on the average
case, good efficiency is often achieved (as we show in
our experiments).

– The number of Constraints 3 is exponential in the size of
the input. Therefore, as detailed in Sect. 7, to optimally
solve the model, a Branch&Cut approach similar to that
used in (Álvarez-Miranda et al. 2013) is employed. The
idea is to gradually introduce violated inequalities (3) as
soon as the solution of a new LP relaxation is available.
The problem of recognizing such violated constraints can
be solved in polynomial time.

5 Optimal and approximate two-stage approaches

The second approach we present was originally introduced
in (Banfi et al. 2016) and, differently from the previous one,
exploits a decomposition into two sub-problems. Each sub-
problem is then solved in a separate stage. The first stage
(Sect. 5.1) is the optimal configuration problem, in which
we seek for the configuration Qt that maximizes a utility
function defined on frontiers and that satisfies the recurrent
connectivity constraints. The second stage (Sect. 5.2) is the
optimal deployment problem, in which, given the optimal
configuration calculated in the previous stage, we compute
the robot-location assignmentπ t thatminimizes the traveling
costs.

5.1 First stage: optimal configurations

Configurations are evaluated by using the cumulative infor-
mation gain achievable by acquiring sensor data from the
selected locations. Instead of explicitly accounting for the
traveled distance in this first stage of planning, the infor-
mation gain of each frontier is heuristically weighted by a
measure of distance (a lower bound) that any ready robot
will need to travel to reach it. In particular, the utilityU (·) of
a frontier vertex f combines the estimated information gain
g( f ) and its minimum traveling cost (Spirin et al. 2013; Pei
et al. 2013) as:

U ( f ) = g( f )

min
r∈Rt

e

d2(r, f )
,

where d(r, f ) denotes the current estimated distance of robot
r to frontier f , and gains and distances can be thought as nor-
malized with respect to their maximum value. Non-frontier
vertices have null utility and, with a slight overload of nota-
tion,U (S) = ∑

v∈S U (v) denotes the utility of any subset of
vertices S ⊆ V t .

The goal is to find a configuration Qt of size at most |Rt
e|

(the number of ready robots) on Gt that is optimal, i.e., that
maximizes U (Q) while maintaining connectivity with the
BS and accounting for the presence of non-ready and non-
connected robots. This problem, in case all robots are ready,
can be seen as particular case of known NP-hard problems
such as theConstrainedMaximum-Weight Connected Graph
problem (CMCG) (Lee and Dooly 1996), the Rooted Budget
Prize-Collecting Steiner Tree problem (B-RPCST) (John-
son et al. 2000), and the Rooted Maximum Node-Weight
Connected Subgraph with Budget Constraint (B-RMWCS)
(Álvarez-Miranda et al. 2013). In particular, the problem
of computing an optimal configuration can be shown to be
NP-hard with a simple adaptation of the reduction outlined
in (Hochbaum and Pathria 1994) for the unconstrained ver-
sion of CMCG. Moreover, notice that the computation of the
optimal configuration can be thought as a particular case of
computing an optimal deployment as formalized in Sect. 4
(it suffices to assume that the constraint on the number of
robots belonging to the configuration is tight), where all the
distances robots have to travel are equal to a fixed constant. In
the following, two alternative approaches to find the optimal
configuration are presented.

5.1.1 Finding the optimal configuration

Similarly to the formulation presented in Sect. 4, an ILP
formulation can be derived by simplifying that discussed
in (Álvarez-Miranda et al. 2013) for solving B-RMWCS.
The idea is to find the best connected configuration in the
form of an arborescence computed on the directed version
of Gt (generated as in Sect. 4). First, Gt is further modified
by removing the vertices assigned to non-ready robots and
introducing fictitious communication edges directly connect-
ing the neighbors of the removed vertices with the vertex b
of the BS. This modification clearly simplifies the problem
while it encodes the fact that non-ready robots already have
a goal assigned. Such robots could be relays for the cur-
rent replanning robots. The following binary variables are
defined:

– y f , taking value 1 if andonly if frontier f ∈ Ft is selected
in the configuration (number of variables: |Ft |);

– xi j , taking value 1 if and only if the directed arc (i, j) ∈
Ct is selected in the configuration (number of variables:
|Ct |).
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Notice that, contrary to the ILP model in Sect. 4, vertex
variables y f are defined only for frontier vertices. Again,
δ+(S) and δ−(S) denote the directed cuts induced by the set
of vertices S ⊆ V t . The ILP model reads as follows:

maximize
∑

f ∈Ft

U ( f )y f (9)

subject to
∑

(i, j)∈Ct

xi j ≤ |Rt
e| (10)

∑

(i, j)∈δ−(S)

xi j ≥ y f ∀ f ∈ Ft , ∀S ⊆ V t \ {b} s.t. f ∈ S

(11)

The objective function 9maximizes the configuration util-
ity. Constraint 10 limits the size of the new configuration to
the available number of robots. If frontier f is occupied,
Constraints 11 require a connected sequence of links from
the BS to f . The number of this latter set of constraints is
upper-bounded by (|V t | − 1)2|V t |−2. Note that, compared
to the ILP of the one-stage approach, this model contains
significantly less variables and constraints.

Given an optimal solution of the above ILP, the (weakly)
connected component containing b, pruned of some possible
useless arcs, represents an optimal configuration from which
it is easy to retrieve the final Qt . Despite the exponential
multiplicity of the last set of constraints, themodel can still be
solved optimally for instances of moderate size by the same
Branch&Cut algorithm introduced with the formulation of
Sect. 4; see Sect. 7 and (Álvarez-Miranda et al. 2013) for
details.

5.1.2 Approximating the optimal configuration

Real operational conditions require computational efficiency
and to keep the problem tractable when the number of
robots and/or the size of Gt increase. We now discuss an
approximation method, able to introduce efficiency in the
computation of the new Qt with a bounded loss of optimality.
The literature presents different studies on the approximation
of CMCG (Lee and Dooly 1996), B-RMWCS (Moss and
Rabani 2007), and B-RPCST (Chekuri et al. 2012). The best
result applicable to the problem of finding an optimal config-
uration is the 4+ε approximation algorithm of Chekuri et al.
(2012). However, differently from the standard approach
followed in optimization literature, we do not seek for an
effective solution for any instance. Instead, we leverage our
domain knowledge where vertices are physical locations and
ready robots are not so many. In this section it is shown how,
by exploiting such features, a different approximation algo-
rithm can be developed. Our approach, despite not being
competitive with the best known one for general instances

(as it achieves only a non-constant approximation factor) is
able to provide a better approximation guarantee in typical
exploration settings.

The main idea is to iteratively compute the cheapest tree
(in terms of number of required robots) allowing to connect
the BS with fixed subsets of frontiers of at most a given
size. To compute such a tree, we need to solve a Steiner tree
problem, formally defined below.

Steiner tree problem given an undirected graph G =
(V, E), a subset of terminal vertices S ⊆ V , and a non-
negative edge cost ce ≥ 0 for each edge e ∈ E , find a
minimum-cost subset of edges E ′ ⊆ E such that G =
(V, E ′) contains a path between each pair of vertices in S.

Our problem maps on the Steiner tree problem as fol-
lows: terminal vertices are associated to a particular subset
of frontiers and the BS vertex b, while edge costs are unitary.
The number of vertices in the minimum-cost tree is then the
minimum number of robots required to connect the subset
of frontiers we chose. Our algorithm is also based on two
further considerations. For any δ ∈ N:

– if the number of vertices to connect is upper bounded
by δ + 1, then the optimal Steiner tree can be com-
puted in polynomial time (Kimelfeld and Sagiv 2006);
let us call (δ + 1)-Steiner an algorithm performing such
a task; for any instance with up to δ + 1 terminals the
(δ + 1)-Steiner algorithm computes efficiently the opti-
mal solution; clearly, since the Steiner tree problem is
NP-hard (even when edge costs are equal) (Garey and
Johnson 1979), this does not imply an efficient algorithm
for the general case (any number of terminals), for which
(δ + 1)-Steiner cannot be applied;

– the enumeration of the subsets of at most δ frontiers can
be done in polynomial time.

The proposed approximation algorithm works on a mod-
ified version of Gt , where vertices assigned to non-ready
robots are removed as previously explained. Also, it oper-
ates by fixing to δ the maximum number of frontiers that can
be occupied by the configuration (thus allowing suboptimal-
ities). Then, for each subset Fδ of at most δ frontiers, the
algorithm searches for the optimal Steiner tree T ∗ connect-
ing Fδ ∪ {b} by employing the (δ + 1)-Steiner algorithm. If
the number of vertices in T ∗ does not exceed the budget of
robots |Rt

e|, then T ∗ is considered a feasible configuration
and checked against the best configuration found so far. Oth-
erwise, if T ∗ exceeds the budget, then, being T ∗ the cheapest
tree, no feasible configuration exists for Fδ .

Algorithm 1 formally presents the steps of the proposed
method. ThegenNewSubset() function is used to retrieve
the next subset of frontiers to examine (Step 2). It returns a
subset Fδ of atmost δ frontiers such that no other F ′

δ ⊆ Fδ has
already been determined as non-feasible; this simple prun-

123



Auton Robot

ing rule is applied by maintaining a closed list of discarded
solutions in Steps 7 and 13. Subsets are heuristically ranked
by decreasing utility and increasing size. Notice that, in an
efficient implementation, new subsets are generated lazily,
and they need to be checked only against the newly added
discarded solution; alternatively, the algorithm can be eas-
ily adapted for a recursive implementation not needing any
closed list.

For each returned subset Fδ , two simple tests are per-
formed to determine if it can be discarded without running
(δ + 1)-Steiner on it. First, the longest frontier-frontier or
frontier-BS shortest path in Gt (Step 6) is checked: subtract-
ing 1 to the number of spanned vertices, we have a simple
lower bound on the minimum dimension of the Steiner tree
connecting Fδ and b. If the value computed exceeds |Rt

e|,
Fδ is discarded. Then, U (Fδ) is evaluated (Step 10). This
is a simple lower bound of the total utility possible: if it
does not exceed the current best solution, then Fδ is dis-
carded. Note that this jump in the search is safe. The reason
is that those frontiers not explicitly considered in Fδ , but
potentially part of the “phantom” solution that could have
been obtained by solving the Steiner tree on F and b (i.e.,
frontier nodes not considered as terminals when building the
Steiner tree), will necessarily be taken into account later in
the search in a subsequent set F ′

δ s.t. Fδ ⊂ F ′
δ . The Steiner

tree problem on Fδ ∪ {b} is solved in Step 11, and in Step 12
budget feasibility is checked. At the end of the while loop,
it may be possible that some unoccupied frontiers are still
reachable from the newly created connected configuration
T ∗ with the remaining budget of robots. In this case, the
completeConfiguration() function (Step 21) greed-
ily adds branches from T ∗ to the unoccupied frontier with
the highest utility, until no other frontier can be reached.

Algorithm 1 Compute approximate optimal configurations.
1: while True do
2: Fδ = genNewSubset(Ft , u, δ, closedList)
3: if Fδ = ∅ then
4: break
5: end if
6: if lowerbound(Gt , Fδ , b) > |Rte | then
7: closedList.add(Fδ)

8: continue
9: end if
10: if U (Fδ) > z∗ then
11: T = (δ + 1)-Steiner(Gt , Fδ ∪ {b})
12: if |T | > |Rte | then
13: closedList.add(F)

14: continue
15: else if U (T ) > z∗ then
16: z∗ = U (T )

17: T ∗ = T
18: end if
19: end if
20: end while
21: completeConfiguration(Gt , b, Ft , U , |Rt |, T ∗)

Theorem 1 Let k = min (|Rt
e|, |Ft |). For δ ∈ {1, . . . , k},

Algorithm 1 is a k/δ-approximation algorithm for the prob-

lem of finding the new connected configuration. Its running
time is bounded by O(|Ft |δ[3δ+1|V t | + 2δ+1|Ct | log |V t |]).
Proof For the definition of the genNewSubset() func-
tion, it is ensured that all the possible subsets of frontiers
containing at most δ elements and able to improve the cur-
rent solution can be generated. Therefore, at the end of the
while loop, it is guaranteed that the computed tree T ∗ is
connecting, within the budget limit, the BS vertex b with
Fδ-BEST — i.e., the set of frontiers, possibly bigger than δ,
when the computed Steiner tree makes use of other frontiers
as non-terminal vertices, collecting the maximum utility. Let
FOPT = { f1, f2, . . . , f|FOPT|} be the set of frontiers included
in the optimal solution where OPT = U (FOPT). Clearly, if
δ ≥ |FOPT|, then the algorithm finds the optimal solution.

If instead δ < |FOPT|, let us assume, without loss
of generality, that frontiers in FOPT are labeled such as
U ( fi ) ≥ U ( fi+1) and let β = �|FOPT|/δ� and γ = |FOPT|
mod δ. Moreover, to ease the notation, rename frontiers
fβδ+1, . . . , f|FOPT| as f̄1, . . . , f̄γ , respectively (these are the
γ least-utility frontiers in FOPT). Then we have:

OPT =
β−1∑

i=0

[U ( fiδ+1) + · · · +U ( f(i+1)δ)] +
γ∑

i=1

U ( f̄i ),

where the first summation iterates over subsets of frontiers
of size δ and the second summation covers the possibly
remaining frontiers. Since terms are ordered according to
non-increasing utilities, we have that:

OPT ≤ βU (Fδ-BEST) + γU ( fδ)

by definition of Fδ-BEST and since U ( fδ) ≥ U ( f̄1). If
γ = 0, then the first part of the claim directly follows
since |FOPT| ≤ min (|Rt

e|, |Ft |). Otherwise, notice that
[U ( f1) + · · · +U ( fδ)]/δ ≥ U ( fδ). This implies that

OPT ≤ βU (Fδ-BEST) + (γ /δ)U (Fδ-BEST) =
= |FOPT|

δ
U (Fδ-BEST)

and the first part of the claim again follows.
The asymptotic running time is obtained by noticing that

the while loop performs at most
∑δ

i=1

(|Ft |
i

) = O(|Ft |δ)
calls to the (δ+1)-Steiner algorithm of (Kimelfeld and Sagiv
2006), whose running time is bounded by O(3δ+1|V t | +
2δ+1|Ct | log |V t |). The greedy completion of T ∗ does not
influence neither the approximation nor the running time
bound. ��

It is easy to show that such an approximation bound, for
suitable choices of δ, can yield a better approximation than
the one provided by the best general algorithm presented in
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literature (Chekuri et al. 2012), which has an approximation
factor of 4 + ε. For example, with a team of 10 robots and
δ = 5 an approximation factor of 2 can be obtained. Also, our
algorithm is much more simple than that of (Chekuri et al.
2012) (a whose detailed complexity analysis of this last one
is not straightforward).

Finally, notice that, when the algorithm is run with δ >

min (|Rt
e|, |Ft |), an optimal solution is always obtained.

5.2 Second stage: optimal deployments

Given a new connected configuration Qt calculated as
described in the previous section, it must be decided which
robot goes to which vertex. Since we are not only interested
in completing the whole deployment in the shortest time,
instead of minimizing the maximum distance a robot has
to travel, as in (Pei et al. 2013), in this paper the cumula-
tive travel distance is minimized, as in (Stump et al. 2011).
In particular, the Hungarian algorithm (Burkard et al. 2009)
is used. Actually, since some non-ready robots may be in
communication with the BS when replanning takes place, a
new allocation of robots to vertices is computed taking into
account also these robots and their previous target locations.
This reduces possible path overlaps between ready and non-
ready robots.

6 Readiness and asynchronicity

In this work, a communication protocol able to dynami-
cally discover multi-hop paths between frontiers and BS is
assumed to be in place, such as the Optimized Link State
Routing Protocol (Clausen and Jacquet 2003). Accordingly,
we now provide a specific definition of readiness that enables
the BS to receive the data from the robots at the frontiers in
minimum expected time, under the assumptions of sufficient
bandwidth along each communication link and of negligi-
ble transmission times. First, notice that, although Sects. 4
and 5 focus on finding a connected tree on Gt , other links
not explicitly considered in the solution could be available to
transmit data between the vertices Qt . Intuitively, the robots
placed on the vertices of the first forming path on Gt from a
selected frontier to the BS should remain available for serv-
ing as relays until all the frontier data have been transmitted
to the BS (possibly, by taking other routes). Formally, given
a deployment π t , for each frontier f ∈ Ft ∩ Qt , call Pf the
path connecting f and the BS vertex b in Gt that is firstly
built according to the time that each robot r needs to travel
from its current position to ptr . A robot r is defined to be
ready if (a) it has reached its goal vertex ptr , and (b) for each
f ∈ Ft ∩ Qt whose Pf contains ptr , the data of f have
been received at the BS, and every other robot r ′ for which
ptr ′ ∈ Pf is at its goal position. For each frontier f , the corre-

sponding Pf can be conservatively computed right after the
computation of π t (·) (thus not considering possible other
links discovered throughout the plan execution) by means of
the following algorithm: order the robots in increasing order
of traveling times; for each robot r , build a restricted ver-
sion of Gt containing only the vertices of Qt associated with
robots expected to reach their goal before r ; if a path exists,
take the shortest, otherwise examine the next robot.

The reader might have noticed that, in practice, new
deployments could prescribe to simply “append” some robots
to a previously formed connected configuration. This hap-
pens, for instance, when there are less frontiers than robots,
whose corresponding vertices in Ft are directly connected to
the BS vertex b. Of course, such robots can become imme-
diately ready once they arrive at their goal locations.

As soon as a robot becomes ready, it is available to receive
a new plan from the BS (our asynchronicity notion is built
upon this feature). Several optionsmay be taken in considera-
tion for triggering a new plan computation, e.g., replan when
a fixed threshold θ of ready robots is reached, or as soon as
a sufficiently interesting region is discovered. In the experi-
ments described in the next sections, the effect of choosing
different θ – i.e., of replanning as soon as at least θ robots
become ready – is studied.

7 Simulation experiments

We choose the MRESim simulator (Spirin et al. 2013)
since it focuses on communication and we select three envi-
ronments of size 80 m × 60 m (represented by occupancy
grids, whose cell edge length is 10 cm), shown in Fig. 4.
Office and Open are from the Radish repository (Howard and
Roy2003) (“sdr_site_b” and “acapulco_convention_center”,
respectively), while Cluttered is from the MRESim reposi-
tory (“grass”). We run simulations with teams of 6 and 12
TurtleBot-like robots moving at a constant speed of 0.4m/s,
and equipped with a depth camera with a maximum range of
5 m, a 60◦ FOV, and an angular resolution of 1◦. For each
experimental set, 5 runs of 900 s (steps) are executed for
each environment, randomly varying the starting positions
of the BS and robots. For the simulation experiments, we
assume that the communication model robots are endowed
with coincides with the actual possibility of communicating
in the simulated world while ensuring enough bandwidth.
Clearly, this assumption will not hold in the real-robots
experiments, which will thus validate our method in real-
istic scenarios. In particular, the disk communication model
is used with maximum distance 15m for 6 robots (i.e., robots
can communicate if within a given distance), and the limited-
distance line-of-sight communication model with the same
maximum distance for 12 robots. (A more relaxed commu-
nication model for teams of 6 robots is adopted to avoid to
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Office Open Cluttered

Fig. 4 Simulation environments, approximate size 80×60m

excessively constrain the exploration process, especially in
the Office and Cluttered environments.) On top of the BS
global grid map, the exploration graph Gt is iteratively built
by adding as vertices the locations representing a sufficiently
big cluster of frontier cells, so that already visited frontiers
become candidate relay locations for future plans. To eval-
uate the proposed strategies, three performance metrics are
logged over time: the percentage of explored area, the aver-
age robots’ traveled distance (that can be related to energy
consumption), and the average time a robot is not in commu-
nication with the BS (an indicator of the situation awareness
achieved at the BS). Figure 2 shows a snapshot of an exper-
iment running in MRESim on the Office environment under
the limited-distance line-of-sight communicationmodelwith
12 robots.

In a first set of experiments, we start by considering a syn-
chronous setting (θ = 6 and θ = 12 for 6 and 12 robots,
respectively) and study the performance obtained by the
three proposed algorithms: the optimal one-stage ILP-based
algorithm presented in Sect. 4 (1S-ILP) and the two-stage
algorithms described in Sect. 5, where configurations are
computed optimally (2S-ILP) or approximately (2S-APX).

The GUROBI solver (Gurobi 2015) is used for solving the
ILPs on a laptop equipped with an i5-4310M processor and 8
GB of RAM as follows. Initially, the two ILPmodels contain
all their constraints except for (3) and (11). Violations of such
constraints are checked at each node of the Branch&Bound
tree by means of the standard separation procedure involv-
ing the resolution of a max-flow problem in the underlying
graph, combined with the usage of nested cuts to find more
violated cuts at each node; see (Álvarez-Miranda et al. 2013)
for details. The α parameter of 1S-ILP is set to 0.5 after some
preliminary experiments,while 2S-APX is runwith δ = 2 for
6 robots and δ = 4 for 12 robots to obtain a 3-approximation
for both team sizes.

First, we show two different views for our results that
we call real time and instant replanning. The real time view
entails an exploration mission that unfolds in time just like it

would be in reality with our implementation: both traveling
and planning take some time. Instead, the instant replanning
view filters out the time spent in computing plans. It shows
how the explored area would grow under an ideal imple-
mentation achieving instantaneous plan computations. This
second view evaluates the goodness of our plans indepen-
dently of the efficiency of our implementation.

Figure 5 shows the results obtained in the Office and
Cluttered environments with the team of 6 robots in terms
of percentage of explored area as function of mission time.
Bars correspond to the standard deviation. Results for Open
environment are not reported here as they show a simi-
lar trend to those in Office and Cluttered. With real-time
planning, Fig. 5a, c, the one-stage approach shows better
performance than the two-stage ones in both environments,
although not statistically significant. For instance, at the end
of the mission in the Office environment the gap between
1S-ILP and 2S-APX has p-value = 0.0575 according to
one-wayANOVA.The disadvantage of higher computational
time required to solve a more complicated ILP is compen-
sated by the much higher quality of the solution. Moreover,
notice that the performance of 2S-ILP and 2S-APX are very
similar. This can be explained by the fact that the ILPmodels
obtained in such instances require just up to a few seconds
to be optimally solved. Further, this shows that the approx-
imation algorithm performs comparatively well against its
optimal counterpart. Of course, the advantage in terms of
explored area between the one-stage and the two-stage plan-
ning approaches is amplified when considering planning
instantaneous (Fig. 5b, d), especially in the Cluttered envi-
ronment.

Figure 6 shows the results obtained for 12 robots in the
Office andCluttered environments (again,Open environment
presents a similar trend). When considering real-time plan-
ning (Fig. 6a, c), 1S-ILP seems to be only slightly better than
the two-stage approaches; as such it is not clear whether 1S-
ILP provides a significant advantage. Considering planning
instantaneous, it is also less evident the gain in solution qual-
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Fig. 5 Comparison of the planning approaches for 6 robots (θ = 6)
in the Office and Cluttered environments. a Office, real-time. b Office,
instant replanning. cCluttered, real-time.dCluttered, instant replanning
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Fig. 6 Comparison of the planning approaches for 12 robots (θ = 12)
in the Office and Cluttered environments. a Office, real-time. b Office,
instant replanning. cCluttered, real-time.dCluttered, instant replanning

ity when adopting 1S-ILP. A higher density of robots seems
to be able to alleviate the penalty due to a lower solution
quality of the deployment.

In a second set of experiments, we study the effect of
choosing different θ when considering real-time planning,
since the delays due to a high planning time might turn out
to be the bottleneck of the system when introducing asyn-
chronicity. In particular, our aim is to investigate (a) if 1S-ILP

remains a practical approach to adopt, given that new plans
need to be computed much more frequently when θ < m,
and (b) which replanning threshold θ should be adopted in
the different environments. Since 2S-ILP and 2S-APX have
been shown to offer comparable performance, only 2S-APX
is tested as the two-stage approach, in order to have the guar-
antee of polynomial worst-case running time. In particular,
we again set δ = 2 for 6 robots and δ = 4 for 12 robots to
obtain a 3-approximation for both the team sizes, regardless
of the particular replanning threshold chosen. Note that this
means that there are cases in which the algorithm returns an
optimal solution.

To provide a reference comparison, we evaluate the
proposed approach against the one presented by Spirin
et al. (2013). This method, that we label as Utility, rep-
resents a communication-aware exploration strategy where
exploration of new areas can be efficiently traded-off with
communication requirements. We compare against it since
it has been shown to complete exploration faster than the
role-based strategy of de Hoog et al. (2009) (besides, the
strategy is already available in MRESim). In short (see also
Sect. 2), Utility defines a distributed strategy where each
robot chooses autonomously which frontier to explore in a
greedy fashion and returns to the BS as soon as the ratio
between the area supposed to be known at the BS and that
known by the robot goes below a predefined value 0 ≤ r ≤ 1.
In our experiments, we set r = 0.5 to obtain a balanced,
yet more exploration-prone, behavior. Note that this strat-
egy does not embed the recurrent connectivity constraint, so
robots can remain disconnected from the BS for an unpre-
dictably long amount of time and are thus expected to explore
more freely.

Figure 7 shows the percentage of explored area known at
the BS for 6 robots in the three environments as the mission
unfolds for 1S-ILP with different θ and for Utility. A low
replanning threshold seems to provide a very limited advan-
tage in the first phase of exploration. However, towards the
end, replanning once for half (in Office) or whole (in Open
and Cluttered environments) team offers better performance.
Nevertheless, the difference is not statistically significant.
For example in the Open environment, p-value = 0.1072.
This is due to the increasingly high planning time required to
solve the model to optimality, which leads to a congestion in
the computation of new plans. Comparing the performance
of 1S-ILP with 2S-APX (Fig. 8), a statistically significant
improvement can be observed at the end of the mission only
in the Cluttered environment when selecting θ = 1 (p-
value= 0.0019). However, notice that the lower planning
times required by 2S-APX are directly reflected in a trend
of statistically significant better performance for decreasing
values of θ in all the environments (for instance, for θ = 1
and θ = 6 in Cluttered, p-value = 0.003). Comparing our
recurrent connectivity approach with the Utility method, it
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Fig. 7 Explored area for 6 robots: 1S-ILP with different replanning thresholds (θ = 1, 3, 6) and Utility method with r = 0.5 (Spirin et al. 2013)
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Fig. 8 Explored area for 6 robots: 2S-APX with different replanning thresholds (θ = 1, 3, 6) and Utility method with r = 0.5 (Spirin et al. 2013)

can be observed that, in general, the latter offers better per-
formance in terms of explored area, but with a much lower
situational awareness at the BS and a much higher energy
consumption; see the results of the Cluttered environment in
Fig. 9; the results for the other two environments exhibit sim-
ilar trends. Figure 10 shows some snapshots of a simulation
in the Office environment with 2S-APX and θ = 1.

We now examine the performance with a team of 12
robots. Figure 11 shows the percentage of explored area
known at the BS in the three environments for 2S-APX and
Utility. As in the previous case, a low replanning thresh-
old provides a statistically significant advantage in terms of
explored area in all the environments; for instance, in Office,
2S-APX1 versus 2S-APX12 has a p-value = 0.0035.

Again, compared to Utility, our approach allows a better
situational awareness at the BS, while sacrificing some per-
formance in terms of explored area (actually, less than in the
previous case). The results for 1S-ILP, partially reported in
Fig. 12, confirm the previous insights. In particular, notice
how θ = 1, that yields the best results in terms of explored
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Fig. 9 Time not in communication with the BS (a) and traveled dis-
tance (b) for 6 robots in Cluttered: 2S-APX with different replanning
thresholds (θ = 1, 3, 6) and Utility method (Spirin et al. 2013)

area with 2S-APX, now results in a heavy congestion in the
computation of new plans. The situational awareness at the
BS and the distance traveled, whose graphs are not reported
here, show the same trends as in Fig. 9 for 6 robots.
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Fig. 10 Exploration example (6 robots, 2S-APX, θ = 1, Office envi-
ronment). a All the robots are initially close to the BS and in the ready
status (red). b The exploration proceeds along several directions in par-
allel. (c) After some time, the robots focus on mapping the left part of
the environment. All the robots become ready at once due to the fact that
the robot closest to the BS, required to connect to it with all the other
robots, is the last to reach its goal. d Once large part of the environment
has been mapped, and the mission approaches its deadline, the graph
link topology starts to resemble a tree (Color figure online)

8 Real-world experiments

The proposed methods are also validated in a real scenario,
with a laptop (the BS) and 6 TurtleBot 2mobile robots,1 each
one equipped with a netbook and a Microsoft Kinect (see 1).
An ad hoc network is set through the WiFi interfaces of the
computers and the Optimized Link State Routing Protocol
is run to manage a multihop network (Clausen and Jacquet
2003). ROS (Quigley et al. 2009; O’Kane 2013) is used to
control themultirobot system. In such a setup, robots are able
to communicate only if the signal quality is good enough. It
might be possible that a communication edge in the commu-
nication graph does not necessarily translate into an actual
communication link. However, in the experiments, given
the conservative way in which we build the communication
graph (explained later), robots are able to communicate when
expected. We use the “nav2d” stack2 for multirobot (graph-
based) SLAM and path planning. The exploration strategy is
implemented as a plugin of the “nav2d_exploration” pack-
age.

The Swearingen Engineering Center at the University of
South Carolina is used as testing ground for the proposed
approach; Fig. 13 shows one of the floors where robots have
been deployed. The size of the portion of the environment is
approximately 90 m× 65 m. There are two long corridors,
with some other intersecting corridors/halls, and a looping
corridor, thus requiring the robots to form a chain to guar-
antee communication with the BS. After some preliminary
tests, we assumed that two locations can communicate if they
are within 15m range. Experiments involved running 1S-ILP
and 2S-APX with θ = 1 and θ = 6. For θ = 6, initially
two coalitions of robots are formed, each one going towards
the frontiers of the corridors. Figure 14 shows the partial
map known by the BS (and the robots) at some time step
using 1S-ILP, with θ = 6. It is possible to observe that some
noise is introduced, due to perception andmotion errors. One
immediate consequence is that, in order to let the exploration
proceed, a relaxed version of the communication model has
to be adopted: given the current known map, two locations
can communicate if they are in line of sight, with some tol-
erance. Without this relaxation, many goal locations for the
robots could not be connected, resulting in a premature end
of the exploration task. Such a relaxation is realistic, as WiFi
signal can be received even in presence of some obstacles
that obstruct the view.

When the robots in one branch of the corridor cannot pro-
ceed further without violating the communication constraint,
they become ready and are allocated to the other branch of the

1 http://www.turtlebot.com
2 http://wiki.ros.org/nav2d
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Fig. 11 Explored area for 12 robots: 2S-APX with different replanning thresholds (θ = 1, 3, 6, 9, 12) and Utility method with r = 0.5 (Spirin
et al. 2013)
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Fig. 12 Explored area for 12 robots: 1S-ILP with different replanning
thresholds (θ = 1, 3, 6, 9, 12) and Utility method (Spirin et al. 2013)

Fig. 13 Part of the third floor at the SwearingenEngineeringCenter for
some of the experiments with real robots (blue) and base station (green),
whose initial poses are indicated on the map (Color figure online)

corridor to form a longer chain. Note that, with real robots,
recoverymechanisms are necessary. For instance, someof the
robots could not actually move to the assigned goal because
of the noise in the map. In such cases, the robot aborts the
motion to the location, notifying the BS. To guarantee that

Fig. 14 Partial map built by 6 TurtleBots and known by the BS using
1S-ILP, θ = 6

the communication topology always contains a tree, all the
robots belonging to the branches to which the aborted robot
belongs are preempted and become ready for a new assign-
ment. Figure 15 shows the trend of the explored area during
the mission. After some time, we observe that the robots
basically do not move. This can be explained by two facts.
One is that the BS is computing a new plan for the robots.
The second cause is that, with a noisy map, several fron-
tiers could be generated in non-reachable areas, leading to
a sequence of plan re-computations. In this case, a proper
filtering of the frontiers should be adopted in such a way that
planning time, that is typically the bottleneck, is not wasted.
It is possible to observe that 1S-ILP6 is the strategy that out-
performs the rest. Compared to 2S-APX, the quality of the
solution found by 1S-ILP is higher, confirming the insights
from the simulation results, presented in the previous sec-
tion. In contrast to the simulation results, setting θ = 1,
while initially provides some benefits, eventually worsens
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Fig. 15 Area explored by the real TurtleBot 2 robots

the performance. With frequent replanning, robots tend to
interfere in the motion of each other: this possibly results in
collisions that can degrade the quality of the map, leading
to situations in which many locations are not valid. Notice
that the bandwidth is not an issue during the experiments, as
robots and base station are not sharing very intensive data.

9 Discussion of the experimental results

In this section, we make some general observations from
the results obtained in simulations and in real-robots experi-
ments. In general, we cannot say that one approach performs
better than another. However, we think that the following
key points will be of help in guiding a practitioner in deploy-
ing a multirobot system for exploring an initially unknown
environment under recurrent connectivity constraints.

1. ILP-based algorithms are (relatively) fast, but some-
times not enough for real-world settings In all the experi-
ments, we are always able to solve the ILP models of the
one-stage and two-stage approaches to optimality in a few
seconds on average, rarely reaching 1 minute or more of
computation (this usually happens towards the end of the
mission, when the underlying graph is large and the number
of variables and constraints is large, too). For 6 robots, this
computational disadvantage is compensated by the higher
quality of the computed plans.However, for larger team sizes,
an ILP-based algorithm could turn out to be the bottleneck of
the systemwhen replanning happens frequently (see, e.g., the
performance of 1S-ILP for small values of θ in Fig. 12). This
could also happen when exploring very large environments.

2. Optimality of configurations does not necessarily imply
best performanceDue to the online nature of the exploration
problem, it is not surprising that locally optimal decisions that
return the best possible configurations (as defined in the one-
stage approach) are not necessarily translated into a globally
optimal performance. For example, in Fig. 6c, the curves of

1S-ILP, 2S-ILP, and 2S-APX are almost overlapped. More-
over, from what observed before, the usage of the one-stage
approach does not remain a viable option for very large teams
when a small replanning threshold is adopted.

3. The choice of the replanning threshold should depend
on the team size and on the chosen approach From our exper-
iments both in simulation and on real robots, it seems that
a high replanning threshold θ should be preferred for small
team sizes using the one-stage approach. This might be due
to the fact that, with few robots, the system has less chances
to “recover” from an erroneous myopic decision based on
partial information (that might have taken some time to be
produced).

4. Real-world implementations must be accompanied by
backup procedures, whose activation negatively impacts on
the performance In general, exploration with real robots
proceeds at a much slower pace compared to the one in
simulation (which is error-free). In our current implementa-
tion, when one (or more) robot(s) cannot reach the assigned
goal location(s), all the robots depending on it (them) are
preempted, and a new configuration is computed. This intro-
duces a non-negligible delay with respect to an error-free
setting, which seems to be minimized when replanning for
the whole team, i.e., when θ = 6. The reason is that, with
θ = 1, robots tend to interfere more frequently in the motion
of each other.

10 Conclusions

Recurrent connectivity is a way for introducing commu-
nication constraints in multirobot exploration missions by
requiring that robots must communicate with a base sta-
tion whenever they reach goal locations from which new
knowledge can be acquired. In this work, we defined and
extensively evaluated two planning techniques for efficient
exploration under recurrent connectivity constraints. First,
we proposed a single-stage strategy based on an ILP whose
objective function accounts for both exploration costs and
information gains. Then, we defined a two-stage strategy,
separating the problem of locations selection from that of
the robot-location assignments. The experimental analysis
showed that the proposed methods can be effectively applied
tomultirobot explorationmissions, because they provide per-
formance comparable with that of a state-of-the-art method
that leaves more freedom to explore.

Future work will improve the selection of the locations for
the graph (for example, in an indoor environment, it would
be possible to use the Generalized Voronoi Graph (Zhang
et al. 2014)), and fast detection of frontiers, building on
the work of (Keidar and Kaminka 2014). Furthermore, our
method could be extended to allocations that consider shared
resources such as space (Nam and Shell 2015). Currently,
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we are also investigating the possibility of adopting a more
speculative link-detectionmechanism to build the set of com-
munication edges, like resorting to a dedicated subteam of
robots to build a “communication map“ by means of an
online learning method such as Gaussian Processes (Banfi
et al. 2017), which are particularly suitable for learning spa-
tial phenomena. Finally, this development would also entail
the need for backup plans to be used in the presence of false-
positives in predicted links.
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Howard, A., Matarić, M., & Sukhatme, G. (2002). An incremental self-
deployment algorithm for mobile sensor networks. Autonomous
Robotots, 13(2), 113–126.

Jensen, EA., Lowmanstone, L., Gini, M. (2016). Communication-
restricted exploration for search teams. In Proceedings of DARS,
(to appear).

Johnson, D. S., Minkoff, M., & Phillips, S. (2000). The prize collecting
seiner tree problem: Theory and practice. Proceedings of SODA,
1, 760–769.

Julia, M., Gil, A., & Reinoso, Ó. (2012). A comparison of path planning
strategies for autonomous exploration and mapping of unknown
environments. Autonomous Robots, 33(4), 427–444.

Keidar, M., & Kaminka, G. A. (2014). Efficient frontier detection for
robot exploration.The International Journal of Robotics Research,
33(2), 215–236.

Kimelfeld, B., Sagiv, Y. (2006). New algorithms for computing Steiner
trees for a fixed number of terminals. http://researcher.ibm.com/
researcher/files/us-kimelfeld/papers-steiner06.pdf

Lee, H. F., & Dooly, D. R. (1996). Algorithms for the constrained
maximum-weight connected graph problem. Naval Research
Logistics, 43(7), 985–1008.

Moss, A., & Rabani, Y. (2007). Approximation algorithms for con-
strained node weighted Steiner tree problems. SIAM Journal on
Computing, 37(2), 460–481.

Mukhija, P., Krishna, K., & Krishna, V. (2010). A two phase recursive
tree propagation based multi-robotic exploration framework with
fixed base station constraint. In Proceedings of IROS, pp. 4806–
4811.

Nam, C., & Shell, D. A. (2015). Assignment algorithms for modeling
resource contention in multirobot task allocation. IEEE Transac-
tions on Automation Science and Engineering, 12(3), 889–900.

Ochoa, S., & Santos, R. (2015). Human-centric wireless sensor net-
works to improve information availability during urban search and
rescue activities. Information Fusion, 22, 71–84.

O’Kane, J.M. (2013). A Gentle Introduction to ROS. Independently
published, available at http://www.cse.sc.edu/~jokane/agitr/.

Pei, Y., Mutka,M., &Xi, N. (2013). Connectivity and bandwidth-aware
real-time exploration in mobile robot networks.Wireless Commu-
nications and Mobile Computing, 13(9), 847–863.

Quattrini Li, A., Cipolleschi, R., Giusto, M., & Amigoni, F. (2016). A
semantically-informed multirobot system for exploration of rele-
vant areas in search and rescue settings.AutonomousRobots,40(4),
581–597.

Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J.,
Berger, E., Wheeler, R., & Ng, A. (2009). ROS: an open-source
robot operating system. In ICRA Workshop on Open Source Soft-
ware.

Reich, J., Misra, V., Rubenstein, D., & Zussman, G. (2012). Connec-
tivity maintenance in mobile wireless networks via constrained
mobility. IEEE Journal of Selected Area in Communications,
30(5), 935–950.

Rekleitis, I .(2013). Multi-robot simultaneous localization and uncer-
tainty reduction on maps (MR-SLURM). In Proceedings of
ROBIO, pp .1216–1221.

Rooker, M., & Birk, A. (2007). Multi-robot exploration under the con-
straints of wireless networking. Control Engineering Practice,
15(4), 435–445.

Simmons, R. G., Apfelbaum, D., Burgard, W., Fox ,D., Moors, M.,
Thrun, S., &Younes, H. L. S .(2000). Coordination for multi-robot
exploration and mapping. In Proceedings of AAAI, pp. 852–858.

Spirin,V., Cameron. S.,& deHoog, J. (2013). Time preference for infor-
mation in multiagent exploration with limited communication. In
Proceedings of TAROS, pp. 34–45.

Stump, E., Michal, N., Kumar, V., & Isler, V. (2011). Visibility-based
deployment of robot formations for communication maintenance.
In Proceedings of ICRA, pp. 4498–4505.

Tadokoro, S. (2010). Rescue Robotics. Springer.
Thrun, S. (2002). Robotic mapping: A survey. In: Exploring Artificial

Intelligence in the New Millenium, Morgan Kaufmann, pp. 1–35.
Thrun, S., Burgard, W., & Fox, D. (2005). Probabilistic robotics. The

MIT Press.

123

http://www.gurobi.com
http://www.gurobi.com
http://goo.gl/QoB8IB
http://goo.gl/QoB8IB
http://radish.sourceforge.net/
http://researcher.ibm.com/researcher/files/us-kimelfeld/papers-steiner06.pdf
http://researcher.ibm.com/researcher/files/us-kimelfeld/papers-steiner06.pdf
http://www.cse.sc.edu/~jokane/agitr/


Auton Robot

Tuna, G., Gulez, K., & Gungor, V. (2013). The effects of exploration
strategies and communicationmodels on the performance of coop-
eration exploration. Ad Hoc Networks, 11(7), 1931–1941.

Visser, A., & Slamet, B. (2008). Including communication success in
the estimation of information gain for multi-robot exploration. In
Proceedings of WiOpt, pp. 680–687.

Wurm, K. M., Stachniss, C., & Burgard, W. (2008). Coordinated multi-
robot exploration using a segmentation of the environment. In
Proceedings of IROS, pp. 1160–1165.

Yamauchi, B. (1998) Frontier-based exploration using multiple robots.
In Proceedings of AGENTS, pp. 47–53.

Yu, J. (2016). Intractability of optimal multirobot path planning on pla-
nar graphs. IEEE RA-L, 1(1), 33–40.

Zhang, Q., Whitney, D., Shkurti, F., & Rekleitis, I. (2014). Ear-based
exploration on hybrid metric/topological maps. In Proceedings of
IROS, pp 3081–3088.

Jacopo Banfi received a B.Sc.
and a M.Sc. degree in Com-
puter Science in 2011 and 2014,
respectively, from the Politec-
nico di Milano (Italy). From
February 2013 to April 2014, he
worked at his M.Sc. thesis at the
Dalle Molle Institute for Artifi-
cial Intelligence Studies (Manno,
Switzerland). Since 2014, he is
a Ph.D. student in Information
Technology at the Politecnico di
Milano. His research interests lie
in the field of cooperative multi-
robot systems. In particular, his

thesis is devoted to the study of navigation strategies for cooperative
tasks (like exploration andpatrolling) in communication-restricted envi-
ronments.

Alberto Quattrini Li After
being a postdoctoral fellow in
the Autonomous Field Robotics
Laboratory (AFRL) at the Com-
puter Science & Engineering
Department of the University of
South Carolina, Alberto is cur-
rently working as research assis-
tant professor in the same depart-
ment. He received a M.Sc. in
Computer Science Engineering
(2011) and a Ph.D. in Infor-
mation Technology (2015) from
Politecnico di Milano. From
February to July 2014, he was a

visiting Ph.D. student at Research on Sensor Networks Lab at the Com-
puter Science Department of the University of Minnesota. His main
research interests include autonomous mobile robotics and underwater
robotics, dealing with problems that span from multirobot exploration
and coverage to visual-based state estimation.

Ioannis Rekleitis Currently an
Assistant Professor at the Com-
puter Science and Engineering
Department, University of South
Carolina, and an Adjunct Pro-
fessor at the School of Com-
puter Science, McGill Univer-
sity. In 2004–2007 he was a
visiting fellow at the Canadian
Space Agency working on Plan-
etary exploration and On-Orbit-
Servicing of Satellites. During
2004hewas atMcGillUniversity
as a Research Associate in the
Centre for Intelligent Machines

with Professor Gregory Dudek in the Mobile Robotics Lab (MRL).
Between 2002 and 2003, he was a Postdoctoral Fellow at the Carnegie
Mellon University in the Sensor Based Planning Lab with Professor
Howie Choset. He was granted his Ph.D. from the School of Computer
Science, McGill University, Montreal, Quebec, Canada in 2003. His
Research has focused on mobile robotics and in particular in the area
of cooperating intelligent agents with application to multi-robot coop-
erative localization, mapping, exploration and coverage. He has done
extensivework on space, aerial, ground, surface, and underwater robots,
with more than 60 journal and conference articles. His interests extend
to computer vision and sensor networks.

Francesco Amigoni was born in
Soresina (CR), Italy, on Decem-
ber 2, 1971. He got the Laurea
degree in Computer Engineering
from the Politecnico di Milano
in 1996 and the Ph.D. degree
in Computer Engineering and
Automatica from the Politecnico
di Milano in 2000. FromDecem-
ber 1999 to September 2000 he
has been a visiting scholar at
the Computer Science Depart-
ment of the Stanford University
(USA). From February 2002 to
April 2007 he has been an assis-

tant professor and from May 2007 he is an associate professor at
the Dipartimento di Elettronica, Informazione e Bioingegneria of the
Politecnico di Milano. His main research interests include: agents and
multiagent systems, autonomousmobile robotics, and the philosophical
aspects of artificial intelligence. He is author of about 110 papers pub-
lished on international journals, books, and conference proceedings.

123



Auton Robot

Nicola Basilico received aM.Sc.
degree in Computer Science and
Engineering in 2007 and a Ph.D.
in Information Technology in
2011 from Politecnico di Milano
(Italy). In 2011 and 2012 he has
been a postdoctoral scholar at the
Robotics Laboratory at the Uni-
versity of California, Merced. In
2013 he worked as a research
assistant at the Swiss AI lab
IDSIA. Since 2014, he is an
Assistant Professor at the depar-
ment of Computer Science of the
University of Milan (Italy). His

main research interests develop in the Artificial Intelligence area with
particular focus on Multi-Agent Systems and Autonomous Robotics.

123


	Strategies for coordinated multirobot exploration with recurrent connectivity constraints
	Abstract
	1 Introduction
	2 Related work
	2.1 Continous connectivity
	2.2 Periodic connectivity
	2.3 Recurrent connectivity

	3 Problem definition
	3.1 Assumptions
	3.2 Exploration process
	3.3 Method overview

	4 Optimal one-stage approach
	5 Optimal and approximate two-stage approaches
	5.1 First stage: optimal configurations
	5.1.1 Finding the optimal configuration
	5.1.2 Approximating the optimal configuration

	5.2 Second stage: optimal deployments

	6 Readiness and asynchronicity
	7 Simulation experiments
	8 Real-world experiments
	9 Discussion of the experimental results
	10 Conclusions
	References




