
Autonomous Robots 17, 41–54, 2004
c© 2004 Kluwer Academic Publishers. Manufactured in The Netherlands.

Propagation of Uncertainty in Cooperative Multirobot Localization:
Analysis and Experimental Results

STERGIOS I. ROUMELIOTIS
Department of Computer Science & Engineering, University of Minnesota, 200 Union Str. SE,

Minneapolis, MN 55455
stergios@cs.umn.edu

IOANNIS M. REKLEITIS
Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213

rekleitis@cmu.edu

Abstract. This paper examines the problem of cooperative localization for the case of large groups of mobile
robots. A Kalman filter estimator is implemented and tested for this purpose. The focus of this paper is to examine
the effect on localization accuracy of the number N of participating robots and the accuracy of the sensors employed.
More specifically, we investigate the improvement in localization accuracy per additional robot as the size of the
team increases. Furthermore, we provide an analytical expression for the upper bound on the positioning uncertainty
increase rate for a team of N robots as a function of N , the odometric and orientation uncertainty for the robots, and
the accuracy of a robot tracker measuring relative positions between pairs of robots. The analytical results derived
in this paper are validated both in simulation and experimentally for different test cases.
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1. Introduction

This paper studies the localization accuracy of a team
of mobile robots that closely cooperate while navigat-
ing within the same area. The problem of localization
is central in mobile robotics. One of the advantages of
multi-robot systems is that robots can accurately lo-
calize by measuring their relative position and/or ori-
entation and communicating localization information
throughout the group. Although external positioning
information from a GPS receiver or a map of the envi-
ronment can further increase the overall localization ac-
curacy, we hereafter consider primarily the most chal-
lenging scenario where the absolute positions of the
robots cannot be measured or inferred. In this case the
uncertainty in the position estimates for all robots will
continuously increase. Previous work on cooperative
localization (Kurazume et al., 1994; Rekleitis et al.,

1997; Roumeliotis and Bekey, 2000) has demonstrated
that the localization uncertainty increase across groups
of robots is lower compared to the situation where
each robot is estimating its position without cooper-
ation with the rest of the team.

The theoretical analysis of the positioning uncer-
tainty propagation during cooperative localization has
been an open problem to this date. In this paper we
present the first theoretical treatment for determining
upper bounds on the position uncertainty accumulation
for a group of N robots by directly solving the contin-
uous time Riccati equation for the covariance of the
errors in the position estimates. The key element in our
derivation is the separation of the covariance matrix
into two sets of submatrices: the ones that converge
to steady state values and those that capture the time
dependence of the uncertainty increase during cooper-
ative localization.
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The main focus is on homogeneous teams of
robots, i.e., groups of robots that have the same
proprioceptive (odometric in this case) and exterocep-
tive (orientation and relative position) sensing capa-
bilities. Nevertheless, the derived expressions are also
applicable for determining the upper localization un-
certainty bounds for heterogeneous teams of robots
based on the sensing capabilities of the robot with the
least accurate sensors within the team. The resulting
formulae are for the maximum expected uncertainty.
Since both the kinematics of the robots and the relative
position measurements in 2D are described by sets of
nonlinear and time-varying equations, in this treatment
we consider maximum expected values for the covari-
ances of the different sources of uncertainty and noise
(Roumeliotis, 2003).

Throughout the paper we assume that all robots move
at the same time randomly. Each robot continuously
measures the relative position of every other robot
in the team. Moreover, each robot is equipped with
a sensor (such as a compass, or, sun sensor) of lim-
ited accuracy that provides absolute orientation mea-
surements. This is required in the derivations that fol-
low for determining bounds on the orientation uncer-
tainty for each robot. If such sensor is not available,
then an upper bound for the orientation uncertainty
needs to be defined by alternative means, e.g., by es-
timating orientation from the structure of the environ-
ment around the robot (Lu and Milios, 1997; Pfister
et al., 2003), or by deriving an estimate for the max-
imum orientation uncertainty from odometry over a
certain period of time for each robot (Kelly, 2001).
In these cases the resulting expressions will provide
an upper bound for the localization uncertainty in the
group.

In the following section we outline the main ap-
proaches to cooperative localization. In Section 3, we
present the formulation of the multi-robot localiza-
tion problem and study the effect of consecutive rel-
ative position updates on the structure of the Ric-
cati equation describing the time evolution of the un-
certainty in the position estimates. Section 4 con-
tains the derivations of the analytical expression for
the uncertainty propagation in the case of coopera-
tive localization. In Sections 5 and 6, experimental
and simulation results are presented that validate the
derived analytical expressions for the rate of localiza-
tion increase. Finally, Section 7 draws the conclusions
from this analysis and suggests directions of future
work.

2. Related Work

Many robotic applications require that robots work
in collaboration (Parker, 2000) in order to perform a
certain task (Arai et al., 1998; Ferrari et al., 1998;
Fontan and Mataric, 1998; Parker, 1998; Williamson
et al., 2000). When a group of robots needs to coor-
dinate efficiently, precise localization is of critical im-
portance. In these cases, multi-robot cooperation for
determining positioning estimates will result in better
localization by compensating for errors in odometry
and/or a pose sensor.

Previous work on multiple robots has considered col-
laborative strategies when lack of landmarks made lo-
calization impossible (Dudek et al., 1996). An example
of a system designed for cooperative localization was
first reported in Kurazume et al. (1994). A group of
robots is divided into two teams in order to perform
cooperative positioning. At each instant, one team is
in motion while the other team remains stationary and
acts as a landmark. The teams then exchange roles and
the process continues until both teams have reached
their target. Improvements over this system and opti-
mum motion strategies are discussed in Kurazume et al.
(1996), Kurazume and Hirose (1998, 2000). Similarly,
in Grabowski et al. (2000), only one robot moves, while
the rest of the team of small-sized robots forms an equi-
lateral triangle of localization beacons in order to up-
date their pose estimates. Another implementation of
cooperative localization is described in Rekleitis et al.
(1997, 2001). In this approach a team of robots moves
through the free space systematically mapping the en-
vironment. At each time instant at least one robot is
stationary acting as a landmark for the localization of
the moving robots. Furthermore, the moving robots,
by maintaining an uninterrupted line of visual contact,
ensure that the area between the stationary and the mov-
ing robots is free of obstacles. All previous approaches
have the following limitations: (a) Only one robot (or
team) is allowed to move at any given time, and (b) The
two robots (or teams) must maintain visual (or sonar)
contact at all times.

A different collaborative multirobot localization
schema is presented in Fox et al. (1999, 2000). The
authors have extended the Monte Carlo localization al-
gorithm (Thrun et al., 2000) to the case of two robots
when a map of the area is available to both robots. When
these robots detect each other, the combination of their
belief functions facilitates their global localization task.
The main limitation of this approach is that it can be
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applied only within known indoor environments. In ad-
dition, since information interdependencies are being
ignored every time the two robots meet, this method can
lead to overly optimistic position estimates. This issue
is discussed in detail in Roumeliotis (2002). A parti-
cle filter was also used in the context of multi-robot
exploration in Rekleitis et al. (2003).

A Kalman filter based implementation of a coop-
erative navigation schema is described in Sanderson
(1998). In this case the effect of the orientation un-
certainty in both the state propagation and the relative
position measurements is ignored resulting in a simpli-
fied distributed algorithm. In Roumeliotis and Bekey
(2000, 2002) a Kalman filter pose estimator is pre-
sented for a group of simultaneously moving robots.
Each of the robots collects sensor data regarding its
own motion and shares this information with the rest
of the team during the update cycles. The Kalman fil-
ter is decomposed into a number of smaller commu-
nicating filters, one for every robot, processing sen-
sor data collected by its host robot. It has been shown
that when every robot senses and communicates with
its colleagues at all times, every member of the group
has less uncertainty about its position than the robot
with the best (single) localization results. Finally, in
Howard et al. (2002) an alternative to the Kalman
filter approach was presented. A Maximum Likeli-
hood estimator was formulated to process relative pose
and odometric measurements recorded by the robots
and a solution was derived by invoking numerical
optimization.

Different sensing modalities have been used by
teams of mobile robots in order to track each other.
Some sensors are able to estimate accurately the dis-
tance between robots, such as the ultrasound wave used
in the milibots project (Grabowski and Khosla, 2001).
Other sensors estimate the bearing of the observed
robot such as the omnidirectional video cameras used
in Kato et al. (1999) and Gage (2000), or both the dis-
tance and relative bearing, with stereo vision and active
lighting in Davison and Kita (2000), and vision and
laser range scanners in Burgard et al. (2000). Finally,
sensors are able to estimate even the orientation of the
observed robot, in addition to the distance and relative
bearing (Kurazume and Hirose, 1998; Rekleitis et al.,
2001).

To the best of our knowledge there exist only two
cases in the literature where analysis of the uncertainty
propagation has been considered in the context of coop-
erative localization. In Sanderson (1998) the improve-

ment in localization accuracy is computed after only a
single update step with respect to the previous values of
position uncertainty. In this case the robot orientations
are assumed to be perfectly known and no expressions
are derived for the propagation of the localization un-
certainty with respect to time or the accuracy of the odo-
metric and relative position measurements. In Rekleitis
et al. (2002) the authors studied in simulation the ef-
fect of different robot tracker sensing modalities in the
accuracy of cooperative localization. Statistical prop-
erties were derived from simulated results for groups
of robots of increasing size N when only one robot
moved at a time.

Hereafter we present the details of our approach for
estimating the uncertainty propagation during coopera-
tive localization. Our initial formulation is based on the
algorithm described in Roumeliotis and Bekey (2002).
The main difference is that the robots instead of measur-
ing their relative orientations, have access to absolute
orientation measurements.

3. Cooperative Localization

Consider the case of a mobile robot moving on flat ter-
rain and equipped with odometric sensors that measure
its linear and rotational velocity. In this case the pose
of the robot (in discrete time) is given by

x(k + 1) = x(k) + V (k)δt cos(φ(k))

y(k + 1) = y(k) + V (k)δt sin(φ(k))

φ(k + 1) = φ(k) + ω(k)δt

where V (k) and ω(k) are the linear and rotational ve-
locity of the robot at time k. This non-linear set of
equations can be used to propagate the estimate for the
pose of the robot as

x̂(k + 1 | k) = x̂(k | k) + Vm(k)δt cos(φ̂(k | k)) (1)

ŷ(k + 1 | k) = ŷ(k | k) + Vm(k)δt sin(φ̂(k | k)) (2)

φ̂(k + 1 | k) = φ̂(k | k) + ωm(k)δt (3)

where

Vm(k) = V (k) − wV (k)

ωm(k) = ω(k) − wω(k)

are the measured linear and rotational velocity of the
robot, and wV (k) (wω(k)) is the noise contaminating the
linear (rotational) velocity measurements. Both wV (k)
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and wω(k) are assumed to be independent zero-mean
white Gaussian processes with known variances

σ 2
V = E

{
w2

V

}
, σ 2

ω = E
{
w2

ω

}
(4)

If the robot receives absolute orientation measurements

z(k + 1) = φ(k + 1) + nφ(k + 1) (5)

with nφ(k + 1) a zero-mean white Gaussian process
with known variance σ 2

φ = E{n2
φ}, these measurements

can be processed to improve the odometric estimates
(x̂, ŷ, φ̂) of the pose of the robot.

Instead of formulating an estimator that combines
both odometric and absolute orientation measure-
ments, we follow a two-tier approach to this problem
where absolute orientation measurements are first com-
bined with odometric measurements of the rotational
velocity of each robot independently. Then, the result-
ing improved orientation estimates are used to prop-
agate the position estimates of the robot. Although
this approach is suboptimal compared to an estima-
tion scheme that combines all odometric and absolute
orientation measurements at once, it will facilitate the
derivation of an analytical expression for bounding the
uncertainty in the case of groups of robots moving in
2D. The same two-tier approach can be used to derive
similar expressions for motion in 3D.

3.1. Orientation Estimation

For the first layer of estimation, the rotational velocity
measurements are used to propagate the orientation es-
timates for the robot. This is described by the following
equation:1

˙̂φ(t) = ωm(t) = 0 · φ̂(t) + 1 · ω(t) − 1 · wωc (t)

= F · φ̂(t) + B · ω(t) + Gc · wωc (t)

which is the continuous time form of Eq. (3) with
E{wωc (t)wωc (τ )} = σ 2

ωc
δ(t − τ ) = Qc(t)δ(t − τ ). The

orientation estimates are then updated by processing
the absolute orientation measurements

z(t) = φ(t) + nφ(t) (6)

with E{nφ(t)nφ(τ )} = σ 2
φc

δ(t − τ ) = Rc(t)δ(t − τ ).
In order to estimate the uncertainty of the orientation
estimates at steady state we invoke the continuous time
Riccati equation

Ṗ = F P + P F T + Gc QcGT
c − P H T R−1

c H P (7)

with P = σ 2
φo

and H = 1. The previous equation at
steady state is:

lim
t→∞ Ṗ = 0 = σ 2

ωc
− 1

σ 2
φc

σ 4
φoc

⇒ σ 2
φoc

= σφcσωc (8)

This last expression provides the estimate for the uncer-
tainty in the orientation of the robot when rotational ve-
locity and absolute orientation measurements are pro-
cessed.

3.2. Position Uncertainty Propagation
for a Single Robot

At this point we use this last result to provide an ex-
pression for the uncertainty propagation of the position
estimates for the case of a single robot. By linearizing
the continuous time equivalent of Eqs. (1), (2), the po-
sition error propagation equations for the robot can be
written in a matrix expression as:

[ ˙̃x(t)
˙̃y(t)

]
=

[
0 0

0 0

][
x̃(t)

ỹ(t)

]
+

[
cos φ̂(t) −Vm(t) sin φ̂(t)

sin φ̂(t) Vm(t) cos φ̂(t)

][
wVc (t)

φ̃c(t)

]
⇔ ˙̃X (t) = F(t)X̃ (t) + Gc(t)Wc(t) (9)

where F(t) = 02×2 is a matrix of zeros,

E
{
Gc(t)Wc(t)W T

c (τ )GT
c (t)

}
= Gc(t)

[
σ 2

Vc
0

0 σ 2
φoc

]
GT

c (t)δ(t − τ )

= Qc(t)δ(t − τ ) (10)

As evident from the previous expressions, the covari-
ance Qc(t) for all sources of uncertainty and noise dur-
ing propagation, is a time-varying matrix. The values
of the elements of this matrix depend on the measured
velocity Vm(t) of the robot and the estimate of its ori-
entation φ̂(t). If we assume that the robot moves with
constant velocity V and we average across all possible
values of its orientation, the previous covariance matrix
is given by:

Q̄c(t) = σ 2
Vc

+ σ 2
φoc

V 2

2
I2×2 = qc I2×2 (11)
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When no relative positioning information is avail-
able, the covariance for the position of the robot is
propagated using only odometric information. This is
described by the following equation:

Ṗ = FP + PFT + Q̄c = Q̄c = qc I

or

P(t) = (qct + p0) I (12)

where p0 is the initial positioning uncertainty of the
robot. As it is evident, the covariance (uncertainty) for
the position of a single robot increases, on the average,
linearly with time at a rate of qc determined in Eq. (11)
that depends on the accuracy of the absolute orien-
tation measurements (σφc ) and the robot’s odometry
(σVc , σωc , V ).

3.3. Relative Position Measurements

At this point instead of one robot, we consider the
case of a group of robots where each of them (i) esti-
mates its orientation by fusing rotational velocity mea-
surements with absolute orientation measurements, (ii)
propagates its position using the previous state esti-
mates and linear velocity measurements, and (iii) mea-
sures the relative position zi j of all other robots in the
team:

zi j (k + 1) = i �p j (k + 1) + nzi j (k + 1)

= CT (φi )( �p j − �pi ) + nzi j (13)

This additional relative position information can be
used to improve the localization accuracy in the group.
In the previous equation, �pi symbolizes the xi and yi

coordinates of robot’s i position, i.e. �pi = [xi yi ]T .
The preceding superscript denotes the frame of refer-
ence i attached on the observing robot i that the po-
sition of robot j is expressed to. For notation sim-
plicity, when no preceding superscript appears, this
quantity is expressed with respect to the global frame
of reference. Finally, nzi j is the noise in the relative
position measurement, assumed to be a zero-mean
white Gaussian process, and C(φ) is the rotational
matrix:

C(φ) =
[

cos φ − sin φ

sin φ cos φ

]

By linearizing Eq. (13), the measurement error equa-
tion is given by

z̃i j (k + 1) = zi j (k + 1) − ẑi j (k + 1)

= Hi j (k + 1)X̃ (k + 1)

+ �(k + 1)Ni j (k + 1)

where

Hi j (k + 1) = CT (φ̂i )
o Hi j

o Hi j = [0 . . . −I . . . I . . . 0]

X̃ (k + 1) = [
p̃T

1 . . . p̃T
i . . . p̃T

j . . . p̃T
N

]T

�(k + 1) = [I − CT (φ̂i (k + 1))J�̂pi j (k + 1)]

�̂pi j (k + 1) = p̂ j (k + 1) − p̂i (k + 1)

Ni j (k + 1) =
[

nzi j (k + 1)

φ̃i (k + 1)

]
, J =

[
0 −1

1 0

]

The covariance for the measurement error is given by

Ri j (k + 1)

= �(k + 1)E
{

Ni j (k + 1)N T
i j (k + 1)

}
�T (k + 1)

= Rzi j (k + 1) + Rφ̃i j
(k + 1) (14)

This expression encapsulates all sources of noise and
uncertainty that contribute to the measurement error z̃i j .
More specifically, Rzi j is the covariance of the noise nzi j

in the recorded relative position measurement zi j and
Rφ̃i j

is the additional covariance term due to the error
φ̃i in the orientation estimate φ̂i of the observing robot
i .

When each of the N robots measures the relative
position of every other robot in the group, the measure-
ment matrix is:

HT = [
HT

1 . . . HT
N

]
where Hi is the measurement matrix for all the relative
position measurements received by robot i :

Hi =


Hi1

...

Hi N

 =


CT (φ̂i )o Hi1

...

CT (φ̂i )o Hi N


= Diag(CT (φ̂i ))

o Hi
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The total information HT R−1H available to the system
is:

HT R−1H = 3D
N∑

i=3D1

HT
i R−1

i Hi

= 3D
N∑

i=3D1

o HT
i

o R−1
i

o Hi (15)

Assuming that all robots move within a constrained
area, it can be shown (Roumeliotis, 2003) that the min-
imum information available to the system is:2

HT R−1H = 3D 2NI(o R̄−1) − 21(o R̄−1)

with

o R̄−1 = 3D
1

or̄z
I2×2,

(16)
or̄z = 3Dmax

(
σ 2

ρc
, ρ2

oσ
2
θc

=) + (N − 1)ρ2
oσ

2
φoc

where σ 2
ρc

and σ 2
θc

are the variances of the distance and
bearing measurements, andρo is the maximum distance
between any two robots.

In the following section, we solve the Riccati equa-
tion for the maximum expected uncertainty for this
group of robots when performing cooperative local-
ization (Roumeliotis, 2003).

3.4. Consecutive Relative Position Updates

Assume that at the time step k = 0 all robots know
their position with the same level of accuracy, that
is P0 = I(P0), P0 = p0 I2×2. The covariance matrix
P0 is symmetric with equal non-diagonal submatri-
ces (here all zero) and also equal diagonal submatri-
ces (here all p0). We will prove that after any number
of steps the covariance matrix sustains this structure.
The discrete-time inverse Riccati equation for the prop-
agation and update of the information matrix P−1

is:

P−1
k+1 = (

ΦkPkΦT
k + GkQGT

k

)−1 + HT R−1H

= (Pk + Q)−1 + HT R−1H (17)

where since the robots move independently it is Φk =
I(I2×2) and Gk = I(I2×2). Substituting P0 = I(P0) and

Q = I(Q̄d ) we have:3

P−1
1 = (I(P0) + I(Q̄d ))−1 + HT R−1H

= I((P0 + Q̄d )−1 + 2N o R̄−1) + 1(−2 o R̄−1)

= I
(

A−1
1

) + 1
(
B ′−1

1

)
By employing the relations in Appendix A the covari-
ance matrix can be computed as:

P1 = I(A1) + 1
( − (

A−1
1 + N B ′−1

1

)−1
B ′−1

1 A1
)

= I(A1) + 1(B1)

Note again that both the diagonal and non-diagonal
submatrix elements of this matrix are equal between
them. Assume that after a certain number of propa-
gation and update steps, at time step k = m, the co-
variance matrix has still equal diagonal and equal non-
diagonal submatrix elements. That is

Pm = I(Am) + 1(Bm) (18)

We will prove that the covariance matrix Pm+1 also has
equal diagonal and non-diagonal submatrix elements.
By substituting Eq. (18) in Eq. (17) we have:

P−1
m+1 = (I(Am) + 1(Bm) + I(Q̄d ))−1 + HT R−1H

= I((Am + Q̄d )−1 + 2N o R̄−1)

+ 1(−(Am + Q̄d + NBm)−1

× Bm(Am + Q̄d )−1 − 2 o R̄−1)

= I
(

A−1
m+1

) + 1
(
B ′−1

m+1

)
By employing the relations in Appendix A once more,
the covariance matrix can be computed as:

Pm+1 = I(Am+1)

+ 1
( − (

A−1
m+1 + N B ′−1

m+1

)−1
B ′−1

m+1 Am+1
)

= I(Am+1) + 1(Bm+1)

We have proven the following:

Lemma 3.1. The covariance matrix for a homoge-
neous4 group of robots, when they perform coopera-
tive localization, is on the average a matrix with equal
diagonal and equal non-diagonal submatrix terms.

A direct result of the previous lemma is the following:
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Corollary 3.2. A homogeneous group of robots,
when they perform cooperative localization, they ex-
perience the same level of positioning uncertainty and
they share the same amount of information.

The amount of information shared by two robots is
captured in the cross-correlation terms (non-diagonal
submatrices) of the covariance matrix.

4. Uncertainty Bounds for Cooperative
Localization

At this point we employ Lemma 3.1 to derive the main
result of this paper, an analytical expression for the rate
of increase in the localization uncertainty for a group
of N robots.

Lemma 4.1. For a homogeneous group of N robots,
when they perform cooperative localization their co-
variance at steady state grows, on the average, linearly
with time:

Pi j (t) =


(

1

N
qct + 1

N
p0 + N − 1

N
ac

)
I2×2, i = j(

1

N
qct + 1

N
p0 − 1

N
ac

)
I2×2, i �= j

(19)

with i, j = 1 . . . N and

ac =
√

qc
or̄z

2N
(20)

Proof: In order to compute the time evolution of the
covariance matrix for a group of N robots, we employ
the continuous time Riccati equation:

Ṗ = FP + PFT + GQGT − PHT R−1HP (21)

where F = I(02×2), G = I(I2×2), Q = I(Q̄c) and

HT R−1H = I(2N o R̄−1) + 1(−2 o R̄−1),

P = I(A) + 1(B) (22)

By substituting these terms in Eq. (21) it can be shown
(Roumeliotis, 2003) that

Ṗ = I( Ȧ) + 1(Ḃ)

= I(Q̄c − 2N A o R̄−1 A) + 1(2A o R̄−1 A)

or

Ȧ(t) = Q̄c − 2N A(t) o R̄−1 A(t) (23)

Ḃ(t) = 2A(t) o R̄−1 A(t) = 1

N
(Q̄c − Ȧ(t)) (24)

with A(0) = P(0) = p0 I2×2, B(0) = 02×2.
If A(t) was known, then matrix B(t) can be deter-

mined from Eqs. (11) and (24):

B(t) = 1

N

( ∫ t

0
Q̄cdτ −

∫ t

0
Ȧ(τ )dτ

)

= 1

N
((qct + p0)I2×2 − A(t)) (25)

In Eq. (23), due to the structure of matrices Q̄c (from
Eq. (11)) and o R̄−1 (from Eq. (17)), A(t) can be written
as:

A(t) = a(t)I2×2 (26)

with a(0) = p0. Substituting in Eq. (23), yields:

ȧ(t) = qc − 2N
a2(t)

or̄z
(27)

Solving this equation, at steady state, yields
limt→∞ a(t) = ac with ac defined by Eq. (20). Using
this result in Eqs. (26), (25), we have:

A(t) = ac I2×2, B(t) = 1

N
(qct + p0 − ac) I2×2 (28)

Finally, by substituting for A(t) and B(t) in Eq. (22),
for the steady state value of a(t) (Eq. (20)), the max-
imum expected covariance for a group of N robots is
computed by Eq. (19).

Corollary 4.3. For a homogeneous group of N robots
performing cooperative localization, the maximum
expected rate of positioning uncertainty increase at
steady state is Ṗii = 1

N qc, i.e., it is inversely pro-
portional to the number of robots N.

Proof: Differentiation of Eq. (19) provides this re-
sult.

The following significant remarks are evident:

1. The rate of increase at steady state is inversely pro-
portional to the number N of robots and pro-
portional to the odometric and orientation un-
certainty of each robot (captured by qc). The above
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result is also supported by the simulation study pre-
sented in Rekleitis et al. (2002) using a particle fil-
ter based estimator. Appropriate curve fitting calcu-
lated the rate of uncertainty increase proportional to
N−0.948.

2. The rate of uncertainty increase at steady state does
not depend on the accuracy of the relative posi-
tion measurements (captured by their covariance
or̄z).

3. The time for the cooperative localization system to
reach steady state is determined by the time con-
stant of the system related to the flow of information
amongst the robots (Roumeliotis, 2003):

τ = 1

2

√
or̄z

2Nqc

Inaccurate relative position measurements or̄z will
delay the system reaching steady state. On the other
hand large teams N of robots with precise odometric
and orientation information qc will quickly reach
steady state.

Up to this point, we have assumed that all robots have
the same odometric/orientation uncertainty qci = qc

Figure 1. The Pioneer robots in the experimentation arena as viewed from the overhead camera.

and relative position measurement uncertainty or̄zi =
or̄z . These assumptions were made in order to facili-
tate the previous derivations and thus gain insight into
the structure of the cooperative localization problem.
Nevertheless, Eq. (19) can be used as an inequality to
determine the upper bound of the expected uncertainty
growth with qc = max(qci ),

or̄z = max(or̄zi ).

5. Experimental Results

The cooperative localization algorithm was imple-
mented and tested for the case of one (for comparing to
dead reckoning), two, and three Pioneer mobile robots
shown in Fig. 1. The experiments were conducted in a
lab environment within an arena of dimensions 5.6 m
× 3.7 m. The three robots started from different loca-
tions and were commanded to move randomly within
this area, while avoiding obstacles, with constant lin-
ear velocity Vt = 0.1 m/sec. Every Pioneer robot is
equipped with wheel-encoders on the two front wheels
that measure the translational and rotational velocity of
the vehicle. The standard deviation for the linear and
rotational velocity measurements of the robots was ex-
perimentally determined to be σV = 0.005 m/sec and
σω = 0.0236 rad/sec.
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Figure 2. Rectified image of the Pioneer robots with color patches for tracking and identification as viewed from the overhead camera.

An overhead camera based tracking system was
designed for recording the absolute pose (reference
trajectory) of each of the three robots (Fig. 2). This
ground truth was used for determining the errors εX =
Xcamera − X̂KF in the pose estimates X̂ T

K F = [x̂ ŷ φ̂]
of the Kalman Filter (KF). The accuracy of the track-
ing system is 2 cm for the position and 3◦ for the
orientation. In our experiments, instead of implement-
ing a system that directly measures the relative posi-
tion between two robots, such as the ones presented in
Burgard et al. (2000) and Davison and Kita (2000),
we use the information from the tracking system to
infer these measurements. Each relative position mea-
surement is the difference between the positions of two
robots, expressed in local coordinates, with the addition
of noise. This way we were able to investigate the valid-
ity of our theoretical analysis over a wide range of val-
ues for the accuracy level of the relative position sensor
data and control the frequency of these measurements.
For the experiments reported here the relative distance
and bearing measurements had accuracy of σρ = 0.1 m
and σθ = 0.2 rad respectively. Finally, the absolute
orientation measurements had accuracy σφ = 0.0524
rad.

We have examined and present experimental re-
sults for three different scenarios (5 trials each): (i)
Dead-reckoning (1 robot)—Fig. 3(a), (ii) Cooperative

Localization (2 robots)—Fig. 3(c) and (e), (iii) Coop-
erative Localization (3 robots)—Fig. 3(b), (d) and (f).
In each set of these figures, the following quantities are
depicted:

• The position errors εx in the estimates x̂KF along
the x-axis for each robot and during sets of 5 ex-
periments, as these were recorded by the overhead
tracking camera (solid lines).

• The experimentally calculated, by the KF on each
robot, ±3σxx = ±3

√
Pxx regions of confidence for

each of these 5 trials (dashed-dotted lines). These
plots verify that in all cases examined, the KF esti-
mator is consistent since the recorded errors εx re-
main between the experimentally determined upper
and lower bounds.

• The theoretically predicted ±3σT = ±3
√

PT re-
gions of confidence for each of the 3 different sce-
narios examined (dashed lines). The values of PT

are computed using the expression in Eq. (19). As it
is evident these theoretically determined maximum
expected values for the positioning uncertainty are in
all cases enclosing those calculated by the KF. These
bounds can be used a priori for determining bounds
on the localization accuracy of teams of robots as
a function of their size N and the accuracy of their
proprioceptive and exteroceptive measurements.
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Figure 3. Position errors εx (solid lines), experimentally calculated uncertainty bounds ±3σxx (dashed-dotted lines), and theoretically predicted
maximum expected uncertainty bounds ±3σT as a function of time for the following cases (a) Robot #1 from a 1-robot team (dead reckoning),
(b) Robot #1 from a 3-robot team. (c) Robot #1 from a 2-robot team. (d) Robot #2 from a 3-robot team. (e) Robot #2 from a 2-robot team. (f)
Robot #3 from a 3-robot team.

6. Simulation Results

In order to validate the results of the theoretical anal-
ysis for larger teams of robots (N = 2, . . . , 5), we
additionally performed a series of experiments in sim-

ulation. The setup used in these experiments is de-
scribed hereafter. N robots were placed inside a 40 m
× 40 m arena at random locations (see Fig. 4 for four
robots). The robots were kept inside the designated
area thus limiting the maximum inter-robot distance
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Figure 4. Four robots move randomly inside a 40 m by 40 m arena. Starting positions are marked by “*”.

to the length of the diagonal. During the experiment
the linear velocity of all robots was maintained con-
stant (Vt = 0.25 m/sec) while the rotational velocity
was changed randomly as follows:

ωt = ωmax · n0,1 (29)

where ωmax = 0.2 rad/sec and n0,1 is a random value
drawn from the normal distribution with zero-mean and
σ = 1.

The simulated robot motion was recorded along
with the dead reckoning (DR) and Kalman filter
(KF) cooperative localization estimates. The veloc-
ity measurements were corrupted by additive zero-
mean white Gaussian noise with noise parameters mea-
sured on a iRobot PackBot robot (σV = 0.01 m/sec,
σω = 0.0384 rad/sec). The absolute orientation of each
robot was measured by a simulated compass with
σφ = 0.0524 rad. The robot tracker sensor returned
range and bearing measurements corrupted by zero-
mean white Gaussian noise with σρ = 0.01 m and
σθ = 0.0349 rad. The above values are compatible
with noise parameters observed in laboratory experi-
ments (Rekleitis et al., 2003). All measurements were
available at 1Hz. The robots performed random walks
for 10 min at each trial while continuously measuring

their relative positions. Figure 4 presents the ground
truth (solid lines), the dead reckoning based trajecto-
ries (dotted lines) and the KF (dashed lines) for four
robots from one trial.

Figure 5 depicts the comparison between the theo-
retically derived upper bound from the analytical ex-
pression in Eq. (19) (dashed lines) and the average,
across N robots, covariance along the x and y axes for
ten different trials (solid lines). Each Fig. (5(a)–(d))
presents the results for an increasing number of robots
(N = 2, . . . , 5) and consists of two sub-plots: the top
one for the x-axis and the bottom one for the y-axis.
As evident the average covariance values (Pxx , Pyy)
are consistently lower compared to the theoretically
derived upper bound, and follow (on average) the same
rate of increase.

It is worth noting that as the number N of robots
increases, the constant offset between the theoretically
derived covariance upper bound and the recorded av-
erage covariance grows larger. This is due to the fact
that the parameter ρo (maximum average distance be-
tween the robots) decreases significantly as the number
of robots populating the same area increases. This in
effect reduces the constant term in the linear, with re-
spect to time, expression for the maximum expected
covariance in Eq. (19).
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Figure 5. The covariance along x-axis and y-axis for ten experiments (solid thin lines) and the theoretical upper bound of uncertainty (dashed
lines) for different number of robots (N = 2, . . . , 5).

7. Conclusions

This paper presented a theoretical analysis for the prop-
agation of position uncertainty for a team of mobile
robots. One of the most challenging cases of local-
ization was considered where inter-robot observations
(cooperative localization), dead reckoning estimates,
and absolute orientation measurements were available.
Furthermore, all robots moved simultaneously, in con-
trast to previous work where often the robots take turns
to move and to act as landmarks. An analytical formula
was derived that expresses the upper bound of the un-
certainty accumulation as a function of time and the
noise characteristics of the robot sensors.

The provable upper bound on the rate of position un-
certainty increase in Eq. (19) allows to draw the follow-
ing important conclusions. First, the uncertainty growth
is inversely proportional to the number of robots thus
the contribution of each additional robot follows a law
of diminishing return. Second, the rate of uncertainty
growth depends only on the number of robots and the

odometric and orientation uncertainty and not on the
accuracy of the relative position measurements. These
results were verified experimentally and in simulation
for robot groups of increasing size. The estimated by
the Kalman filter uncertainty, consistently remained be-
low the theoretical upper bound.

From the form of the derivations we are confident
that these results can be extended to the case of motion
in 3D, thus providing upper bounds for the position
uncertainty of outdoor ground robots or autonomous
aerial vehicles. Finally, we intend to study the effect
on cooperative localization of different sensing modal-
ities, motion strategies and robot formations.

Appendix A: Special Form of Matrix Inverse

Lemma A.1. The inverse of a matrix C = I(A) +
1(B) that is comprised of N equal invertible diagonal
submatrices (∃ B−1) and N (N − 1) equal invertible
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non-diagonal submatrices (∃ (A + N B)−1), with N ≥
2 is C−1 = I(A−1) − 1((A + N B)−1 B A−1).

Proof: Multiplying the previous two matrices and
employing the relation 1(X )1(Y ) = 1(N XY ) yields
CC−1 = I(I ).
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Notes

1. The subscript “c” is used to indicate continuous time quantities.
2. From here on, we use the notation I(A) to denote a matrix com-

posed of N diagonal submatrices A and N (N − 1) non-diagonal
submatrices 0 and 1(B) to denote a matrix whose all N 2 submatrix
elements are equal to B.

3. Q̄d is the discrete time equivalent of Q̄c , the continuous time
covariance for the system propagation noise.

4. Homogeneous group of robots denotes a team comprised of robots
with the same level of uncertainty for their proprioceptive and
exteroceptive measurements.
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