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Abstract— In this paper we present a new technique for
improving the azimuth resolution of ultrasonic range sensors
frequently used with mobile robots. This improvement is achieved
without a significant increase in the latency, or processing delay,
of the system. Our approach decreases the azimuth uncertainty of
a sensor reading by eliminating portions of the reading that are
contradicted by subsequent readings. Our idea bears resemblance
to space carving as used by the vision community, where a ray
of light is used to define the boundaries of an obstacle. A sonar
model similar to that commonly utilized by occupancy grids is
used. Our method, termed arc carving, can be used to produce
maps that are both accurate and with low enough latency for
robust mobile robot navigation. Experimental results verify this
approach over spaces as large as 5000 square meters.

1. INTRODUCTION

This work originated during experiments in Simultaneous
Localization and Mapping (SLAM), previously described in
[1]. A mobile robot is tasked with fully exploring an unknown
space while correcting for positioning error. Range sensors
serve three purposes in these experiments: detection of obsta-
cles for navigation and obstacle avoidance, determination of
the boundary of the space to ensure complete coverage, and
feature extraction to aid in localization. To this end, readings
from the ultrasonic sensors are processed to produce a two
dimensional local map. This map consists of points believed
to be on the boundary of freespace.

During these experiments, an important tradeoff was en-
countered between the accuracy and latency of the local map.
In this context, latency refers to the time between receiving
information from a sonar sensor, and points corresponding
to this information appearing in a local map. Low latency
sonar processing techniques, such as assuming the point
of reflection lies directly in front of the sensor, have high
azimuth uncertainty that results in an inaccurate local map.
Inaccurate local maps can lead to failure of the localization
and coverage tasks of the robot. In contrast, techniques that
provide higher azimuth resolution, such as the Arc Transversal
Median (ATM)[2] approach, require fusing multiple sonar
readings, resulting in a higher latency local map. High latency
local maps can cause the robot to fail coverage and obstacle
avoidance, due to the absence of newly detected obstacles in
the local map.

Our solution to this problem is a new technique, which we
call arc carving after its similarity to space carving [3] used
in the vision community. Arc carving fuses multiple sonar
readings to improve azimuth resolution, but in a serial manner
that still produces low latency local maps. Arc carving can

also be used in conjunction with existing sonar processing
techniques.

In the next section, background and previous work in sonar
processing are discussed. Section 3 presents a description of
the arc carving technique. Improvements offered by arc carv-
ing are described in Section 4. Section 5 presents experimental
results, and we conclude with a discussion and directions for
future work.

2. PREVIOUS WORK

Ultrasonic range finders use time of flight to measure
distance. The sensor returns a ranger, and the angle of the
sensor relative to the robot,θ, is known. However, this range is
not the straight line distance to an obstacle alongθ, but rather
the distance to the point of reflection of the obstacle [4]. This
point could be anywhere along the perimeter of the sensor’s
beam pattern (Fig. 1(a)). The region of highest response of this
pattern can be sufficiently approximated by an arc of radius
r centered at orientationθ. For the Polaroid transducers used
in our work, the arc width, denoted byφ, is 22.5 degrees.
In contrast, on many mobile bases the discretization in range
of these sensors is one inch. The final result is a sensor fairly
accurate in depth, but not in azimuth [5]. Therefore, improving
sonar accuracy involves improving azimuth resolution.

A. Centerline Model

A simplistic model of sonar behavior is the centerline
model. The centerline model assumes that the point of reflec-
tion is located at the center of the sonar arc. The advantage
of the centerline model is its simplicity–it does not require
taking multiple readings to produce range data that can be
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Fig. 1. Beam pattern for the Polaroid transducer installed on many mobile
robots, and an arc approximation of the main lobe



Center of cone
Fig. 2. The centerline model often fails to detect doorways and narrow
corridors

incorporated into a local map. The disadvantage is that it has
poor accuracy, because the actual point of reflection could be
anywhere along the arc. The most striking example of this
problem is the case where the robot fails to detect a doorway
or other narrow opening. [6], as in Fig. 2.

B. Occupancy Grids

A well-known approach to sonar processing is the occu-
pancy grid [7] [8] [9] [10]. The world is divided into a
two dimensional grid, with each cell containing two values,
representing occupancy status and certainty. A common sonar
model for occupancy grids is a planar cone, where each point
in the cone is part of a probability distribution indicating the
likelihood that there is an obstacle at that point (Fig. 3). The
probability of occupancy is high along the base of the cone,
and near zero in the interior. This is a key contribution of
the occupancy grid: it interprets from a sonar return not only
a region where an obstacle is likely to be, but also a region
where it is unlikely for an obstacle to be. The grid cells are
updated by combining these probabilities of occupancy using
Bayes Rule.

The disadvantage of occupancy grids is that they require a
tradeoff between resolution and computational resources. The
higher the desired resolution, the more finely discretized the
grid must become, resulting in larger demands on memory
and computation. Since sonar readings must be processed in
real time while sharing resources with navigation and local-
ization software, this is a serious consideration. Conversely,
as the size of the environment grows, the discretization must
become coarser in order for the demands on memory and
computation to remain constant. Given that we are operating
in environments on the order of thousands of square meters,
the granularity required for efficient use of occupancy grids is
a concern.

C. Line Fitting Techniques

Several techniques have been developed that work by fusing
multiple sonar readings to try and gain a more abstract under-
standing of obstacles and their locations. In [11] McKerrow fits
line segments that are tangent to multiple sonar arcs. Leonard
et al. group sonar arcs that have similar depth as coming from
the same obstacle [12]. And MacKenzie and Dudek fit line
segments to clusters of sonar points. [13]. While these tech-
niques all provide information suitable for robot navigation,

Fig. 3. Gaussian Distribution along the arc of a sonar cone

they are not always accurate enough for localization. Also,
they all suffer from the same narrow opening problems that
the centerline model does. Finally, requiring multiple points
to fit lines results in an increase in latency.

D. Arc Transversal Median (ATM)

The ATM [2] method uses an arc model similar to the
centerline method. Each sonar return has an origin(x, y)
corresponding to the location of the sensor, a ranger, a sensor
orientationθ and a beam widthφ. The probability of a point
on the arc perimeter being the point of reflection is modeled
as a uniform distribution over the curve

C =
[
x+ r cos(τ)
y + r sin(τ)

]
(θ − φ

2
) ≤ τ ≤ (θ +

φ

2
) (2.1)

and zero elsewhere. If two curves from different sonar arcs
intersect each other in a transversal manner, then the region
of intersection is stable and may be used as a better estimate
of the point of reflection.

A history of the most recent arcs is kept. Whenever a new
arc is added, it is checked for intersections with all other arcs
in the history. If an intersection exists and meets a minimum
transversal angle threshold, the intersection is stored. When
a local map of the processed range data is requested, ATM
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Fig. 4. Local maps produced by the ATM and Centerline methods as the
robot approaches a ’T’ junction of two hallways. Points in the ATM map
correspond to the medians of transversal intersections, points in the Centerline
map correspond to the center of arcs. Light grey obstacles have been drawn
in for the sake of display. The ATM map does not yet contain any points
corresponding to the approaching wall, demonstrating the problems associated
with high latency.
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Fig. 5. The regions of freespace and possible reflection for a sonar arc

returns the median of all stored intersection points along each
arc. If there are no intersections along an arc when a map is
requested, ATM defaults to using the centerline model for that
particular arc.

This approach provides a drastic improvement in azimuth
resolution, and also eliminates the narrow opening problem.
However, it also has considerable latency problems. In order
to obtain at least one intersection with a minimum transversal
angleψ, two arcs must have origins that differ by a minimum
distanceDmin, defined by

Dmin = 2r sin(
ψ

2
) (2.2)

Thus, the farther away the obstacle is, the farther the robot
must travel before it can obtain transversal intersections. This
often results in intersections not occurring until well after the
robot has already passed by the obstacle they correspond to.
In the interim, the robot is navigating using a map that is
generated mostly by the centerline model. During this period,
the robot may fail its coverage or navigation task due to an
inaccurate local map. So while the centerline method provides
data that is timely but not accurate enough for navigation
and localization, ATM provides data that is accurate but not
timely enough. Fig. 4 shows an example of this problem.
While ATM generates a much cleaner map (Fig. 4(a)), it
has not yet generated any data off the wall the robot is
approaching, giving the robot a vastly different view of the
world than the centerline model (Fig. 4(b)). In practice, the
ATM and centerline maps would be combined to produce a
more complete, but inaccurate local map.

3. ARC CARVING

The basic premise of arc carving is that a sonar return
actually provides two pieces of information instead of one:
it indicates a region where the sonar reflection could have
occurred, and another region that is likely to be freespace (Fig.
5). These regions correspond to the regions of high and low
obstacle probability of an occupancy grid sonar model [7].
When the region of possible reflection from one sonar return
intersects the region of freespace of another sonar return, then
these two readings represent inconsistent information. Since
these two arcs might have been taken from radically different
locations in both time and space, the more recent of the two
is considered authoritative. If the freespace region of a newer
arc overlaps the region of possible reflection of an older arc,
then the older arc is updated to be consistent (Fig. 6). In this
way the region of possible reflection is carved away. When
requested by the navigation software, a local map containing

Fig. 6. The portion of a region of possible reflection that is overlapped by
a region of freespace is removed

one point per carved arc is returned. As these arcs decrease in
size, so does the maximum error of the corresponding point
in the local map.

Although arc carving involves fusing multiple sonar read-
ings, it is still a low latency approach. Since there are no
thresholds for the quality of data that need be met, points are
added to the local range map as soon as an obstacle is detected.
The accuracy of points corresponding to the obstacle is then
improved upon as more sonar readings are taken from the
obstacle. Arcs are combined in a serial manner, so there is no
waiting for a minimum number of arcs.

Arc carving uses a sonar model similar to ATM. More
formally, for each sonar arc a 5-tuple is stored, consisting of
an origin(x, y), a ranger, and a range of angles[θ1, θ2]. This
range is initialized as

[θ1, θ2] = [θ − φ

2
, θ +

φ

2
]

whereθ andφ are the sensor orientation and sonar beam width,
respectively.

The region of possible reflection is the arc defined as

C =
[
x+ r cos(τ)
y + r sin(τ)

]
θ1 ≤ τ ≤ θ2 (3.1)

The freespace region of a reading,F , is bounded on one
side byC, and on two sides by the line segmentsL1 andL2

from the origin of the arc to the endpoints ofC (Fig. 5). F
could also be defined by

F = {(x′, y′)|
√

(x′ − x)2 + (y′ − y)2 ≤ r,
θ1 ≤ arctan( y

′−y
x′−x ) ≤ θ2}

(3.2)

In our mapping scheme, the local range map consists of one
point Pi for every arc. IfCi is connected,Pi is defined as

Pi =
[
x+ r cos( θ1+θ2

2 )
y + r sin( θ1+θ2

2 )

]
(3.3)

In the case where[θ1, θ2] = [θ − φ
2 , θ + φ

2 ], which we term
the uncarved case, the point returned is identical to that of the
centerline model.

Given two sonar readingsi and j

Zij = Ci ∩ Fj , (3.4)

is the set of points which are in the region of possible reflection
of readingi and the region of freespace of readingj (Fig. 6).
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Fig. 7. The results of mapping a 5000 square meter environment This map is not adjusted for dead reckoning error.

The arc carving procedure can now be defined as follows:
given a temporally ordered set of arcs0− n, with regions of
possible reflectionC0 − Cn and freespace regionsF0 − Fn,
the updated regions of possible reflectionC ′i are defined as

C ′i = Ci −
n⋃
j≥i

Zij (3.5)

C ′i is the new truncated arc, with angular endpointsθ′1 andθ′2.
If C ′i is connected over[θ′1, θ

′
2], P ′i is defined as

P ′i =

[
x+ r cos( θ

′
1+θ′2

2 )
y + r sin( θ

′
1+θ′2

2 )

]
(3.6)

It is possible that by repeated carvingC ′i will become the
empty set. This occurs if every point thatCi indicates as a
possible point of reflection is contained inside the freespace
region of a more recent arc. This indicates that eitherCi
corresponds to an incorrect reading, or that the obstacle that
producedCi is no longer present. In either case, it is no longer
desirable or meaningful to addPi to the local map. In this way,
arc carving often completely eliminates spurious sonar returns.

It is also possible that carving may result inC ′i split-
ting into two or more disconnected regions. Over time, we
have observed that this occurs when theFj overlappingCi
corresponds to an arcj whose origin (x, y)j is closer to
Ci than is (x, y)i. Since the robot has moved closer to the
obstacle corresponding toCi, subsequent arcsCk from the
same obstacle are more accurate thanCi (Equation 5.2). Since
readings exist that are more recent and more accurate than
reading i, Ci should be ignored. Ignoring these arcs also
ensures thatC ′i is always connected over[θ1, θ2]. Thus, the
carving process becomes simply reducing the range[θ1, θ2] of
Ci to avoid overlaps with freespace regions. This also ensures
that P ′i can always be directly computed from the 5-tuple
(x, y, r, θ1, θ2)i

4. INTEGRATION OFARC CARVING AND OTHER METHODS

Although an independent sonar processing technique, arc
carving can be used in conjunction with previously discussed
methods. Specifically, arc carving provides significant im-
provement to the average azimuth resolution when compared

to the centerline model. In the worst case, the two are
equivalent. Arc carving does not significantly increase latency
as compared to centerline.

In arc carving, every sonar reading begins using the same
sonar model, an arc of widthφ. As arcs are carved, each
reading is updated to have its own model that is consistent with
more recent readings. This idea can be extended to occupancy
grids. Rather than use the same probability distribution for
every sonar reading, a new distribution can be used for each
reading, computed from the carved results of recent readings
from a particular sensor. This would result in a more refined
update of grid cells.

Arc carving can be used to enhance existing line fitting
techniques. Increasing the accuracy of the location of points
in the local map allows for fitting more accurate lines with less
data. By eliminating spurious sonar readings, arc carving can
provide local maps with less noise, thereby further facilitating
line fitting. Similarly, reduction in noise can aid in more
accurate clustering of points. Also, decreasing the azimuth un-
certainty of a sonar arc results in fewer possible lines tangent
to that arc, which can provide a significant enhancement to
McKerrow’s techniques.

Finally, arc carving can be efficiently run in parallel with
ATM, as described in the next section. This allows for com-

Fig. 8. Slammer, a Nomadic Scout2 with 16 equally spaced Polaroid
ultrasonic sensors



1m

(a) Combined ATM and
Centerline local map
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(b) Combined ATM and
Arc Carving local map

Fig. 9. Local maps produced as the robot navigates a narrow hallway. Light
grey obstacles have been drawn for the sake of display. In the combined ATM
and Centerline map, the hallway incorrectly appears to terminate.

bining the most accurate data available from each technique
to produce an improved and timely local map. This local map
will have low latency due to the availability of arc carved data,
and high resolution due to the accuracy of both techniques
Comparisons between the resolution of ATM and arc carving
are made in Section 5-C.

5. EXPERIMENTAL RESULTS

A. Implementation

The implementation of arc carving is straight forward.
A finite history of arcs is kept, each stored as the 5-tuple
(x, y, r, θ1, θ2). These values are relative to the world coor-
dinate frame, not relative to the robot since the robot will
move between readings. Whenever a new arcCi is added, each
previous arc in the history is checked to see if it overlapsFi. If
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Fig. 10. The percentage of data that is unprocessed by the ATM and arc
carving approaches, plotted by distance of the sonar return

so, then newθ1 andθ2 are calculated that remove this overlap.
If a previous arc is completely contained withinFi, or if it
would become disconnected due to carving, it is removed from
the history. When an updated local map is requested one point
is computed per arc in the history according to Equation 3.6. If
an arcCi is uncarved, thenP ′i = Pi, and the point returned is
labeled as a point generated by the centerline model. Once an
arc is initialized, the only values that change are the valuesθ1

andθ2. x, y andr remain unchanged. Since the beam widthφ
is constant for a given sensor, the only additional information
that needs to be stored for ATM is the original sensor angleθ.
By storing the 6-tuple(x, y, r, θ, θ1, θ2), arc carving and ATM
can be run in parallel using the same data, without interfering
with each other. The separate results of each technique can
then be added to a combined local map.

Arc carving and ATM, along with our hierarchical SLAM
approach [1], were implemented on a Nomadic Scout2 robot
named Slammer (Fig. 8). Slammer has 16 Polaroid range
sensors, equally spaced around its circumference. Local maps
are used to trace out the generalized Voronoi graph[14],
and to aid in topological localization, as described in [15].
Platform specific issues encountered during implementation
are addressed in the appendix.

Sonar data was collected and processed in real time during
SLAM trials in a building environment spanning more than
5000 square meters (Fig. 7). Qualitatively, the performance of
arc carving can be described by the success or failure of the
robot’s navigation task. Fig. 9 shows one of many examples
of arc carving having a positive effect on the robot’s ability
to navigate. In Fig. 9(a), the corridor appears too narrow to
continue based only on ATM and Centerline data. Specifically,
the points extending away from the left wall in front of the
robot, and away from the top corner of the opening on the
right, incorrectly make the hallway appear impassable. The
points extending from the left wall correspond to arcs whose
left endpoint is on the left wall. The points extending from the
top corner correspond to arcs whose right endpoint is at the top
corner. However, because the centerline model uses the center
of the arc as the point of reflection, the corresponding points
in the local map extend inside the hallway. Higher resolution
ATM data is not yet available for that section of the map.
However, based on ATM and arc carved data (Fig. 9(b)), the
robot can continue to navigate the corridor. This is one of
many examples of arc carving aiding the robot in navigation
and coverage.

B. Latency

The sonar history is a ring buffer: arcs are being continu-
ously added, each new arc replacing the oldest one. All arcs
in the history are considered either processed or unprocessed
with respect to each technique being employed. For example,
with the centerline approach, all arcs are considered processed
since no interactions between arcs are required. In the case
of techniques that fuse multiple readings, an arc must first
interact with other arcs in the manner prescribed by that
technique before it can be considered processed. It is this



20 40 60 80 100 120 140 160
4

5

6

7

8

9

10

11

12

13

14

arc radius (inches)

ar
c 

le
ng

th
 (

de
gr

ee
s)

mean
median
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TABLE I

THE MEAN PERCENTAGE OF THE HISTORY THAT IS UNPROCESSED

Method Percentage
ATM 31.75
Arc Carving 55.59
Arc Carving and ATM 7.68
Centerline 0

delay that results in increased latency. Therefore, latency for
a particular technique can be measured by determining what
percentage of arcs in the history are still unprocessed with
respect to that technique. A higher percentage of unprocessed
arcs corresponds to higher latency. These results are shown in
Table I.

At first glance, these numbers would seem to indicate that
arc carving has higher latency than ATM. However, this is not
correct. In actuality, the average latency has been artificially
weighted due to the high frequency of small radius arcs,
which do have high arc carving latency. This is depicted in
Fig. 10, which plots the experimentally recorded relationship
between latency and the radius of a sonar return for both arc
carving and ATM. As predicted by Equation 2.2, ATM latency
increases proportional to the radius of the arc. However, arc
carving latency remains low in almost all cases, the exception
being the smallest radii. This is because small arcs have small
path lengths, making it unlikely that a region of freespace
from another arc will overlap. It is only this set of small
radii arcs for which arc carving will have latency problems.
Small radii arcs are inherently more accurate (Equation 5.2),
making the centerline model sufficient in practice for such
arcs. Conversely, large radii arcs are inherently inaccurate, and
therefore it is important that they be processed. For these arcs,
arc carving has far lower latency than ATM. In this way, arc
carving and ATM complement each other nicely, resulting in
on average more than 92 percent of all arcs used in the local
map receiving at least some increase in azimuth resolution.
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Fig. 12. The mean maximum euclidean error

C. Azimuth Resolution

The angular length of a carved arc is the size of the range
[θ1, θ2], denoted by

θd = |θ2 − θ1| (5.1)

Since Pi falls in the center of this range, the maximum
possible angular error is

Em =
|θ2 − θ1|

2
=
θd
2

(5.2)

Therefore, the azimuth accuracy is determined solely by the
value ofθd. As the radius of a sonar return increases, so does
the path length ofCi. This results in increased likelihood of
Ci being carved, and a decrease inθd (Fig. 11).

Given thatPi could be displaced around(x, y)i by as much
asEm, then the maximum euclidean error is the chord on a
circle of radiusr with central angleEm

Es = 2r sin(
Em
2

) (5.3)

Fig. 12 showsEs calculated from experimental data for
arc carving, along with the theoretical values for ATM and
centerline.Es for centerline is calculated in the same manner
as for arc carving, withEm equal to the constantφ2 , whereφ
is the beam width. The theoretical maximum error for ATM
is

1
sin(ψ)

+
1

tan(ψ)
(5.4)

whereψ is the minimum transversal angle.
This data was collected using a history of 250 arcs. In-

creasing the length of the history can result in an even further
improvement in resolution, since there is a longer window of
opportunity for an arc to be carved. However, both arc carving
and ATM areO(mn) for m sonar readings and a history
length ofn, since every new arc must be checked against every
previous arc for either intersections or overlap with regions of
freespace. Therefore, any improvement in resolution due to
a longer history must be balanced against the computational
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(a) ATM map
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(b) Arc Carving map (with maximum error thresholding)

Fig. 13. Final filtered maps produced by ATM and arc carving. These maps
are not adjusted for dead reckoning error.

cost. Also, the longer the history, the longer points in the
local map could remain for an obstacle that is no longer being
detected. A longer history makes the local map less responsive
to dynamic environments.

These error estimates do not include arcs that have been
fully carved, that is whereC ′i is the empty set. In our
experiments over 20 percent of all arcs processed by arc
carving were fully carved, and therefore were removed from
the local map. This demonstrates that arc carving is effective
in removing spurious sonar returns, an important step towards
more robust navigation.

Fig. 13 shows global range maps produced by arc carving
and ATM for a small environment. In Fig. 13(a), points
correspond to the final median of transversal intersections

along each arc. In Fig. 13(b), points correspond to the center of
sufficiently carved regions of possible reflection. These maps
are quite similar, demonstrating that the final accuracy of arc
carving is equivalent to that of ATM. However, the arc carving
results were obtained in a timely fashion, enabling the robot
to make more informed decisions with respect to navigation,
localization, and coverage.

6. CONCLUSIONS

In this paper we introduced arc carving, a new technique
for processing ultrasonic range data. Arc carving derives
from a sonar return information relating to both the presence
and absence of obstacles. Multiple readings are combined to
produce continually refined regions that likely caused sonar
reflections. Each region contributes one point to a local range
map used for mobile robot navigation.

This iterative refinement process has three key effects. First,
every sonar reflection from an obstacle continues to improve
the accuracy of the local map. Second, arc carving is often
able to fully eliminate points corresponding to spurious sonar
returns. Third, the robot never has to wait for the quality or
quantity of sonar returns to pass a threshold before processed
data is available. This immediate availability of accurate
range data is essential for robust mobile robot navigation and
coverage.

Arc carving can be used independently, or in conjunction
with other processing techniques. The data structures involved
in implementing arc carving are similar to those used by
the ATM approach. This allows for a straightforward parallel
implementation that lets each method’s strengths complement
the other’s weaknesses. Using this combined implementation,
our experimental platform has been able to navigate and map
areas in excess of 5000 square meters.

In the future, we will explore the possibility of integrating
ATM and arc carving further, allowing each method to make
use of the intermediate results of the other. This would also
allow selectively running only ATM or arc carving at one time,
based on the particulars of the situation, resulting in a more
computationally efficient approach. We will also explore the
possibility of attaching certainty values to points in the local
map. Both arc carving and ATM provide for an upper bound
on the possible error of each point. Combining these with
upper bounds on position stamping error (Appendix A) may
allow for a meaningful estimate of the variance of sections
or even the entire local map, which in turn could lead to
even more robust navigation. Another issue to explore involves
determining the optimal relationship between the length of
the arc history, computational resources, and robot velocity.
Finally, there is the issue of noise in the origin, orientation,
and distance of a sonar return. Future work will investigate
how to compensate for this noise.
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(a) unpolled centerline
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(b) polled centerline

Fig. 14. Centerline generated maps from the same trial, with and without
sonar polling. No additional filtering has been performed.
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APPENDIX

A. Position Stamping without Hardware Support

The discussion up to now has assumed that every sonar re-
turn is accurately position stamped, that is the origin(x, y) and
sensor orientationθ for each sonar return relative to the world
coordinate frame (discounting the effects of positioning error)

are well known. When a robot’s hardware provides support for
position stamping, this assumption is valid. However, when
hardware support is not provided, it is exceedingly difficult to
know exactly when a sonar was fired, and therefore where the
origin of that sonar arc is. This is the case with the Nomadics
Scout2 robot. Since any error in position stamping is passed
on to the local map, it is important to minimize this error,
especially in orientation.

Our solution to this problem was a technique we call Sonar
Polling. Given sensors labeled 1 ton in the order in which
they fire, a record of each sensor’s last reading is maintained,
as well as which sensor, labeledl, is the last one known for
sure to have fired. The sensors are then constantly polled to
detect any changes in value from their last recorded value.
If a sensori changes value, then not only do we know that
it has fired, but that all sensors betweenl and i must also
have fired, even if they have not changed value. Also, based
on how much time has passed sincel was fired, it can be
determined which sensors subsequent tol must have fired due
to their timeout. In this wayl is continously updated, and the
sonar returns can be more accurately position stamped. This
method also results in a known upper bound on the position
stamping error. When this bound grows too large, the robot
can either choose to ignore readings with high uncertainty, or
slow down to reduce the error. Fig. 14 shows the effect sonar
polling alone can have on centerline processed sonar data.

B. Filtering

Another problem with the Scout2 hardware are spurious
sonar readings. Such readings can result by detecting an echo
from a previously fired sensor. Another cause is the sonar
beam bouncing of the floor. In the case of the Scout2, with the
sensors mounted at only 10.25 inches off of the ground, a sonar
beam will begin to reflect from the floor at just over 2 feet
from the robot. When the robot tilts even slightly due to bumps
or depressions in the floor, this problem worsens. Although arc
carving can remove some of this noise by completely carving
arcs, it is not always enough.

Our solution was to introduce two levels of filtering above
and beyond any explicit sonar processing. The first was on a
per-sensor basis: if the range readings coming from any one
sonar varied by more than a threshold between cycles, that
sensor would be ignored for one cycle. A maximum range of
150 inches was also used. Sonar returns beyond this distance
were ignored. The second level of filtering is performed on the
local map. All points must pass an outlier test based on there
existing enough neighboring points within a specified radius.
Isolated points are ignored until they either expire from the
history, or more points are added around them.
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