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Abstract In this paper we present an algorithmic solution for the distributed,
complete coverage, path planning problem. Real world applications
such as lawn mowing, chemical spill clean-up, and humanitarian de-
mining can be automated by the employment of a team of autonomous
mobile robots. Our approach builds on a single robot coverage algo-
rithm. A greedy auction algorithm (a market based mechanism) is used
for task reallocation among the robots. The robots are initially dis-
tributed through space and each robot is allocated a virtually bounded
area to cover. Communication between the robots is available without
any restrictions.
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1. Introduction

The task of covering an unknown environment, common in many ap-
plications, is of high interest in a number of industries. Among them
are manufacturers of automated vacuum/carpet cleaning machines and
lawn mowers, emergency response teams such as chemical or radioactive
spill detection and clean-up, and humanitarian de-mining. In addition,
interesting theoretical problems have emerged especially in the areas of
path planning, task (re)allocation and multi-robot cooperation.

The goal of complete coverage is to plan a path that would guide a
robot to pass an end-effector (in our case equivalent to the footprint of
the robot) over every accessible area of the targeted environment. In the
single robot case, previous work has produced algorithms that guarantee
complete coverage of an unknown arbitrary environment. Introducing
multiple robots provides advantages in terms of efficiency and robustness
but increases the algorithmic complexity.

Central in the multi-robot approach is the issue of communication.
When communication is restricted to close proximity (Latimer-IV et al.,
2002) or line of sight (Rekleitis et al., 2004) the robots have to remain
together in order to avoid covering the same area multiple times. When
unrestricted communication is available then the robots can disperse
through the environment and proceed to cover different areas in parallel,
constantly updating each other on their progress. The challenge in this
case is to allocate regions to each robot such that no robot stays idle
(thus all finish covering around the same time) and also to reduce the
amount of time spent commuting among the different regions instead of
covering. Providing an optimal solution for minimizing travel time is an
NP-hard problem as it can be mapped into a multiple traveling salesman
problem. An auction mechanism is used in order to re-allocate regions to
be covered between robots in such a way that the path traveled between
regions is reduced. The auction mechanism is a greedy heuristic based
on the general market based approach.
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We assume that the robots know their position and orientation with
respect to a global reference frame (e.g. via access to a GPS system).
The robot sensors are able to detect both static obstacles and mobile
robots, and differentiate between the two. The sensors have limited
range and a good angular resolution.

The working paradigm in our approach is the application of humani-
tarian de-mining. A team of robots is deployed along one side of a field
to be cleared, at regular intervals (as in Fig. 1). The interior of the field
is unknown, partially covered with obstacles, and divided into a number
of virtual stripes equal to the number of robots. Each robot is allocated
initially the responsibility of the stripe it is placed at, and the coverage
starts.

In the next section we present relevant background on the Coverage
task and on the market based approach. Section 3 provides an overview
of our algorithm and the next Section presents our experimental results
in multiple simulated environments. Finally, Section 5 provides conclu-
sions and future work.

2. Related Work

This work employs a single robot coverage algorithm for each individ-
ual robot and an auction mechanism to negotiate among robots which
areas each robot would cover. Due to space limitations we will briefly
outline the major approaches in multi-robot coverage (for a more de-
tailed survey please refer to (Rekleitis et al., 2004)) and then we will
discuss related work on market based mechanisms in mobile robotics.
Finally, we present a brief overview of relevant terminology used in cov-
erage and exact cellular decomposition. This work takes root in the
Boustrophedon decomposition (Choset and Pignon, 1997), which is an
exact cellular decomposition where each cell can be covered with simple
back-and-forth motions.

Deterministic approaches have been used to cover specialized environ-
ments (Butler et al., 2001) sometimes resulting in repeat coverage (Latimer-
IV et al., 2002; Kurabayashi et al., 1996; Min and Yin, 1998). Non-
deterministic approaches include the use of neural networks (Luo and
Yang, 2002), chemical traces (Wagner et al., 1999), and swarm intel-
ligence (Ichikawa and Hara, 1999; Bruemmer et al., 2002; Batalin and
Sukhatme, 2002). The non-deterministic approaches can not guarantee
complete coverage.
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2.1 Market-based Approach in Robotics

Cooperation and task allocation among mobile robots is crucial in
multi-robot applications. To facilitate task re-allocation a new method-
ology based on market economy has gained popularity. For a compre-
hensive survey please refer to (Dias and Stentz, 2001). Currently market
based approaches have been used to solve the multi-robot task allocation
problem (Goldberg et al., 2003) in the domains of: exploration (Berhault
et al., 2003; Dias and Stentz, 2003), failure/malfunction detection and
recovery (Dias et al., 2004), and box pushing (Gerkey and Mataric,
2002).

2.2 Boustrophedon/Morse Decomposition

_— Figure 2 Illustrates the
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To better describe the multi-robot coverage algorithm, we borrow the
following terms from single robot coverage: slice, cell, sweep direction,
and critical point (see Fig. 2). A slice is a subsection of a cell covered
by a single, in our case vertical, motion. A cell is a region defined by
the Boustrophedon decomposition where connectivity is constant. In
our current work a cell is further constrained by the boundaries of the
stripe (the space allocated to a robot). Sweep direction refers to the
direction the slice is swept. Lastly, a critical point represents a point on
an obstacle which causes a change in the cell connectivity. The critical
points have been described in length in (Acar and Choset, 2000) (see
Fig. 3a for an overview). We also borrow the concept of a Reeb graph,
a graph representation of the target environment where the nodes are
the critical points and the edges are the cells (Fig. 3b).

3. Algorithm Overview

Our approach consists of two behaviours, exploration and coverage.
The robots initially try to trace the outline of the areas assigned to
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Figure 3. (a) Depicts the four types of critical points, based on concavity and the
surface normal vector parallel to the sweep direction. Note that the shaded areas are
obstacles and the arrows represent the normal vectors. (b) Here a simple Reeb graph
is overlaid on top of a simple elliptical world with one obstacle. P1-P4 are critical
points which represent graph nodes. E1-E4 represent edges which directly map to
cells C1-C4.

them in order to be more knowledgeable about the general layout of the
free space. The connectivity of the free space is recorded in a graph
that consists of the Reeb graph augmented with extra nodes (termed
Steiner points) placed at the boundaries of the assigned stripes for each
robot. The edges of the graph represent areas of accessible unexplored
space and each edge belongs to a robot. During the exploration phase
the robots exchange information and if the stripe a robot has assigned
is not fully explored, then, that robot calls an auction for the task of
exploring the remaining area of the stripe.

3.1 Cooperative Exploration

The robot uses the cycle algorithm developed in single robot Morse
Decomposition for exploration of the stripe boundary. The cycle path
is a simple closed path, i.e., by executing the cycle algorithm the robot
always comes back to the point where it has started. This same cycle
algorithm is used for both exploration and coverage. Before describing
the cycle algorithm, we need to define 2 terms: lapping and wall follow-
ing. Lapping is the motion along the slices while wall following is the
motion along obstacle boundaries. A simple cycle algorithm execution
will consist of forward lapping, forward wall following, reverse lapping
and reverse wall following (as shown in Fig. 4a). This is sufficient for
exploring the stripe boundary.

To explain the cooperative exploration algorithm, we will look at an
example. Fig. 4b shows an unknown space with a single obstacle, being
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Figure 4.  (a) A simple cycle path consisting of forward lapping, forward wall follow-
ing, reverse lapping and reverse wall following. (b) Simple environment with initial
Augmented Reeb Graph. (c) Initial exploration of stripes. (d) The final Reeb Graph
after exploration is complete.

divided into 6 stripes. The Reeb graph of each robot is initialized with
2 critical points (Start and End) and 5 Steiner points (representing the
stripe boundaries).

The robots access their respective stripes and perform initial explo-
ration using the cycle algorithm (forward lapping, forward wall follow-
ing, reverse lapping and reverse wall following). During exploration,
the robots modify their knowledge of the environment by updating the
Reeb graph as they discover critical points and new information about
the Steiner points. After completing a cycle, each robot shares its up-
dated partial Reeb graph with the rest of the robots. At the end of the
initial exploration, the updated global Reeb graph is as shown in Fig.
4c.

In the process of exploration, the robots will realize that there are
spaces in their stripe that they are not able to reach easily. Those robots
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that are in such a situation will formulate the unreachable portions of
the stripe as auction tasks and call auctions to re-allocate these parts
of their stripe. In this manner, cooperative exploration is achieved.
Fig. 4d shows the completed Reeb Graph after exploration is complete.
Robots that do not have any exploration tasks can start performing
partial coverage of known stripes in order not to waste time. Coverage
of a cell is considered an atomic task, thus a robot that has started
covering a cell would finish covering it before starting another task. The
global Reeb graph is updated to represent the increased knowledge of
the environment.

3.2 Cooperative Coverage

After all the stripe boundaries are completely explored (fully con-
nected Reeb graph without Steiner points), the cells are owned by the
robot that discovered them. The environment is fully represented by
the Reeb graph, hence it is decomposed into a set of connected cells
(the union of all the cells represents the free space), and all free space is
allocated to the robots. Next the robots proceed to cover the cells under
their charge. Coverage of a single cell is the same as single robot Morse
Decomposition; if there are no obstacles within the cell, the coverage
is a series of simple cycle paths. If there are obstacles within the cell,
the robot performs incremental modification of the Reeb graph within
that cell and shares the information with the other robots. If there is
a robot that is without a task it calls an auction to offer its service to
other robots. If all robots have completed their cell coverage and there
are no uncovered cells in the Reeb graph, then the robots return to their
starting positions and declare the environment covered.

3.3 Auctioning Tasks

A simple auction mechanism is used to investigate the feasibility of
auction to enable cooperation among robots. At any auction a single
task is auctioned out. In general, the auction mechanism operates as
follows: (a) A robot discovers a new task and calls an auction with an
initial estimated cost. (b) Other robots that are free to perform the task
at a lower estimated cost, bid for the task. (c) When the auction time
ends, the auctioneer selects the robot with the lowest bid and assigns
the task. The winning robot adds the task into its task list and confirms
that it accepts the task by sending an accept-task message back to the
auctioneer. The auctioneer deletes the auction task and the task auction
process concludes. As stated in the previous sections, auction is used



8

in two separate ways: for cooperative exploration, and for cooperative
coverage.

During exploration, a robot can encounter a situation where the stripe
it is exploring is divided into two (or more) disconnected parts (see for
example the middle stripe in Fig. 5a) because of an obstacle. The robot
starts with forward lapping, encounters the obstacle and performs wall
following. The wall following behaviour brings it to the stripe bound-
ary associated with reverse lapping. As a result, the robot infers that
there exists a disconnected stripe. At this point, it will formulate a new
stripe to be explored and calls an auction for this new exploration task.
Please note that the robots generally do not have sufficient information
to know accurately the cost of performing the exploration task. It can
only estimate the cost based on whatever information is available. Cost
is the only parameter that decides the winning robot in an auction and
it is thus the factor that determines the quality of cooperation. The
estimation of the cost can be potentially a complex function of many
variables (such as time spent, fuel expended, priorities of the task, ca-
pabilities of the robot). For this investigation, the task cost for the
bidder is estimated based on 2 components: (a) Access cost: Based on
the bidder’s current estimated end point (the point where its currently
executing atomic task will end), this is the shortest Manhattan distance
to access the new stripe; (b) Exploration cost: Assuming that the robot
can access the desired point in the stripe, this is the minimum distance
that it needs to travel in order to explore the stripe completely (as parts
of the stripe could already have been explored, the starting point of the
exploration could result in different costs for different robots).

When an initial estimate of the cells is available (exploration is com-
plete) the robot that has discovered a cell is initially responsible for
covering it. The robot without any tasks will offer its service by also
calling an auction. Any robot that has extra cells (less the cell that it is
currently covering) will offer one of the cells, based on the auctioneer’s
position. Each robot without extra cells will estimate the current cell
workload and offer to share its cell coverage task if it is greater than a
threshold. The auctioneer prefers to takeover a cell rather than to share
coverage of a cell. It will use the estimated distance to access the cell as
a selection criteria if there are more than one cell on offer.

4. Experimental Results

The distributed coverage algorithm was implemented in simulation
using Player and Stage (Gerkey et al., 2001) with 3 robots. We adopted
a highly distributed system architecture because it can quickly respond
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to problems involving one (or a few) robots, and is more robust to point
failures and the changing dynamics of the system. Our architecture is
based on the layered approach that has been used for many single-agent
autonomous systems (Schreckenghost et al., 1998; Wagner et al., 2001).
We are employing two layers for each robot instead of the traditional
three layers: Planning and Behaviour. The upper layer consists of Plan-
ner and Model and the lower layer is Behaviour. Model is where the Reeb
graph resides. Planner is where Morse Decomposition, auction mecha-
nism, task scheduling and task monitoring take place. The Behaviour
process serves the same function as in traditional layered architecture,
controlling the robots to perform atomic tasks such as Goto, Follow Wall
and Lapping.
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Figure 5. (a) The environment and the three robots at the starting position in

Stage. (b) The traces of the robots (marked as circles which are smaller than the
footprint) and the critical points encountered. (c¢) The augmented Reeb graph with
the critical points (circles) and the Steiner points (crosses).

A sample environment for testing the algorithm is shown in Fig. ba.
Each robot is allocated a stripe and the Planner of each robot receives
the stripe information. The Planner determines the point where it wants
to access the stripe and sends the way-point to the Behaviour process
for execution. After accessing the stripe, the Behaviour process sends a
message to the Planner informing the Planner that access of the stripe
is completed. Based on the stripe information and the robot pose, the
Planner plans for Forward Lapping and sends this task to the Behaviour.
The Behaviour executes the forward lapping task. For this task, the 3
robots experience different terminating conditions because of the envi-
ronment: The left and the right robots complete the exploration of their
stripes without any problems. The middle robot realizes that it can not
complete the exploration of its stripe and calls an auction. The robot
on the right wins the auction and proceeds to explore the remaining
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part of the middle stripe. In the mean time the left and middle robots
start partial coverage. Finally when exploration is complete the robots
exchange cells via auction and completely cover the environment. Fig.
5c¢ shows the Reeb graph after exploration is completed. Fig. 5b shows
the trace of the three robots plotted as circles (the trace is smaller than
the robot footprint for illustration purposes).

During our experiments the robots continuously explored and covered
the environment. After a few auctions it was impossible to predict which
task was scheduled next by each robot. It is worth noting though that
the distance traveled by each robot was approximately the same thus
showing that the workload was distributed evenly.

5. Summary

In this paper we presented an algorithmic approach to the distributed,
complete coverage, path planning problem. Under the assumption of
global communication among the robots, each robot is allocated an area
of the unknown environment to cover. An auction mechanism is em-
ployed in order to facilitate cooperative behaviour among the robots
and thus improve their performance. In our approach no robot remains
idle while there are areas to be covered.

For future work, we would like to compare the performance between
the distributed approach described here with the formation-based ap-
proach with limited communication presented in (Rekleitis et al., 2004).
Augmenting the cost function to take into account individual robot ca-
pabilities (especially in heterogeneous teams) is an important extension.
Accurate localization is a major challenge in mobile robotics; we would
like to take advantage of the meeting of the robots in order to improve
the localization quality via cooperative localization (Roumeliotis and
Rekleitis, 2004). Finally, developing more accurate cost estimates for
the different tasks is one of the immediate objectives.
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