Back to Publications

Dynamically Efficient Kinematics for Hyper-Redundant Manipulators

Authors: Marios Xanthidis, Kostantinos J. Kyriakopoulos, Ioannis Rekleitis

Abstract: A hyper-redundant robotic arm is a manipulator with many degrees of freedom, capable of executing tasks in cluttered environments where robotic arms with fewer degrees of freedom are unable to operate. This paper introduces a new method for modeling those manipulators in a completely dynamic way. The proposed method enables online changes of the kinematic structure with the use of a special function; termed “meta-controlling function”. This function can be used to develop policies to reduce drastically the computational cost for a single task, and to robustly control the robotic arm, even in the event of partial damage. The direct and inverse kinematics are solved for a generic three-dimensional articulated hyper-redundant arm, that can be used as a proof of concept for more specific structures. To demonstrate the robustness of our method, experimental simulation results, for a basic “meta-controlling” function, are presented.

PDF
@inproceedings{XanthidisMed2016, author = {Marios Xanthidis and Kostantinos J. Kyriakopoulos and Ioannis Rekleitis}, booktitle = {The 24th Mediterranean Conference on Control and Automation (MED)}, title = {Dynamically Efficient Kinematics for Hyper-Redundant Manipulators}, year = {2016}, volume = {}, number = {}, pages = {207-213}, keywords = {}, doi = {} }